Commit
·
ed67b34
1
Parent(s):
c588c51
Add --output-column parameter to olmocr2-vllm.py
Browse files- Allow users to specify custom output column name
- Default remains "markdown" for consistency
- Matches pattern from dots-ocr.py and rolm-ocr.py
🤖 Generated with [Claude Code](https://claude.com/claude-code)
Co-Authored-By: Claude <noreply@anthropic.com>
- olmocr2-vllm.py +11 -3
olmocr2-vllm.py
CHANGED
|
@@ -259,6 +259,7 @@ def main(
|
|
| 259 |
input_dataset: str,
|
| 260 |
output_dataset: str,
|
| 261 |
image_column: str = "image",
|
|
|
|
| 262 |
batch_size: int = 16,
|
| 263 |
model: str = "allenai/olmOCR-2-7B-1025-FP8",
|
| 264 |
max_model_len: int = 16384,
|
|
@@ -279,6 +280,7 @@ def main(
|
|
| 279 |
input_dataset: HuggingFace dataset ID containing images
|
| 280 |
output_dataset: HuggingFace dataset ID for output
|
| 281 |
image_column: Column name containing images
|
|
|
|
| 282 |
batch_size: Number of images to process at once
|
| 283 |
model: HuggingFace model ID for olmOCR
|
| 284 |
max_model_len: Maximum context length
|
|
@@ -319,9 +321,9 @@ def main(
|
|
| 319 |
ds = ds.select(range(min(max_samples, len(ds))))
|
| 320 |
|
| 321 |
logger.info(f"Processing {len(ds)} samples")
|
|
|
|
| 322 |
|
| 323 |
-
#
|
| 324 |
-
output_column_name = "markdown"
|
| 325 |
metadata_column_name = "olmocr_metadata"
|
| 326 |
inference_info_column = "inference_info"
|
| 327 |
|
|
@@ -363,7 +365,7 @@ def main(
|
|
| 363 |
all_metadata.append(json.dumps(metadata))
|
| 364 |
|
| 365 |
# Add results to dataset
|
| 366 |
-
ds = ds.add_column(
|
| 367 |
ds = ds.add_column(metadata_column_name, all_metadata)
|
| 368 |
|
| 369 |
# Add inference information
|
|
@@ -482,6 +484,11 @@ Examples:
|
|
| 482 |
default="image",
|
| 483 |
help="Column name containing images (default: image)",
|
| 484 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 485 |
parser.add_argument(
|
| 486 |
"--batch-size",
|
| 487 |
type=int,
|
|
@@ -553,6 +560,7 @@ Examples:
|
|
| 553 |
input_dataset=args.input_dataset,
|
| 554 |
output_dataset=args.output_dataset,
|
| 555 |
image_column=args.image_column,
|
|
|
|
| 556 |
batch_size=args.batch_size,
|
| 557 |
model=args.model,
|
| 558 |
max_model_len=args.max_model_len,
|
|
|
|
| 259 |
input_dataset: str,
|
| 260 |
output_dataset: str,
|
| 261 |
image_column: str = "image",
|
| 262 |
+
output_column: str = "markdown",
|
| 263 |
batch_size: int = 16,
|
| 264 |
model: str = "allenai/olmOCR-2-7B-1025-FP8",
|
| 265 |
max_model_len: int = 16384,
|
|
|
|
| 280 |
input_dataset: HuggingFace dataset ID containing images
|
| 281 |
output_dataset: HuggingFace dataset ID for output
|
| 282 |
image_column: Column name containing images
|
| 283 |
+
output_column: Column name for markdown output
|
| 284 |
batch_size: Number of images to process at once
|
| 285 |
model: HuggingFace model ID for olmOCR
|
| 286 |
max_model_len: Maximum context length
|
|
|
|
| 321 |
ds = ds.select(range(min(max_samples, len(ds))))
|
| 322 |
|
| 323 |
logger.info(f"Processing {len(ds)} samples")
|
| 324 |
+
logger.info(f"Output will be written to column: {output_column}")
|
| 325 |
|
| 326 |
+
# Set column names
|
|
|
|
| 327 |
metadata_column_name = "olmocr_metadata"
|
| 328 |
inference_info_column = "inference_info"
|
| 329 |
|
|
|
|
| 365 |
all_metadata.append(json.dumps(metadata))
|
| 366 |
|
| 367 |
# Add results to dataset
|
| 368 |
+
ds = ds.add_column(output_column, all_outputs)
|
| 369 |
ds = ds.add_column(metadata_column_name, all_metadata)
|
| 370 |
|
| 371 |
# Add inference information
|
|
|
|
| 484 |
default="image",
|
| 485 |
help="Column name containing images (default: image)",
|
| 486 |
)
|
| 487 |
+
parser.add_argument(
|
| 488 |
+
"--output-column",
|
| 489 |
+
default="markdown",
|
| 490 |
+
help="Column name for markdown output (default: markdown)",
|
| 491 |
+
)
|
| 492 |
parser.add_argument(
|
| 493 |
"--batch-size",
|
| 494 |
type=int,
|
|
|
|
| 560 |
input_dataset=args.input_dataset,
|
| 561 |
output_dataset=args.output_dataset,
|
| 562 |
image_column=args.image_column,
|
| 563 |
+
output_column=args.output_column,
|
| 564 |
batch_size=args.batch_size,
|
| 565 |
model=args.model,
|
| 566 |
max_model_len=args.max_model_len,
|