Commit
·
bdbcbee
1
Parent(s):
b09f138
README.md
Browse files- generate-responses.py +442 -0
generate-responses.py
ADDED
|
@@ -0,0 +1,442 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# /// script
|
| 2 |
+
# requires-python = ">=3.10"
|
| 3 |
+
# dependencies = [
|
| 4 |
+
# "datasets",
|
| 5 |
+
# "flashinfer-python",
|
| 6 |
+
# "huggingface-hub[hf_transfer]",
|
| 7 |
+
# "torch",
|
| 8 |
+
# "transformers",
|
| 9 |
+
# "vllm",
|
| 10 |
+
# ]
|
| 11 |
+
#
|
| 12 |
+
# [[tool.uv.index]]
|
| 13 |
+
# url = "https://flashinfer.ai/whl/cu126/torch2.6"
|
| 14 |
+
#
|
| 15 |
+
# [[tool.uv.index]]
|
| 16 |
+
# url = "https://wheels.vllm.ai/nightly"
|
| 17 |
+
# ///
|
| 18 |
+
"""
|
| 19 |
+
Generate responses for prompts in a dataset using vLLM for efficient GPU inference.
|
| 20 |
+
|
| 21 |
+
This script loads a dataset from Hugging Face Hub containing chat-formatted messages,
|
| 22 |
+
applies the model's chat template, generates responses using vLLM, and saves the
|
| 23 |
+
results back to the Hub with a comprehensive dataset card.
|
| 24 |
+
|
| 25 |
+
Example usage:
|
| 26 |
+
# Local execution with auto GPU detection
|
| 27 |
+
uv run generate-responses.py \\
|
| 28 |
+
username/input-dataset \\
|
| 29 |
+
username/output-dataset \\
|
| 30 |
+
--messages-column messages
|
| 31 |
+
|
| 32 |
+
# With custom model and sampling parameters
|
| 33 |
+
uv run generate-responses.py \\
|
| 34 |
+
username/input-dataset \\
|
| 35 |
+
username/output-dataset \\
|
| 36 |
+
--model-id meta-llama/Llama-3.1-8B-Instruct \\
|
| 37 |
+
--temperature 0.9 \\
|
| 38 |
+
--top-p 0.95 \\
|
| 39 |
+
--max-tokens 2048
|
| 40 |
+
|
| 41 |
+
# HF Jobs execution (see script output for full command)
|
| 42 |
+
hf jobs uv run --flavor a100x4 ...
|
| 43 |
+
"""
|
| 44 |
+
|
| 45 |
+
import argparse
|
| 46 |
+
import logging
|
| 47 |
+
import os
|
| 48 |
+
import sys
|
| 49 |
+
from datetime import datetime
|
| 50 |
+
from typing import List, Optional
|
| 51 |
+
|
| 52 |
+
import torch
|
| 53 |
+
from datasets import load_dataset
|
| 54 |
+
from huggingface_hub import DatasetCard, get_token, login
|
| 55 |
+
from torch import cuda
|
| 56 |
+
from tqdm.auto import tqdm
|
| 57 |
+
from transformers import AutoTokenizer
|
| 58 |
+
from vllm import LLM, SamplingParams
|
| 59 |
+
|
| 60 |
+
# Enable HF Transfer for faster downloads
|
| 61 |
+
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
| 62 |
+
|
| 63 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 64 |
+
logger = logging.getLogger(__name__)
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def check_gpu_availability() -> int:
|
| 68 |
+
"""Check if CUDA is available and return the number of GPUs."""
|
| 69 |
+
if not cuda.is_available():
|
| 70 |
+
logger.error("CUDA is not available. This script requires a GPU.")
|
| 71 |
+
logger.error("Please run on a machine with NVIDIA GPU or use HF Jobs with GPU flavor.")
|
| 72 |
+
sys.exit(1)
|
| 73 |
+
|
| 74 |
+
num_gpus = cuda.device_count()
|
| 75 |
+
for i in range(num_gpus):
|
| 76 |
+
gpu_name = cuda.get_device_name(i)
|
| 77 |
+
gpu_memory = cuda.get_device_properties(i).total_memory / 1024**3
|
| 78 |
+
logger.info(f"GPU {i}: {gpu_name} with {gpu_memory:.1f} GB memory")
|
| 79 |
+
|
| 80 |
+
return num_gpus
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def create_dataset_card(
|
| 84 |
+
source_dataset: str,
|
| 85 |
+
model_id: str,
|
| 86 |
+
messages_column: str,
|
| 87 |
+
sampling_params: SamplingParams,
|
| 88 |
+
tensor_parallel_size: int,
|
| 89 |
+
num_examples: int,
|
| 90 |
+
generation_time: str,
|
| 91 |
+
) -> str:
|
| 92 |
+
"""Create a comprehensive dataset card documenting the generation process."""
|
| 93 |
+
return f"""---
|
| 94 |
+
viewer: false
|
| 95 |
+
tags:
|
| 96 |
+
- generated
|
| 97 |
+
- vllm
|
| 98 |
+
- uv-script
|
| 99 |
+
---
|
| 100 |
+
|
| 101 |
+
# Generated Responses Dataset
|
| 102 |
+
|
| 103 |
+
This dataset contains generated responses for prompts from [{source_dataset}](https://huggingface.co/datasets/{source_dataset}).
|
| 104 |
+
|
| 105 |
+
## Generation Details
|
| 106 |
+
|
| 107 |
+
- **Source Dataset**: [{source_dataset}](https://huggingface.co/datasets/{source_dataset})
|
| 108 |
+
- **Messages Column**: `{messages_column}`
|
| 109 |
+
- **Model**: [{model_id}](https://huggingface.co/{model_id})
|
| 110 |
+
- **Number of Examples**: {num_examples:,}
|
| 111 |
+
- **Generation Date**: {generation_time}
|
| 112 |
+
|
| 113 |
+
### Sampling Parameters
|
| 114 |
+
|
| 115 |
+
- **Temperature**: {sampling_params.temperature}
|
| 116 |
+
- **Top P**: {sampling_params.top_p}
|
| 117 |
+
- **Top K**: {sampling_params.top_k}
|
| 118 |
+
- **Min P**: {sampling_params.min_p}
|
| 119 |
+
- **Max Tokens**: {sampling_params.max_tokens}
|
| 120 |
+
- **Repetition Penalty**: {sampling_params.repetition_penalty}
|
| 121 |
+
|
| 122 |
+
### Hardware Configuration
|
| 123 |
+
|
| 124 |
+
- **Tensor Parallel Size**: {tensor_parallel_size}
|
| 125 |
+
- **GPU Configuration**: {tensor_parallel_size} GPU(s)
|
| 126 |
+
|
| 127 |
+
## Dataset Structure
|
| 128 |
+
|
| 129 |
+
The dataset contains all columns from the source dataset plus:
|
| 130 |
+
- `response`: The generated response from the model
|
| 131 |
+
|
| 132 |
+
## Generation Script
|
| 133 |
+
|
| 134 |
+
Generated using the vLLM inference script from [uv-scripts/vllm](https://huggingface.co/datasets/uv-scripts/vllm).
|
| 135 |
+
|
| 136 |
+
To reproduce this generation:
|
| 137 |
+
|
| 138 |
+
```bash
|
| 139 |
+
uv run https://huggingface.co/datasets/uv-scripts/vllm/raw/main/generate-responses.py \\
|
| 140 |
+
{source_dataset} \\
|
| 141 |
+
<output-dataset> \\
|
| 142 |
+
--model-id {model_id} \\
|
| 143 |
+
--messages-column {messages_column} \\
|
| 144 |
+
--temperature {sampling_params.temperature} \\
|
| 145 |
+
--top-p {sampling_params.top_p} \\
|
| 146 |
+
--top-k {sampling_params.top_k} \\
|
| 147 |
+
--max-tokens {sampling_params.max_tokens}
|
| 148 |
+
```
|
| 149 |
+
"""
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
def main(
|
| 153 |
+
src_dataset_hub_id: str,
|
| 154 |
+
output_dataset_hub_id: str,
|
| 155 |
+
model_id: str = "Qwen/Qwen3-30B-A3B-Instruct-2507-FP8",
|
| 156 |
+
messages_column: str = "messages",
|
| 157 |
+
output_column: str = "response",
|
| 158 |
+
temperature: float = 0.7,
|
| 159 |
+
top_p: float = 0.8,
|
| 160 |
+
top_k: int = 20,
|
| 161 |
+
min_p: float = 0.0,
|
| 162 |
+
max_tokens: int = 16384,
|
| 163 |
+
repetition_penalty: float = 1.0,
|
| 164 |
+
gpu_memory_utilization: float = 0.90,
|
| 165 |
+
tensor_parallel_size: Optional[int] = None,
|
| 166 |
+
hf_token: Optional[str] = None,
|
| 167 |
+
):
|
| 168 |
+
"""
|
| 169 |
+
Main generation pipeline.
|
| 170 |
+
|
| 171 |
+
Args:
|
| 172 |
+
src_dataset_hub_id: Input dataset on Hugging Face Hub
|
| 173 |
+
output_dataset_hub_id: Where to save results on Hugging Face Hub
|
| 174 |
+
model_id: Hugging Face model ID for generation
|
| 175 |
+
messages_column: Column name containing chat messages
|
| 176 |
+
output_column: Column name for generated responses
|
| 177 |
+
temperature: Sampling temperature
|
| 178 |
+
top_p: Top-p sampling parameter
|
| 179 |
+
top_k: Top-k sampling parameter
|
| 180 |
+
min_p: Minimum probability threshold
|
| 181 |
+
max_tokens: Maximum tokens to generate
|
| 182 |
+
repetition_penalty: Repetition penalty parameter
|
| 183 |
+
gpu_memory_utilization: GPU memory utilization factor
|
| 184 |
+
tensor_parallel_size: Number of GPUs to use (auto-detect if None)
|
| 185 |
+
hf_token: Hugging Face authentication token
|
| 186 |
+
"""
|
| 187 |
+
generation_start_time = datetime.now().isoformat()
|
| 188 |
+
|
| 189 |
+
# GPU check and configuration
|
| 190 |
+
num_gpus = check_gpu_availability()
|
| 191 |
+
if tensor_parallel_size is None:
|
| 192 |
+
tensor_parallel_size = num_gpus
|
| 193 |
+
logger.info(f"Auto-detected {num_gpus} GPU(s), using tensor_parallel_size={tensor_parallel_size}")
|
| 194 |
+
else:
|
| 195 |
+
logger.info(f"Using specified tensor_parallel_size={tensor_parallel_size}")
|
| 196 |
+
if tensor_parallel_size > num_gpus:
|
| 197 |
+
logger.warning(f"Requested {tensor_parallel_size} GPUs but only {num_gpus} available")
|
| 198 |
+
|
| 199 |
+
# Authentication - try multiple methods
|
| 200 |
+
HF_TOKEN = hf_token or os.environ.get("HF_TOKEN") or get_token()
|
| 201 |
+
|
| 202 |
+
if not HF_TOKEN:
|
| 203 |
+
logger.error("No HuggingFace token found. Please provide token via:")
|
| 204 |
+
logger.error(" 1. --hf-token argument")
|
| 205 |
+
logger.error(" 2. HF_TOKEN environment variable")
|
| 206 |
+
logger.error(" 3. Run 'huggingface-cli login' or use login() in Python")
|
| 207 |
+
sys.exit(1)
|
| 208 |
+
|
| 209 |
+
logger.info("HuggingFace token found, authenticating...")
|
| 210 |
+
login(token=HF_TOKEN)
|
| 211 |
+
|
| 212 |
+
# Initialize vLLM
|
| 213 |
+
logger.info(f"Loading model: {model_id}")
|
| 214 |
+
llm = LLM(
|
| 215 |
+
model=model_id,
|
| 216 |
+
tensor_parallel_size=tensor_parallel_size,
|
| 217 |
+
gpu_memory_utilization=gpu_memory_utilization,
|
| 218 |
+
)
|
| 219 |
+
|
| 220 |
+
# Load tokenizer for chat template
|
| 221 |
+
logger.info("Loading tokenizer...")
|
| 222 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 223 |
+
|
| 224 |
+
# Create sampling parameters
|
| 225 |
+
sampling_params = SamplingParams(
|
| 226 |
+
temperature=temperature,
|
| 227 |
+
top_p=top_p,
|
| 228 |
+
top_k=top_k,
|
| 229 |
+
min_p=min_p,
|
| 230 |
+
max_tokens=max_tokens,
|
| 231 |
+
repetition_penalty=repetition_penalty,
|
| 232 |
+
)
|
| 233 |
+
|
| 234 |
+
# Load dataset
|
| 235 |
+
logger.info(f"Loading dataset: {src_dataset_hub_id}")
|
| 236 |
+
dataset = load_dataset(src_dataset_hub_id, split="train")
|
| 237 |
+
total_examples = len(dataset)
|
| 238 |
+
logger.info(f"Dataset loaded with {total_examples:,} examples")
|
| 239 |
+
|
| 240 |
+
# Validate messages column
|
| 241 |
+
if messages_column not in dataset.column_names:
|
| 242 |
+
logger.error(f"Column '{messages_column}' not found. Available columns: {dataset.column_names}")
|
| 243 |
+
sys.exit(1)
|
| 244 |
+
|
| 245 |
+
# Process messages and apply chat template
|
| 246 |
+
logger.info("Applying chat template to messages...")
|
| 247 |
+
prompts = []
|
| 248 |
+
for example in tqdm(dataset, desc="Processing messages"):
|
| 249 |
+
messages = example[messages_column]
|
| 250 |
+
# Apply chat template
|
| 251 |
+
prompt = tokenizer.apply_chat_template(
|
| 252 |
+
messages,
|
| 253 |
+
tokenize=False,
|
| 254 |
+
add_generation_prompt=True
|
| 255 |
+
)
|
| 256 |
+
prompts.append(prompt)
|
| 257 |
+
|
| 258 |
+
# Generate responses - vLLM handles batching internally
|
| 259 |
+
logger.info(f"Starting generation for {len(prompts):,} prompts...")
|
| 260 |
+
logger.info("vLLM will handle batching and scheduling automatically")
|
| 261 |
+
|
| 262 |
+
outputs = llm.generate(prompts, sampling_params)
|
| 263 |
+
|
| 264 |
+
# Extract generated text
|
| 265 |
+
logger.info("Extracting generated responses...")
|
| 266 |
+
responses = []
|
| 267 |
+
for output in outputs:
|
| 268 |
+
response = output.outputs[0].text.strip()
|
| 269 |
+
responses.append(response)
|
| 270 |
+
|
| 271 |
+
# Add responses to dataset
|
| 272 |
+
logger.info("Adding responses to dataset...")
|
| 273 |
+
dataset = dataset.add_column(output_column, responses)
|
| 274 |
+
|
| 275 |
+
# Create dataset card
|
| 276 |
+
logger.info("Creating dataset card...")
|
| 277 |
+
card_content = create_dataset_card(
|
| 278 |
+
source_dataset=src_dataset_hub_id,
|
| 279 |
+
model_id=model_id,
|
| 280 |
+
messages_column=messages_column,
|
| 281 |
+
sampling_params=sampling_params,
|
| 282 |
+
tensor_parallel_size=tensor_parallel_size,
|
| 283 |
+
num_examples=total_examples,
|
| 284 |
+
generation_time=generation_start_time,
|
| 285 |
+
)
|
| 286 |
+
|
| 287 |
+
# Push dataset to hub
|
| 288 |
+
logger.info(f"Pushing dataset to: {output_dataset_hub_id}")
|
| 289 |
+
dataset.push_to_hub(output_dataset_hub_id, token=HF_TOKEN)
|
| 290 |
+
|
| 291 |
+
# Push dataset card
|
| 292 |
+
card = DatasetCard(card_content)
|
| 293 |
+
card.push_to_hub(output_dataset_hub_id, token=HF_TOKEN)
|
| 294 |
+
|
| 295 |
+
logger.info("✅ Generation complete!")
|
| 296 |
+
logger.info(f"Dataset available at: https://huggingface.co/datasets/{output_dataset_hub_id}")
|
| 297 |
+
|
| 298 |
+
|
| 299 |
+
if __name__ == "__main__":
|
| 300 |
+
if len(sys.argv) > 1:
|
| 301 |
+
parser = argparse.ArgumentParser(
|
| 302 |
+
description="Generate responses for dataset prompts using vLLM",
|
| 303 |
+
formatter_class=argparse.RawDescriptionHelpFormatter,
|
| 304 |
+
epilog="""
|
| 305 |
+
Examples:
|
| 306 |
+
# Basic usage with default Qwen model
|
| 307 |
+
uv run generate-responses.py input-dataset output-dataset
|
| 308 |
+
|
| 309 |
+
# With custom model and parameters
|
| 310 |
+
uv run generate-responses.py input-dataset output-dataset \\
|
| 311 |
+
--model-id meta-llama/Llama-3.1-8B-Instruct \\
|
| 312 |
+
--temperature 0.9 \\
|
| 313 |
+
--max-tokens 2048
|
| 314 |
+
|
| 315 |
+
# Force specific GPU configuration
|
| 316 |
+
uv run generate-responses.py input-dataset output-dataset \\
|
| 317 |
+
--tensor-parallel-size 2 \\
|
| 318 |
+
--gpu-memory-utilization 0.95
|
| 319 |
+
|
| 320 |
+
# Using environment variable for token
|
| 321 |
+
HF_TOKEN=hf_xxx uv run generate-responses.py input-dataset output-dataset
|
| 322 |
+
"""
|
| 323 |
+
)
|
| 324 |
+
|
| 325 |
+
parser.add_argument(
|
| 326 |
+
"src_dataset_hub_id",
|
| 327 |
+
help="Input dataset on Hugging Face Hub (e.g., username/dataset-name)"
|
| 328 |
+
)
|
| 329 |
+
parser.add_argument(
|
| 330 |
+
"output_dataset_hub_id",
|
| 331 |
+
help="Output dataset name on Hugging Face Hub"
|
| 332 |
+
)
|
| 333 |
+
parser.add_argument(
|
| 334 |
+
"--model-id",
|
| 335 |
+
type=str,
|
| 336 |
+
default="Qwen/Qwen3-30B-A3B-Instruct-2507-FP8",
|
| 337 |
+
help="Model to use for generation (default: Qwen3-30B-A3B-Instruct-2507-FP8)"
|
| 338 |
+
)
|
| 339 |
+
parser.add_argument(
|
| 340 |
+
"--messages-column",
|
| 341 |
+
type=str,
|
| 342 |
+
default="messages",
|
| 343 |
+
help="Column containing chat messages (default: messages)"
|
| 344 |
+
)
|
| 345 |
+
parser.add_argument(
|
| 346 |
+
"--output-column",
|
| 347 |
+
type=str,
|
| 348 |
+
default="response",
|
| 349 |
+
help="Column name for generated responses (default: response)"
|
| 350 |
+
)
|
| 351 |
+
parser.add_argument(
|
| 352 |
+
"--temperature",
|
| 353 |
+
type=float,
|
| 354 |
+
default=0.7,
|
| 355 |
+
help="Sampling temperature (default: 0.7)"
|
| 356 |
+
)
|
| 357 |
+
parser.add_argument(
|
| 358 |
+
"--top-p",
|
| 359 |
+
type=float,
|
| 360 |
+
default=0.8,
|
| 361 |
+
help="Top-p sampling parameter (default: 0.8)"
|
| 362 |
+
)
|
| 363 |
+
parser.add_argument(
|
| 364 |
+
"--top-k",
|
| 365 |
+
type=int,
|
| 366 |
+
default=20,
|
| 367 |
+
help="Top-k sampling parameter (default: 20)"
|
| 368 |
+
)
|
| 369 |
+
parser.add_argument(
|
| 370 |
+
"--min-p",
|
| 371 |
+
type=float,
|
| 372 |
+
default=0.0,
|
| 373 |
+
help="Minimum probability threshold (default: 0.0)"
|
| 374 |
+
)
|
| 375 |
+
parser.add_argument(
|
| 376 |
+
"--max-tokens",
|
| 377 |
+
type=int,
|
| 378 |
+
default=16384,
|
| 379 |
+
help="Maximum tokens to generate (default: 16384)"
|
| 380 |
+
)
|
| 381 |
+
parser.add_argument(
|
| 382 |
+
"--repetition-penalty",
|
| 383 |
+
type=float,
|
| 384 |
+
default=1.0,
|
| 385 |
+
help="Repetition penalty (default: 1.0)"
|
| 386 |
+
)
|
| 387 |
+
parser.add_argument(
|
| 388 |
+
"--gpu-memory-utilization",
|
| 389 |
+
type=float,
|
| 390 |
+
default=0.90,
|
| 391 |
+
help="GPU memory utilization factor (default: 0.90)"
|
| 392 |
+
)
|
| 393 |
+
parser.add_argument(
|
| 394 |
+
"--tensor-parallel-size",
|
| 395 |
+
type=int,
|
| 396 |
+
help="Number of GPUs to use (default: auto-detect)"
|
| 397 |
+
)
|
| 398 |
+
parser.add_argument(
|
| 399 |
+
"--hf-token",
|
| 400 |
+
type=str,
|
| 401 |
+
help="Hugging Face token (can also use HF_TOKEN env var)"
|
| 402 |
+
)
|
| 403 |
+
|
| 404 |
+
args = parser.parse_args()
|
| 405 |
+
|
| 406 |
+
main(
|
| 407 |
+
src_dataset_hub_id=args.src_dataset_hub_id,
|
| 408 |
+
output_dataset_hub_id=args.output_dataset_hub_id,
|
| 409 |
+
model_id=args.model_id,
|
| 410 |
+
messages_column=args.messages_column,
|
| 411 |
+
output_column=args.output_column,
|
| 412 |
+
temperature=args.temperature,
|
| 413 |
+
top_p=args.top_p,
|
| 414 |
+
top_k=args.top_k,
|
| 415 |
+
min_p=args.min_p,
|
| 416 |
+
max_tokens=args.max_tokens,
|
| 417 |
+
repetition_penalty=args.repetition_penalty,
|
| 418 |
+
gpu_memory_utilization=args.gpu_memory_utilization,
|
| 419 |
+
tensor_parallel_size=args.tensor_parallel_size,
|
| 420 |
+
hf_token=args.hf_token,
|
| 421 |
+
)
|
| 422 |
+
else:
|
| 423 |
+
# Show HF Jobs example when run without arguments
|
| 424 |
+
print("""
|
| 425 |
+
vLLM Response Generation Script
|
| 426 |
+
==============================
|
| 427 |
+
|
| 428 |
+
This script requires arguments. For usage information:
|
| 429 |
+
uv run generate-responses.py --help
|
| 430 |
+
|
| 431 |
+
Example HF Jobs command with multi-GPU:
|
| 432 |
+
# If you're logged in with huggingface-cli, token will be auto-detected
|
| 433 |
+
hf jobs uv run \\
|
| 434 |
+
--flavor l4x4 \\
|
| 435 |
+
https://huggingface.co/datasets/uv-scripts/vllm/raw/main/generate-responses.py \\
|
| 436 |
+
username/input-dataset \\
|
| 437 |
+
username/output-dataset \\
|
| 438 |
+
--messages-column messages \\
|
| 439 |
+
--model-id Qwen/Qwen3-30B-A3B-Instruct-2507-FP8 \\
|
| 440 |
+
--temperature 0.7 \\
|
| 441 |
+
--max-tokens 16384
|
| 442 |
+
""")
|