id
stringlengths
14
15
text
stringlengths
22
2.51k
source
stringlengths
61
154
f5b014096545-0
langchain.document_loaders.pdf.PyPDFium2Loader¶ class langchain.document_loaders.pdf.PyPDFium2Loader(file_path: str)[source]¶ Bases: BasePDFLoader Loads a PDF with pypdfium2 and chunks at character level. Initialize with file path. Methods __init__(file_path) Initialize with file path. lazy_load() Lazy load given path as pages. load() Load given path as pages. load_and_split([text_splitter]) Load Documents and split into chunks. Attributes source lazy_load() → Iterator[Document][source]¶ Lazy load given path as pages. load() → List[Document][source]¶ Load given path as pages. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. property source: str¶
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.pdf.PyPDFium2Loader.html
2eee89f75308-0
langchain.document_loaders.mhtml.MHTMLLoader¶ class langchain.document_loaders.mhtml.MHTMLLoader(file_path: str, open_encoding: Optional[str] = None, bs_kwargs: Optional[dict] = None, get_text_separator: str = '')[source]¶ Bases: BaseLoader Loader that uses beautiful soup to parse HTML files. Initialise with path, and optionally, file encoding to use, and any kwargs to pass to the BeautifulSoup object. Parameters file_path – The path to the file to load. open_encoding – The encoding to use when opening the file. bs_kwargs – soup kwargs to pass to the BeautifulSoup object. get_text_separator – The separator to use when getting text from the soup. Methods __init__(file_path[, open_encoding, ...]) Initialise with path, and optionally, file encoding to use, and any kwargs to pass to the BeautifulSoup object. lazy_load() A lazy loader for Documents. load() Load data into Document objects. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load data into Document objects. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.mhtml.MHTMLLoader.html
ba6c0ef3fd0e-0
langchain.document_loaders.parsers.registry.get_parser¶ langchain.document_loaders.parsers.registry.get_parser(parser_name: str) → BaseBlobParser[source]¶ Get a parser by parser name.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.parsers.registry.get_parser.html
4782d4e61c73-0
langchain.document_loaders.pdf.OnlinePDFLoader¶ class langchain.document_loaders.pdf.OnlinePDFLoader(file_path: str)[source]¶ Bases: BasePDFLoader Loader that loads online PDFs. Initialize with file path. Methods __init__(file_path) Initialize with file path. lazy_load() A lazy loader for Documents. load() Load documents. load_and_split([text_splitter]) Load Documents and split into chunks. Attributes source lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load documents. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. property source: str¶
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.pdf.OnlinePDFLoader.html
054821ee375e-0
langchain.document_loaders.blockchain.BlockchainType¶ class langchain.document_loaders.blockchain.BlockchainType(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)[source]¶ Bases: Enum Enumerator of the supported blockchains. Attributes ETH_MAINNET ETH_GOERLI POLYGON_MAINNET POLYGON_MUMBAI ETH_GOERLI = 'eth-goerli'¶ ETH_MAINNET = 'eth-mainnet'¶ POLYGON_MAINNET = 'polygon-mainnet'¶ POLYGON_MUMBAI = 'polygon-mumbai'¶
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.blockchain.BlockchainType.html
5ee981f9568c-0
langchain.document_loaders.base.BaseBlobParser¶ class langchain.document_loaders.base.BaseBlobParser[source]¶ Bases: ABC Abstract interface for blob parsers. A blob parser provides a way to parse raw data stored in a blob into one or more documents. The parser can be composed with blob loaders, making it easy to re-use a parser independent of how the blob was originally loaded. Methods __init__() lazy_parse(blob) Lazy parsing interface. parse(blob) Eagerly parse the blob into a document or documents. abstract lazy_parse(blob: Blob) → Iterator[Document][source]¶ Lazy parsing interface. Subclasses are required to implement this method. Parameters blob – Blob instance Returns Generator of documents parse(blob: Blob) → List[Document][source]¶ Eagerly parse the blob into a document or documents. This is a convenience method for interactive development environment. Production applications should favor the lazy_parse method instead. Subclasses should generally not over-ride this parse method. Parameters blob – Blob instance Returns List of documents
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.base.BaseBlobParser.html
791f17b7bb27-0
langchain.document_loaders.apify_dataset.ApifyDatasetLoader¶ class langchain.document_loaders.apify_dataset.ApifyDatasetLoader(dataset_id: str, dataset_mapping_function: Callable[[Dict], Document])[source]¶ Bases: BaseLoader, BaseModel Loading Documents from Apify datasets. Initialize the loader with an Apify dataset ID and a mapping function. Parameters dataset_id (str) – The ID of the dataset on the Apify platform. dataset_mapping_function (Callable) – A function that takes a single dictionary (an Apify dataset item) and converts it to an instance of the Document class. param apify_client: Any = None¶ An instance of the ApifyClient class from the apify-client Python package. param dataset_id: str [Required]¶ The ID of the dataset on the Apify platform. param dataset_mapping_function: Callable[[Dict], langchain.schema.document.Document] [Required]¶ A custom function that takes a single dictionary (an Apify dataset item) and converts it to an instance of the Document class. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load documents. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. validator validate_environment  »  all fields[source]¶ Validate environment. Parameters values – The values to validate.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.apify_dataset.ApifyDatasetLoader.html
4eef79132bc6-0
langchain.document_loaders.arxiv.ArxivLoader¶ class langchain.document_loaders.arxiv.ArxivLoader(query: str, load_max_docs: Optional[int] = 100, load_all_available_meta: Optional[bool] = False)[source]¶ Bases: BaseLoader Loads a query result from arxiv.org into a list of Documents. Each document represents one Document. The loader converts the original PDF format into the text. Methods __init__(query[, load_max_docs, ...]) lazy_load() A lazy loader for Documents. load() Load data into Document objects. load_and_split([text_splitter]) Load Documents and split into chunks. Attributes query The query to be passed to the arxiv.org API. load_max_docs The maximum number of documents to load. load_all_available_meta Whether to load all available metadata. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load data into Document objects. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. load_all_available_meta¶ Whether to load all available metadata. load_max_docs¶ The maximum number of documents to load. query¶ The query to be passed to the arxiv.org API.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.arxiv.ArxivLoader.html
036f472b4419-0
langchain.document_loaders.rst.UnstructuredRSTLoader¶ class langchain.document_loaders.rst.UnstructuredRSTLoader(file_path: str, mode: str = 'single', **unstructured_kwargs: Any)[source]¶ Bases: UnstructuredFileLoader Loader that uses unstructured to load RST files. Initialize with file path. Methods __init__(file_path[, mode]) Initialize with file path. lazy_load() A lazy loader for Documents. load() Load file. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document]¶ Load file. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.rst.UnstructuredRSTLoader.html
ca0c904e60a5-0
langchain.document_loaders.helpers.detect_file_encodings¶ langchain.document_loaders.helpers.detect_file_encodings(file_path: str, timeout: int = 5) → List[FileEncoding][source]¶ Try to detect the file encoding. Returns a list of FileEncoding tuples with the detected encodings ordered by confidence. Parameters file_path – The path to the file to detect the encoding for. timeout – The timeout in seconds for the encoding detection.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.helpers.detect_file_encodings.html
5e1dd02d87c6-0
langchain.document_loaders.generic.GenericLoader¶ class langchain.document_loaders.generic.GenericLoader(blob_loader: BlobLoader, blob_parser: BaseBlobParser)[source]¶ Bases: BaseLoader A generic document loader. A generic document loader that allows combining an arbitrary blob loader with a blob parser. Examples from langchain.document_loaders import GenericLoader from langchain.document_loaders.blob_loaders import FileSystemBlobLoader loader = GenericLoader.from_filesystem(path=”path/to/directory”, glob=”**/[!.]*”, suffixes=[“.pdf”], show_progress=True, ) docs = loader.lazy_load() next(docs) Example instantiations to change which files are loaded: … code-block:: python # Recursively load all text files in a directory. loader = GenericLoader.from_filesystem(“/path/to/dir”, glob=”**/*.txt”) # Recursively load all non-hidden files in a directory. loader = GenericLoader.from_filesystem(“/path/to/dir”, glob=”**/[!.]*”) # Load all files in a directory without recursion. loader = GenericLoader.from_filesystem(“/path/to/dir”, glob=”*”) Example instantiations to change which parser is used: … code-block:: python from langchain.document_loaders.parsers.pdf import PyPDFParser # Recursively load all text files in a directory. loader = GenericLoader.from_filesystem( “/path/to/dir”, glob=”**/*.pdf”, parser=PyPDFParser() ) A generic document loader. Parameters blob_loader – A blob loader which knows how to yield blobs blob_parser – A blob parser which knows how to parse blobs into documents Methods __init__(blob_loader, blob_parser) A generic document loader.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.generic.GenericLoader.html
5e1dd02d87c6-1
Methods __init__(blob_loader, blob_parser) A generic document loader. from_filesystem(path, *[, glob, suffixes, ...]) Create a generic document loader using a filesystem blob loader. lazy_load() Load documents lazily. load() Load all documents. load_and_split([text_splitter]) Load all documents and split them into sentences. classmethod from_filesystem(path: Union[str, Path], *, glob: str = '**/[!.]*', suffixes: Optional[Sequence[str]] = None, show_progress: bool = False, parser: Union[Literal['default'], BaseBlobParser] = 'default') → GenericLoader[source]¶ Create a generic document loader using a filesystem blob loader. Parameters path – The path to the directory to load documents from. glob – The glob pattern to use to find documents. suffixes – The suffixes to use to filter documents. If None, all files matching the glob will be loaded. show_progress – Whether to show a progress bar or not (requires tqdm). Proxies to the file system loader. parser – A blob parser which knows how to parse blobs into documents Returns A generic document loader. lazy_load() → Iterator[Document][source]¶ Load documents lazily. Use this when working at a large scale. load() → List[Document][source]¶ Load all documents. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document][source]¶ Load all documents and split them into sentences.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.generic.GenericLoader.html
be8fe256d8ef-0
langchain.document_loaders.pdf.PyMuPDFLoader¶ class langchain.document_loaders.pdf.PyMuPDFLoader(file_path: str)[source]¶ Bases: BasePDFLoader Loader that uses PyMuPDF to load PDF files. Initialize with file path. Methods __init__(file_path) Initialize with file path. lazy_load() A lazy loader for Documents. load(**kwargs) Load file. load_and_split([text_splitter]) Load Documents and split into chunks. Attributes source lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load(**kwargs: Optional[Any]) → List[Document][source]¶ Load file. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. property source: str¶
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.pdf.PyMuPDFLoader.html
73dfd0d1372b-0
langchain.document_loaders.airbyte_json.AirbyteJSONLoader¶ class langchain.document_loaders.airbyte_json.AirbyteJSONLoader(file_path: str)[source]¶ Bases: BaseLoader Loader that loads local airbyte json files. Initialize with a file path. This should start with ‘/tmp/airbyte_local/’. Methods __init__(file_path) Initialize with a file path. lazy_load() A lazy loader for Documents. load() Load data into Document objects. load_and_split([text_splitter]) Load Documents and split into chunks. Attributes file_path Path to the directory containing the json files. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load data into Document objects. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. file_path¶ Path to the directory containing the json files.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.airbyte_json.AirbyteJSONLoader.html
13bdea28c7a8-0
langchain.document_loaders.notebook.concatenate_cells¶ langchain.document_loaders.notebook.concatenate_cells(cell: dict, include_outputs: bool, max_output_length: int, traceback: bool) → str[source]¶ Combine cells information in a readable format ready to be used.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.notebook.concatenate_cells.html
af6c111fc27a-0
langchain.document_loaders.url.UnstructuredURLLoader¶ class langchain.document_loaders.url.UnstructuredURLLoader(urls: List[str], continue_on_failure: bool = True, mode: str = 'single', show_progress_bar: bool = False, **unstructured_kwargs: Any)[source]¶ Bases: BaseLoader Loader that uses unstructured to load HTML files. Initialize with file path. Methods __init__(urls[, continue_on_failure, mode, ...]) Initialize with file path. lazy_load() A lazy loader for Documents. load() Load file. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load file. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.url.UnstructuredURLLoader.html
68d85d9828db-0
langchain.document_loaders.twitter.TwitterTweetLoader¶ class langchain.document_loaders.twitter.TwitterTweetLoader(auth_handler: Union[OAuthHandler, OAuth2BearerHandler], twitter_users: Sequence[str], number_tweets: Optional[int] = 100)[source]¶ Bases: BaseLoader Twitter tweets loader. Read tweets of user twitter handle. First you need to go to https://developer.twitter.com/en/docs/twitter-api /getting-started/getting-access-to-the-twitter-api to get your token. And create a v2 version of the app. Methods __init__(auth_handler, twitter_users[, ...]) from_bearer_token(oauth2_bearer_token, ...) Create a TwitterTweetLoader from OAuth2 bearer token. from_secrets(access_token, ...[, number_tweets]) Create a TwitterTweetLoader from access tokens and secrets. lazy_load() A lazy loader for Documents. load() Load tweets. load_and_split([text_splitter]) Load Documents and split into chunks. classmethod from_bearer_token(oauth2_bearer_token: str, twitter_users: Sequence[str], number_tweets: Optional[int] = 100) → TwitterTweetLoader[source]¶ Create a TwitterTweetLoader from OAuth2 bearer token. classmethod from_secrets(access_token: str, access_token_secret: str, consumer_key: str, consumer_secret: str, twitter_users: Sequence[str], number_tweets: Optional[int] = 100) → TwitterTweetLoader[source]¶ Create a TwitterTweetLoader from access tokens and secrets. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load tweets. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.twitter.TwitterTweetLoader.html
68d85d9828db-1
Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.twitter.TwitterTweetLoader.html
4f3503f8db4d-0
langchain.document_loaders.text.TextLoader¶ class langchain.document_loaders.text.TextLoader(file_path: str, encoding: Optional[str] = None, autodetect_encoding: bool = False)[source]¶ Bases: BaseLoader Load text files. Parameters file_path – Path to the file to load. encoding – File encoding to use. If None, the file will be loaded encoding. (with the default system) – autodetect_encoding – Whether to try to autodetect the file encoding if the specified encoding fails. Initialize with file path. Methods __init__(file_path[, encoding, ...]) Initialize with file path. lazy_load() A lazy loader for Documents. load() Load from file path. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load from file path. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.text.TextLoader.html
21585e4db667-0
langchain.document_loaders.rtf.UnstructuredRTFLoader¶ class langchain.document_loaders.rtf.UnstructuredRTFLoader(file_path: str, mode: str = 'single', **unstructured_kwargs: Any)[source]¶ Bases: UnstructuredFileLoader Loader that uses unstructured to load rtf files. Initialize with file path. Methods __init__(file_path[, mode]) Initialize with file path. lazy_load() A lazy loader for Documents. load() Load file. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document]¶ Load file. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.rtf.UnstructuredRTFLoader.html
3023df87bf82-0
langchain.document_loaders.github.BaseGitHubLoader¶ class langchain.document_loaders.github.BaseGitHubLoader(*, repo: str, access_token: str)[source]¶ Bases: BaseLoader, BaseModel, ABC Load issues of a GitHub repository. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param access_token: str [Required]¶ Personal access token - see https://github.com/settings/tokens?type=beta param repo: str [Required]¶ Name of repository lazy_load() → Iterator[Document]¶ A lazy loader for Documents. abstract load() → List[Document]¶ Load data into Document objects. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. validator validate_environment  »  all fields[source]¶ Validate that access token exists in environment. property headers: Dict[str, str]¶
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.github.BaseGitHubLoader.html
1930de7da119-0
langchain.document_loaders.url_playwright.PlaywrightURLLoader¶ class langchain.document_loaders.url_playwright.PlaywrightURLLoader(urls: List[str], continue_on_failure: bool = True, headless: bool = True, remove_selectors: Optional[List[str]] = None)[source]¶ Bases: BaseLoader Loader that uses Playwright and to load a page and unstructured to load the html. This is useful for loading pages that require javascript to render. urls¶ List of URLs to load. Type List[str] continue_on_failure¶ If True, continue loading other URLs on failure. Type bool headless¶ If True, the browser will run in headless mode. Type bool Load a list of URLs using Playwright and unstructured. Methods __init__(urls[, continue_on_failure, ...]) Load a list of URLs using Playwright and unstructured. lazy_load() A lazy loader for Documents. load() Load the specified URLs using Playwright and create Document instances. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load the specified URLs using Playwright and create Document instances. Returns A list of Document instances with loaded content. Return type List[Document] load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.url_playwright.PlaywrightURLLoader.html
c092f24861c1-0
langchain.document_loaders.s3_file.S3FileLoader¶ class langchain.document_loaders.s3_file.S3FileLoader(bucket: str, key: str)[source]¶ Bases: BaseLoader Loading logic for loading documents from s3. Initialize with bucket and key name. Methods __init__(bucket, key) Initialize with bucket and key name. lazy_load() A lazy loader for Documents. load() Load documents. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load documents. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.s3_file.S3FileLoader.html
bae9db184a6f-0
langchain.document_loaders.open_city_data.OpenCityDataLoader¶ class langchain.document_loaders.open_city_data.OpenCityDataLoader(city_id: str, dataset_id: str, limit: int)[source]¶ Bases: BaseLoader Loader that loads Open city data. Initialize with dataset_id Methods __init__(city_id, dataset_id, limit) Initialize with dataset_id lazy_load() Lazy load records. load() Load records. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document][source]¶ Lazy load records. load() → List[Document][source]¶ Load records. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.open_city_data.OpenCityDataLoader.html
9fc11293957a-0
langchain.document_loaders.googledrive.GoogleDriveLoader¶ class langchain.document_loaders.googledrive.GoogleDriveLoader(*, service_account_key: Path = PosixPath('/home/docs/.credentials/keys.json'), credentials_path: Path = PosixPath('/home/docs/.credentials/credentials.json'), token_path: Path = PosixPath('/home/docs/.credentials/token.json'), folder_id: Optional[str] = None, document_ids: Optional[List[str]] = None, file_ids: Optional[List[str]] = None, recursive: bool = False, file_types: Optional[Sequence[str]] = None, load_trashed_files: bool = False, file_loader_cls: Any = None, file_loader_kwargs: Dict[str, Any] = {})[source]¶ Bases: BaseLoader, BaseModel Loads Google Docs from Google Drive. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param credentials_path: pathlib.Path = PosixPath('/home/docs/.credentials/credentials.json')¶ Path to the credentials file. param document_ids: Optional[List[str]] = None¶ The document ids to load from. param file_ids: Optional[List[str]] = None¶ The file ids to load from. param file_loader_cls: Any = None¶ The file loader class to use. param file_loader_kwargs: Dict[str, Any] = {}¶ The file loader kwargs to use. param file_types: Optional[Sequence[str]] = None¶ The file types to load. Only applies when folder_id is given. param folder_id: Optional[str] = None¶ The folder id to load from. param load_trashed_files: bool = False¶ Whether to load trashed files. Only applies when folder_id is given. param recursive: bool = False¶
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.googledrive.GoogleDriveLoader.html
9fc11293957a-1
param recursive: bool = False¶ Whether to load recursively. Only applies when folder_id is given. param service_account_key: pathlib.Path = PosixPath('/home/docs/.credentials/keys.json')¶ Path to the service account key file. param token_path: pathlib.Path = PosixPath('/home/docs/.credentials/token.json')¶ Path to the token file. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load documents. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. validator validate_credentials_path  »  credentials_path[source]¶ Validate that credentials_path exists. validator validate_inputs  »  all fields[source]¶ Validate that either folder_id or document_ids is set, but not both.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.googledrive.GoogleDriveLoader.html
90ab19f31ef6-0
langchain.document_loaders.iugu.IuguLoader¶ class langchain.document_loaders.iugu.IuguLoader(resource: str, api_token: Optional[str] = None)[source]¶ Bases: BaseLoader Loader that fetches data from IUGU. Initialize the IUGU resource. Parameters resource – The name of the resource to fetch. api_token – The IUGU API token to use. Methods __init__(resource[, api_token]) Initialize the IUGU resource. lazy_load() A lazy loader for Documents. load() Load data into Document objects. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load data into Document objects. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.iugu.IuguLoader.html
276ad4de5c17-0
langchain.document_loaders.parsers.grobid.ServerUnavailableException¶ class langchain.document_loaders.parsers.grobid.ServerUnavailableException[source]¶ Bases: Exception add_note()¶ Exception.add_note(note) – add a note to the exception with_traceback()¶ Exception.with_traceback(tb) – set self.__traceback__ to tb and return self. args¶
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.parsers.grobid.ServerUnavailableException.html
a9236c5c1fa9-0
langchain.document_loaders.srt.SRTLoader¶ class langchain.document_loaders.srt.SRTLoader(file_path: str)[source]¶ Bases: BaseLoader Loader for .srt (subtitle) files. Initialize with file path. Methods __init__(file_path) Initialize with file path. lazy_load() A lazy loader for Documents. load() Load using pysrt file. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load using pysrt file. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.srt.SRTLoader.html
2020d837cba1-0
langchain.document_loaders.xml.UnstructuredXMLLoader¶ class langchain.document_loaders.xml.UnstructuredXMLLoader(file_path: str, mode: str = 'single', **unstructured_kwargs: Any)[source]¶ Bases: UnstructuredFileLoader Loader that uses unstructured to load XML files. Initialize with file path. Methods __init__(file_path[, mode]) Initialize with file path. lazy_load() A lazy loader for Documents. load() Load file. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document]¶ Load file. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.xml.UnstructuredXMLLoader.html
88c87cd897ec-0
langchain.document_loaders.azlyrics.AZLyricsLoader¶ class langchain.document_loaders.azlyrics.AZLyricsLoader(web_path: Union[str, List[str]], header_template: Optional[dict] = None, verify_ssl: Optional[bool] = True, proxies: Optional[dict] = None)[source]¶ Bases: WebBaseLoader Loader that loads AZLyrics webpages. Initialize with webpage path. Methods __init__(web_path[, header_template, ...]) Initialize with webpage path. aload() Load text from the urls in web_path async into Documents. fetch_all(urls) Fetch all urls concurrently with rate limiting. lazy_load() Lazy load text from the url(s) in web_path. load() Load webpages into Documents. load_and_split([text_splitter]) Load Documents and split into chunks. scrape([parser]) Scrape data from webpage and return it in BeautifulSoup format. scrape_all(urls[, parser]) Fetch all urls, then return soups for all results. Attributes bs_get_text_kwargs kwargs for beatifulsoup4 get_text default_parser Default parser to use for BeautifulSoup. raise_for_status Raise an exception if http status code denotes an error. requests_kwargs kwargs for requests requests_per_second Max number of concurrent requests to make. web_path aload() → List[Document]¶ Load text from the urls in web_path async into Documents. async fetch_all(urls: List[str]) → Any¶ Fetch all urls concurrently with rate limiting. lazy_load() → Iterator[Document]¶ Lazy load text from the url(s) in web_path. load() → List[Document][source]¶ Load webpages into Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.azlyrics.AZLyricsLoader.html
88c87cd897ec-1
load() → List[Document][source]¶ Load webpages into Documents. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. scrape(parser: Optional[str] = None) → Any¶ Scrape data from webpage and return it in BeautifulSoup format. scrape_all(urls: List[str], parser: Optional[str] = None) → List[Any]¶ Fetch all urls, then return soups for all results. bs_get_text_kwargs: Dict[str, Any] = {}¶ kwargs for beatifulsoup4 get_text default_parser: str = 'html.parser'¶ Default parser to use for BeautifulSoup. raise_for_status: bool = False¶ Raise an exception if http status code denotes an error. requests_kwargs: Dict[str, Any] = {}¶ kwargs for requests requests_per_second: int = 2¶ Max number of concurrent requests to make. property web_path: str¶ web_paths: List[str]¶
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.azlyrics.AZLyricsLoader.html
61ff40dcbe9d-0
langchain.document_loaders.telegram.concatenate_rows¶ langchain.document_loaders.telegram.concatenate_rows(row: dict) → str[source]¶ Combine message information in a readable format ready to be used.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.telegram.concatenate_rows.html
4e375b3a768a-0
langchain.document_loaders.obsidian.ObsidianLoader¶ class langchain.document_loaders.obsidian.ObsidianLoader(path: str, encoding: str = 'UTF-8', collect_metadata: bool = True)[source]¶ Bases: BaseLoader Loader that loads Obsidian files from disk. Initialize with path. Methods __init__(path[, encoding, collect_metadata]) Initialize with path. lazy_load() A lazy loader for Documents. load() Load documents. load_and_split([text_splitter]) Load Documents and split into chunks. Attributes FRONT_MATTER_REGEX lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load documents. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. FRONT_MATTER_REGEX = re.compile('^---\\n(.*?)\\n---\\n', re.MULTILINE|re.DOTALL)¶
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.obsidian.ObsidianLoader.html
8d448f38dffb-0
langchain.document_loaders.acreom.AcreomLoader¶ class langchain.document_loaders.acreom.AcreomLoader(path: str, encoding: str = 'UTF-8', collect_metadata: bool = True)[source]¶ Bases: BaseLoader Loader that loads acreom vault from a directory. Methods __init__(path[, encoding, collect_metadata]) lazy_load() A lazy loader for Documents. load() Load data into Document objects. load_and_split([text_splitter]) Load Documents and split into chunks. Attributes FRONT_MATTER_REGEX Regex to match front matter metadata in markdown files. file_path Path to the directory containing the markdown files. encoding Encoding to use when reading the files. collect_metadata Whether to collect metadata from the front matter. lazy_load() → Iterator[Document][source]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load data into Document objects. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. FRONT_MATTER_REGEX = re.compile('^---\\n(.*?)\\n---\\n', re.MULTILINE|re.DOTALL)¶ Regex to match front matter metadata in markdown files. collect_metadata¶ Whether to collect metadata from the front matter. encoding¶ Encoding to use when reading the files. file_path¶ Path to the directory containing the markdown files.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.acreom.AcreomLoader.html
5a063aeffa69-0
langchain.document_loaders.unstructured.UnstructuredFileIOLoader¶ class langchain.document_loaders.unstructured.UnstructuredFileIOLoader(file: Union[IO, Sequence[IO]], mode: str = 'single', **unstructured_kwargs: Any)[source]¶ Bases: UnstructuredBaseLoader UnstructuredFileIOLoader uses unstructured to load files. The file loader uses the unstructured partition function and will automatically detect the file type. You can run the loader in one of two modes: “single” and “elements”. If you use “single” mode, the document will be returned as a single langchain Document object. If you use “elements” mode, the unstructured library will split the document into elements such as Title and NarrativeText. You can pass in additional unstructured kwargs after mode to apply different unstructured settings. Examples ```python from langchain.document_loaders import UnstructuredFileIOLoader with open(“example.pdf”, “rb”) as f: loader = UnstructuredFileIOLoader(f, mode=”elements”, strategy=”fast”, ) docs = loader.load() ``` References https://unstructured-io.github.io/unstructured/bricks.html#partition Initialize with file path. Methods __init__(file[, mode]) Initialize with file path. lazy_load() A lazy loader for Documents. load() Load file. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document]¶ Load file. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.unstructured.UnstructuredFileIOLoader.html
5a063aeffa69-1
Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.unstructured.UnstructuredFileIOLoader.html
8a8cc227f8d6-0
langchain.document_loaders.facebook_chat.FacebookChatLoader¶ class langchain.document_loaders.facebook_chat.FacebookChatLoader(path: str)[source]¶ Bases: BaseLoader Loads Facebook messages json directory dump. Initialize with a path. Methods __init__(path) Initialize with a path. lazy_load() A lazy loader for Documents. load() Load documents. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load documents. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.facebook_chat.FacebookChatLoader.html
c77f7df6d5b0-0
langchain.document_loaders.blob_loaders.schema.Blob¶ class langchain.document_loaders.blob_loaders.schema.Blob(*, data: Optional[Union[bytes, str]] = None, mimetype: Optional[str] = None, encoding: str = 'utf-8', path: Optional[Union[str, PurePath]] = None)[source]¶ Bases: BaseModel A blob is used to represent raw data by either reference or value. Provides an interface to materialize the blob in different representations, and help to decouple the development of data loaders from the downstream parsing of the raw data. Inspired by: https://developer.mozilla.org/en-US/docs/Web/API/Blob Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param data: Optional[Union[bytes, str]] = None¶ param encoding: str = 'utf-8'¶ param mimetype: Optional[str] = None¶ param path: Optional[Union[str, pathlib.PurePath]] = None¶ as_bytes() → bytes[source]¶ Read data as bytes. as_bytes_io() → Generator[Union[BytesIO, BufferedReader], None, None][source]¶ Read data as a byte stream. as_string() → str[source]¶ Read data as a string. validator check_blob_is_valid  »  all fields[source]¶ Verify that either data or path is provided. classmethod from_data(data: Union[str, bytes], *, encoding: str = 'utf-8', mime_type: Optional[str] = None, path: Optional[str] = None) → Blob[source]¶ Initialize the blob from in-memory data. Parameters data – the in-memory data associated with the blob encoding – Encoding to use if decoding the bytes into a string
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.blob_loaders.schema.Blob.html
c77f7df6d5b0-1
encoding – Encoding to use if decoding the bytes into a string mime_type – if provided, will be set as the mime-type of the data path – if provided, will be set as the source from which the data came Returns Blob instance classmethod from_path(path: Union[str, PurePath], *, encoding: str = 'utf-8', mime_type: Optional[str] = None, guess_type: bool = True) → Blob[source]¶ Load the blob from a path like object. Parameters path – path like object to file to be read encoding – Encoding to use if decoding the bytes into a string mime_type – if provided, will be set as the mime-type of the data guess_type – If True, the mimetype will be guessed from the file extension, if a mime-type was not provided Returns Blob instance property source: Optional[str]¶ The source location of the blob as string if known otherwise none. model Config[source]¶ Bases: object arbitrary_types_allowed = True¶ frozen = True¶
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.blob_loaders.schema.Blob.html
b2da08d33074-0
langchain.document_loaders.docugami.DocugamiLoader¶ class langchain.document_loaders.docugami.DocugamiLoader(*, api: str = 'https://api.docugami.com/v1preview1', access_token: Optional[str] = None, docset_id: Optional[str] = None, document_ids: Optional[Sequence[str]] = None, file_paths: Optional[Sequence[Union[Path, str]]] = None, min_chunk_size: int = 32)[source]¶ Bases: BaseLoader, BaseModel Loads processed docs from Docugami. To use, you should have the lxml python package installed. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param access_token: Optional[str] = None¶ The Docugami API access token to use. param api: str = 'https://api.docugami.com/v1preview1'¶ The Docugami API endpoint to use. param docset_id: Optional[str] = None¶ The Docugami API docset ID to use. param document_ids: Optional[Sequence[str]] = None¶ The Docugami API document IDs to use. param file_paths: Optional[Sequence[Union[pathlib.Path, str]]] = None¶ The local file paths to use. param min_chunk_size: int = 32¶ The minimum chunk size to use when parsing DGML. Defaults to 32. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load documents. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.docugami.DocugamiLoader.html
b2da08d33074-1
Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. validator validate_local_or_remote  »  all fields[source]¶ Validate that either local file paths are given, or remote API docset ID. Parameters values – The values to validate. Returns The validated values.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.docugami.DocugamiLoader.html
3f39de8bd21e-0
langchain.document_loaders.psychic.PsychicLoader¶ class langchain.document_loaders.psychic.PsychicLoader(api_key: str, account_id: str, connector_id: Optional[str] = None)[source]¶ Bases: BaseLoader Loader that loads documents from Psychic.dev. Initialize with API key, connector id, and account id. Methods __init__(api_key, account_id[, connector_id]) Initialize with API key, connector id, and account id. lazy_load() A lazy loader for Documents. load() Load documents. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load documents. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.psychic.PsychicLoader.html
ad8ce9606b33-0
langchain.document_loaders.ifixit.IFixitLoader¶ class langchain.document_loaders.ifixit.IFixitLoader(web_path: str)[source]¶ Bases: BaseLoader Load iFixit repair guides, device wikis and answers. iFixit is the largest, open repair community on the web. The site contains nearly 100k repair manuals, 200k Questions & Answers on 42k devices, and all the data is licensed under CC-BY. This loader will allow you to download the text of a repair guide, text of Q&A’s and wikis from devices on iFixit using their open APIs and web scraping. Initialize with a web path. Methods __init__(web_path) Initialize with a web path. lazy_load() A lazy loader for Documents. load() Load data into Document objects. load_and_split([text_splitter]) Load Documents and split into chunks. load_device([url_override, include_guides]) Loads a device load_guide([url_override]) Load a guide load_questions_and_answers([url_override]) Load a list of questions and answers. load_suggestions([query, doc_type]) Load suggestions. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load data into Document objects. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. load_device(url_override: Optional[str] = None, include_guides: bool = True) → List[Document][source]¶
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.ifixit.IFixitLoader.html
ad8ce9606b33-1
Loads a device Parameters url_override – A URL to override the default URL. include_guides – Whether to include guides linked to from the device. Defaults to True. Returns: load_guide(url_override: Optional[str] = None) → List[Document][source]¶ Load a guide Parameters url_override – A URL to override the default URL. Returns: List[Document] load_questions_and_answers(url_override: Optional[str] = None) → List[Document][source]¶ Load a list of questions and answers. Parameters url_override – A URL to override the default URL. Returns: List[Document] static load_suggestions(query: str = '', doc_type: str = 'all') → List[Document][source]¶ Load suggestions. Parameters query – A query string doc_type – The type of document to search for. Can be one of “all”, “device”, “guide”, “teardown”, “answer”, “wiki”. Returns:
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.ifixit.IFixitLoader.html
209add47fceb-0
langchain.document_loaders.toml.TomlLoader¶ class langchain.document_loaders.toml.TomlLoader(source: Union[str, Path])[source]¶ Bases: BaseLoader A TOML document loader that inherits from the BaseLoader class. This class can be initialized with either a single source file or a source directory containing TOML files. Initialize the TomlLoader with a source file or directory. Methods __init__(source) Initialize the TomlLoader with a source file or directory. lazy_load() Lazily load the TOML documents from the source file or directory. load() Load and return all documents. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document][source]¶ Lazily load the TOML documents from the source file or directory. load() → List[Document][source]¶ Load and return all documents. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.toml.TomlLoader.html
97348a48988c-0
langchain.document_loaders.image_captions.ImageCaptionLoader¶ class langchain.document_loaders.image_captions.ImageCaptionLoader(path_images: Union[str, List[str]], blip_processor: str = 'Salesforce/blip-image-captioning-base', blip_model: str = 'Salesforce/blip-image-captioning-base')[source]¶ Bases: BaseLoader Loads the captions of an image Initialize with a list of image paths Parameters path_images – A list of image paths. blip_processor – The name of the pre-trained BLIP processor. blip_model – The name of the pre-trained BLIP model. Methods __init__(path_images[, blip_processor, ...]) Initialize with a list of image paths lazy_load() A lazy loader for Documents. load() Load from a list of image files load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load from a list of image files load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.image_captions.ImageCaptionLoader.html
0d8c18f2ed47-0
langchain.document_loaders.parsers.language.code_segmenter.CodeSegmenter¶ class langchain.document_loaders.parsers.language.code_segmenter.CodeSegmenter(code: str)[source]¶ Bases: ABC The abstract class for the code segmenter. Methods __init__(code) extract_functions_classes() is_valid() simplify_code() abstract extract_functions_classes() → List[str][source]¶ is_valid() → bool[source]¶ abstract simplify_code() → str[source]¶
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.parsers.language.code_segmenter.CodeSegmenter.html
76db6e8b5f88-0
langchain.document_loaders.imsdb.IMSDbLoader¶ class langchain.document_loaders.imsdb.IMSDbLoader(web_path: Union[str, List[str]], header_template: Optional[dict] = None, verify_ssl: Optional[bool] = True, proxies: Optional[dict] = None)[source]¶ Bases: WebBaseLoader Loads IMSDb webpages. Initialize with webpage path. Methods __init__(web_path[, header_template, ...]) Initialize with webpage path. aload() Load text from the urls in web_path async into Documents. fetch_all(urls) Fetch all urls concurrently with rate limiting. lazy_load() Lazy load text from the url(s) in web_path. load() Load webpage. load_and_split([text_splitter]) Load Documents and split into chunks. scrape([parser]) Scrape data from webpage and return it in BeautifulSoup format. scrape_all(urls[, parser]) Fetch all urls, then return soups for all results. Attributes bs_get_text_kwargs kwargs for beatifulsoup4 get_text default_parser Default parser to use for BeautifulSoup. raise_for_status Raise an exception if http status code denotes an error. requests_kwargs kwargs for requests requests_per_second Max number of concurrent requests to make. web_path aload() → List[Document]¶ Load text from the urls in web_path async into Documents. async fetch_all(urls: List[str]) → Any¶ Fetch all urls concurrently with rate limiting. lazy_load() → Iterator[Document]¶ Lazy load text from the url(s) in web_path. load() → List[Document][source]¶ Load webpage. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.imsdb.IMSDbLoader.html
76db6e8b5f88-1
Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. scrape(parser: Optional[str] = None) → Any¶ Scrape data from webpage and return it in BeautifulSoup format. scrape_all(urls: List[str], parser: Optional[str] = None) → List[Any]¶ Fetch all urls, then return soups for all results. bs_get_text_kwargs: Dict[str, Any] = {}¶ kwargs for beatifulsoup4 get_text default_parser: str = 'html.parser'¶ Default parser to use for BeautifulSoup. raise_for_status: bool = False¶ Raise an exception if http status code denotes an error. requests_kwargs: Dict[str, Any] = {}¶ kwargs for requests requests_per_second: int = 2¶ Max number of concurrent requests to make. property web_path: str¶ web_paths: List[str]¶
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.imsdb.IMSDbLoader.html
2c875d9c0e04-0
langchain.document_loaders.brave_search.BraveSearchLoader¶ class langchain.document_loaders.brave_search.BraveSearchLoader(query: str, api_key: str, search_kwargs: Optional[dict] = None)[source]¶ Bases: BaseLoader Loads a query result from Brave Search engine into a list of Documents. Initializes the BraveLoader. Parameters query – The query to search for. api_key – The API key to use. search_kwargs – The search kwargs to use. Methods __init__(query, api_key[, search_kwargs]) Initializes the BraveLoader. lazy_load() A lazy loader for Documents. load() Load data into Document objects. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document][source]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load data into Document objects. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.brave_search.BraveSearchLoader.html
cd8c3396dda6-0
langchain.document_loaders.notion.NotionDirectoryLoader¶ class langchain.document_loaders.notion.NotionDirectoryLoader(path: str)[source]¶ Bases: BaseLoader Loader that loads Notion directory dump. Initialize with path. Methods __init__(path) Initialize with path. lazy_load() A lazy loader for Documents. load() Load documents. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load documents. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.notion.NotionDirectoryLoader.html
1cc825995544-0
langchain.document_loaders.gutenberg.GutenbergLoader¶ class langchain.document_loaders.gutenberg.GutenbergLoader(file_path: str)[source]¶ Bases: BaseLoader Loader that uses urllib to load .txt web files. Initialize with a file path. Methods __init__(file_path) Initialize with a file path. lazy_load() A lazy loader for Documents. load() Load file. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load file. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.gutenberg.GutenbergLoader.html
a9f91648d2a9-0
langchain.document_loaders.hugging_face_dataset.HuggingFaceDatasetLoader¶ class langchain.document_loaders.hugging_face_dataset.HuggingFaceDatasetLoader(path: str, page_content_column: str = 'text', name: Optional[str] = None, data_dir: Optional[str] = None, data_files: Optional[Union[str, Sequence[str], Mapping[str, Union[str, Sequence[str]]]]] = None, cache_dir: Optional[str] = None, keep_in_memory: Optional[bool] = None, save_infos: bool = False, use_auth_token: Optional[Union[bool, str]] = None, num_proc: Optional[int] = None)[source]¶ Bases: BaseLoader Load Documents from the Hugging Face Hub. Initialize the HuggingFaceDatasetLoader. Parameters path – Path or name of the dataset. page_content_column – Page content column name. Default is “text”. name – Name of the dataset configuration. data_dir – Data directory of the dataset configuration. data_files – Path(s) to source data file(s). cache_dir – Directory to read/write data. keep_in_memory – Whether to copy the dataset in-memory. save_infos – Save the dataset information (checksums/size/splits/…). Default is False. use_auth_token – Bearer token for remote files on the Dataset Hub. num_proc – Number of processes. Methods __init__(path[, page_content_column, name, ...]) Initialize the HuggingFaceDatasetLoader. lazy_load() Load documents lazily. load() Load documents. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document][source]¶ Load documents lazily. load() → List[Document][source]¶ Load documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.hugging_face_dataset.HuggingFaceDatasetLoader.html
a9f91648d2a9-1
load() → List[Document][source]¶ Load documents. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.hugging_face_dataset.HuggingFaceDatasetLoader.html
433b9945f4c2-0
langchain.document_loaders.sitemap.SitemapLoader¶ class langchain.document_loaders.sitemap.SitemapLoader(web_path: str, filter_urls: Optional[List[str]] = None, parsing_function: Optional[Callable] = None, blocksize: Optional[int] = None, blocknum: int = 0, meta_function: Optional[Callable] = None, is_local: bool = False)[source]¶ Bases: WebBaseLoader Loader that fetches a sitemap and loads those URLs. Initialize with webpage path and optional filter URLs. Parameters web_path – url of the sitemap. can also be a local path filter_urls – list of strings or regexes that will be applied to filter the urls that are parsed and loaded parsing_function – Function to parse bs4.Soup output blocksize – number of sitemap locations per block blocknum – the number of the block that should be loaded - zero indexed meta_function – Function to parse bs4.Soup output for metadata remember when setting this method to also copy metadata[“loc”] to metadata[“source”] if you are using this field is_local – whether the sitemap is a local file Methods __init__(web_path[, filter_urls, ...]) Initialize with webpage path and optional filter URLs. aload() Load text from the urls in web_path async into Documents. fetch_all(urls) Fetch all urls concurrently with rate limiting. lazy_load() Lazy load text from the url(s) in web_path. load() Load sitemap. load_and_split([text_splitter]) Load Documents and split into chunks. parse_sitemap(soup) Parse sitemap xml and load into a list of dicts. scrape([parser]) Scrape data from webpage and return it in BeautifulSoup format. scrape_all(urls[, parser])
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.sitemap.SitemapLoader.html
433b9945f4c2-1
scrape_all(urls[, parser]) Fetch all urls, then return soups for all results. Attributes bs_get_text_kwargs kwargs for beatifulsoup4 get_text default_parser Default parser to use for BeautifulSoup. raise_for_status Raise an exception if http status code denotes an error. requests_kwargs kwargs for requests requests_per_second Max number of concurrent requests to make. web_path aload() → List[Document]¶ Load text from the urls in web_path async into Documents. async fetch_all(urls: List[str]) → Any¶ Fetch all urls concurrently with rate limiting. lazy_load() → Iterator[Document]¶ Lazy load text from the url(s) in web_path. load() → List[Document][source]¶ Load sitemap. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. parse_sitemap(soup: Any) → List[dict][source]¶ Parse sitemap xml and load into a list of dicts. scrape(parser: Optional[str] = None) → Any¶ Scrape data from webpage and return it in BeautifulSoup format. scrape_all(urls: List[str], parser: Optional[str] = None) → List[Any]¶ Fetch all urls, then return soups for all results. bs_get_text_kwargs: Dict[str, Any] = {}¶ kwargs for beatifulsoup4 get_text default_parser: str = 'html.parser'¶ Default parser to use for BeautifulSoup. raise_for_status: bool = False¶ Raise an exception if http status code denotes an error.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.sitemap.SitemapLoader.html
433b9945f4c2-2
Raise an exception if http status code denotes an error. requests_kwargs: Dict[str, Any] = {}¶ kwargs for requests requests_per_second: int = 2¶ Max number of concurrent requests to make. property web_path: str¶ web_paths: List[str]¶
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.sitemap.SitemapLoader.html
ec77a94b792b-0
langchain.document_loaders.spreedly.SpreedlyLoader¶ class langchain.document_loaders.spreedly.SpreedlyLoader(access_token: str, resource: str)[source]¶ Bases: BaseLoader Loader that fetches data from Spreedly API. Methods __init__(access_token, resource) lazy_load() A lazy loader for Documents. load() Load data into Document objects. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load data into Document objects. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.spreedly.SpreedlyLoader.html
5033f752659b-0
langchain.document_loaders.merge.MergedDataLoader¶ class langchain.document_loaders.merge.MergedDataLoader(loaders: List)[source]¶ Bases: BaseLoader Merge documents from a list of loaders Initialize with a list of loaders Methods __init__(loaders) Initialize with a list of loaders lazy_load() Lazy load docs from each individual loader. load() Load docs. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document][source]¶ Lazy load docs from each individual loader. load() → List[Document][source]¶ Load docs. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.merge.MergedDataLoader.html
a00ba3474d34-0
langchain.document_loaders.email.UnstructuredEmailLoader¶ class langchain.document_loaders.email.UnstructuredEmailLoader(file_path: str, mode: str = 'single', **unstructured_kwargs: Any)[source]¶ Bases: UnstructuredFileLoader Loader that uses unstructured to load email files. Works with both .eml and .msg files. You can process attachments in addition to the e-mail message itself by passing process_attachments=True into the constructor for the loader. By default, attachments will be processed with the unstructured partition function. If you already know the document types of the attachments, you can specify another partitioning function with the attachment partitioner kwarg. Example from langchain.document_loaders import UnstructuredEmailLoader loader = UnstructuredEmailLoader(“example_data/fake-email.eml”, mode=”elements”) loader.load() Example from langchain.document_loaders import UnstructuredEmailLoader loader = UnstructuredEmailLoader(“example_data/fake-email-attachment.eml”, mode=”elements”, process_attachments=True, ) loader.load() Initialize with file path. Methods __init__(file_path[, mode]) Initialize with file path. lazy_load() A lazy loader for Documents. load() Load file. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document]¶ Load file. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.email.UnstructuredEmailLoader.html
514952020e6d-0
langchain.document_loaders.embaas.EmbaasLoader¶ class langchain.document_loaders.embaas.EmbaasLoader(*, embaas_api_key: Optional[str] = None, api_url: str = 'https://api.embaas.io/v1/document/extract-text/bytes/', params: EmbaasDocumentExtractionParameters = {}, file_path: str, blob_loader: Optional[EmbaasBlobLoader] = None)[source]¶ Bases: BaseEmbaasLoader, BaseLoader Embaas’s document loader. To use, you should have the environment variable EMBAAS_API_KEY set with your API key, or pass it as a named parameter to the constructor. Example # Default parsing from langchain.document_loaders.embaas import EmbaasLoader loader = EmbaasLoader(file_path="example.mp3") documents = loader.load() # Custom api parameters (create embeddings automatically) from langchain.document_loaders.embaas import EmbaasBlobLoader loader = EmbaasBlobLoader( file_path="example.pdf", params={ "should_embed": True, "model": "e5-large-v2", "chunk_size": 256, "chunk_splitter": "CharacterTextSplitter" } ) documents = loader.load() Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param api_url: str = 'https://api.embaas.io/v1/document/extract-text/bytes/'¶ The URL of the embaas document extraction API. param blob_loader: Optional[langchain.document_loaders.embaas.EmbaasBlobLoader] = None¶
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.embaas.EmbaasLoader.html
514952020e6d-1
The blob loader to use. If not provided, a default one will be created. param embaas_api_key: Optional[str] = None¶ The API key for the embaas document extraction API. param file_path: str [Required]¶ The path to the file to load. param params: langchain.document_loaders.embaas.EmbaasDocumentExtractionParameters = {}¶ Additional parameters to pass to the embaas document extraction API. lazy_load() → Iterator[Document][source]¶ Load the documents from the file path lazily. load() → List[Document][source]¶ Load data into Document objects. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document][source]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. validator validate_blob_loader  »  blob_loader[source]¶ validator validate_environment  »  all fields¶ Validate that api key and python package exists in environment.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.embaas.EmbaasLoader.html
a73b4aedc2b6-0
langchain.document_loaders.json_loader.JSONLoader¶ class langchain.document_loaders.json_loader.JSONLoader(file_path: Union[str, Path], jq_schema: str, content_key: Optional[str] = None, metadata_func: Optional[Callable[[Dict, Dict], Dict]] = None, text_content: bool = True, json_lines: bool = False)[source]¶ Bases: BaseLoader Loads a JSON file using a jq schema. Example [{“text”: …}, {“text”: …}, {“text”: …}] -> schema = .[].text {“key”: [{“text”: …}, {“text”: …}, {“text”: …}]} -> schema = .key[].text [“”, “”, “”] -> schema = .[] Initialize the JSONLoader. Parameters file_path (Union[str, Path]) – The path to the JSON or JSON Lines file. jq_schema (str) – The jq schema to use to extract the data or text from the JSON. content_key (str) – The key to use to extract the content from the JSON if the jq_schema results to a list of objects (dict). metadata_func (Callable[Dict, Dict]) – A function that takes in the JSON object extracted by the jq_schema and the default metadata and returns a dict of the updated metadata. text_content (bool) – Boolean flag to indicate whether the content is in string format, default to True. json_lines (bool) – Boolean flag to indicate whether the input is in JSON Lines format. Methods __init__(file_path, jq_schema[, ...]) Initialize the JSONLoader. lazy_load() A lazy loader for Documents. load() Load and return documents from the JSON file. load_and_split([text_splitter]) Load Documents and split into chunks.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.json_loader.JSONLoader.html
a73b4aedc2b6-1
load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load and return documents from the JSON file. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.json_loader.JSONLoader.html
221fe4577134-0
langchain.document_loaders.csv_loader.UnstructuredCSVLoader¶ class langchain.document_loaders.csv_loader.UnstructuredCSVLoader(file_path: str, mode: str = 'single', **unstructured_kwargs: Any)[source]¶ Bases: UnstructuredFileLoader Loader that uses unstructured to load CSV files. Parameters file_path – The path to the CSV file. mode – The mode to use when loading the CSV file. Optional. Defaults to “single”. **unstructured_kwargs – Keyword arguments to pass to unstructured. Methods __init__(file_path[, mode]) param file_path The path to the CSV file. lazy_load() A lazy loader for Documents. load() Load file. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document]¶ Load file. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.csv_loader.UnstructuredCSVLoader.html
67fd0e80f68b-0
langchain.document_loaders.github.GitHubIssuesLoader¶ class langchain.document_loaders.github.GitHubIssuesLoader(*, repo: str, access_token: str, include_prs: bool = True, milestone: Optional[Union[int, Literal['*', 'none']]] = None, state: Optional[Literal['open', 'closed', 'all']] = None, assignee: Optional[str] = None, creator: Optional[str] = None, mentioned: Optional[str] = None, labels: Optional[List[str]] = None, sort: Optional[Literal['created', 'updated', 'comments']] = None, direction: Optional[Literal['asc', 'desc']] = None, since: Optional[str] = None)[source]¶ Bases: BaseGitHubLoader Load issues of a GitHub repository. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param access_token: str [Required]¶ Personal access token - see https://github.com/settings/tokens?type=beta param assignee: Optional[str] = None¶ Filter on assigned user. Pass ‘none’ for no user and ‘*’ for any user. param creator: Optional[str] = None¶ Filter on the user that created the issue. param direction: Optional[Literal['asc', 'desc']] = None¶ The direction to sort the results by. Can be one of: ‘asc’, ‘desc’. param include_prs: bool = True¶ If True include Pull Requests in results, otherwise ignore them. param labels: Optional[List[str]] = None¶ Label names to filter one. Example: bug,ui,@high. param mentioned: Optional[str] = None¶ Filter on a user that’s mentioned in the issue.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.github.GitHubIssuesLoader.html
67fd0e80f68b-1
Filter on a user that’s mentioned in the issue. param milestone: Optional[Union[int, Literal['*', 'none']]] = None¶ If integer is passed, it should be a milestone’s number field. If the string ‘*’ is passed, issues with any milestone are accepted. If the string ‘none’ is passed, issues without milestones are returned. param repo: str [Required]¶ Name of repository param since: Optional[str] = None¶ Only show notifications updated after the given time. This is a timestamp in ISO 8601 format: YYYY-MM-DDTHH:MM:SSZ. param sort: Optional[Literal['created', 'updated', 'comments']] = None¶ What to sort results by. Can be one of: ‘created’, ‘updated’, ‘comments’. Default is ‘created’. param state: Optional[Literal['open', 'closed', 'all']] = None¶ Filter on issue state. Can be one of: ‘open’, ‘closed’, ‘all’. lazy_load() → Iterator[Document][source]¶ Get issues of a GitHub repository. Returns page_content metadata url title creator created_at last_update_time closed_time number of comments state labels assignee assignees milestone locked number is_pull_request Return type A list of Documents with attributes load() → List[Document][source]¶ Get issues of a GitHub repository. Returns page_content metadata url title creator created_at last_update_time closed_time number of comments state labels assignee assignees milestone locked number is_pull_request Return type A list of Documents with attributes load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.github.GitHubIssuesLoader.html
67fd0e80f68b-2
Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. parse_issue(issue: dict) → Document[source]¶ Create Document objects from a list of GitHub issues. validator validate_environment  »  all fields¶ Validate that access token exists in environment. validator validate_since  »  since[source]¶ property headers: Dict[str, str]¶ property query_params: str¶ Create query parameters for GitHub API. property url: str¶ Create URL for GitHub API.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.github.GitHubIssuesLoader.html
c39c63dc3888-0
langchain.document_loaders.pdf.PyPDFLoader¶ class langchain.document_loaders.pdf.PyPDFLoader(file_path: str, password: Optional[Union[str, bytes]] = None)[source]¶ Bases: BasePDFLoader Loads a PDF with pypdf and chunks at character level. Loader also stores page numbers in metadatas. Initialize with file path. Methods __init__(file_path[, password]) Initialize with file path. lazy_load() Lazy load given path as pages. load() Load given path as pages. load_and_split([text_splitter]) Load Documents and split into chunks. Attributes source lazy_load() → Iterator[Document][source]¶ Lazy load given path as pages. load() → List[Document][source]¶ Load given path as pages. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. property source: str¶
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.pdf.PyPDFLoader.html
ab4769c9beec-0
langchain.document_loaders.email.OutlookMessageLoader¶ class langchain.document_loaders.email.OutlookMessageLoader(file_path: str)[source]¶ Bases: BaseLoader Loads Outlook Message files using extract_msg. https://github.com/TeamMsgExtractor/msg-extractor Initialize with a file path. Parameters file_path – The path to the Outlook Message file. Methods __init__(file_path) Initialize with a file path. lazy_load() A lazy loader for Documents. load() Load data into document objects. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load data into document objects. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.email.OutlookMessageLoader.html
0825f258de41-0
langchain.document_loaders.parsers.language.python.PythonSegmenter¶ class langchain.document_loaders.parsers.language.python.PythonSegmenter(code: str)[source]¶ Bases: CodeSegmenter The code segmenter for Python. Methods __init__(code) extract_functions_classes() is_valid() simplify_code() extract_functions_classes() → List[str][source]¶ is_valid() → bool[source]¶ simplify_code() → str[source]¶
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.parsers.language.python.PythonSegmenter.html
3ec0dc0f5bd5-0
langchain.document_loaders.dataframe.DataFrameLoader¶ class langchain.document_loaders.dataframe.DataFrameLoader(data_frame: Any, page_content_column: str = 'text')[source]¶ Bases: BaseLoader Load Pandas DataFrame. Initialize with dataframe object. Parameters data_frame – Pandas DataFrame object. page_content_column – Name of the column containing the page content. Defaults to “text”. Methods __init__(data_frame[, page_content_column]) Initialize with dataframe object. lazy_load() Lazy load records from dataframe. load() Load full dataframe. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document][source]¶ Lazy load records from dataframe. load() → List[Document][source]¶ Load full dataframe. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.dataframe.DataFrameLoader.html
289c8df19642-0
langchain.document_loaders.blackboard.BlackboardLoader¶ class langchain.document_loaders.blackboard.BlackboardLoader(blackboard_course_url: str, bbrouter: str, load_all_recursively: bool = True, basic_auth: Optional[Tuple[str, str]] = None, cookies: Optional[dict] = None)[source]¶ Bases: WebBaseLoader Loads all documents from a Blackboard course. This loader is not compatible with all Blackboard courses. It is only compatible with courses that use the new Blackboard interface. To use this loader, you must have the BbRouter cookie. You can get this cookie by logging into the course and then copying the value of the BbRouter cookie from the browser’s developer tools. Example from langchain.document_loaders import BlackboardLoader loader = BlackboardLoader( blackboard_course_url="https://blackboard.example.com/webapps/blackboard/execute/announcement?method=search&context=course_entry&course_id=_123456_1", bbrouter="expires:12345...", ) documents = loader.load() Initialize with blackboard course url. The BbRouter cookie is required for most blackboard courses. Parameters blackboard_course_url – Blackboard course url. bbrouter – BbRouter cookie. load_all_recursively – If True, load all documents recursively. basic_auth – Basic auth credentials. cookies – Cookies. Raises ValueError – If blackboard course url is invalid. Methods __init__(blackboard_course_url, bbrouter[, ...]) Initialize with blackboard course url. aload() Load text from the urls in web_path async into Documents. check_bs4() Check if BeautifulSoup4 is installed. download(path) Download a file from an url. fetch_all(urls)
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.blackboard.BlackboardLoader.html
289c8df19642-1
download(path) Download a file from an url. fetch_all(urls) Fetch all urls concurrently with rate limiting. lazy_load() Lazy load text from the url(s) in web_path. load() Load data into Document objects. load_and_split([text_splitter]) Load Documents and split into chunks. parse_filename(url) Parse the filename from an url. scrape([parser]) Scrape data from webpage and return it in BeautifulSoup format. scrape_all(urls[, parser]) Fetch all urls, then return soups for all results. Attributes bs_get_text_kwargs kwargs for beatifulsoup4 get_text default_parser Default parser to use for BeautifulSoup. raise_for_status Raise an exception if http status code denotes an error. requests_kwargs kwargs for requests requests_per_second Max number of concurrent requests to make. web_path base_url Base url of the blackboard course. folder_path Path to the folder containing the documents. load_all_recursively If True, load all documents recursively. aload() → List[Document]¶ Load text from the urls in web_path async into Documents. check_bs4() → None[source]¶ Check if BeautifulSoup4 is installed. Raises ImportError – If BeautifulSoup4 is not installed. download(path: str) → None[source]¶ Download a file from an url. Parameters path – Path to the file. async fetch_all(urls: List[str]) → Any¶ Fetch all urls concurrently with rate limiting. lazy_load() → Iterator[Document]¶ Lazy load text from the url(s) in web_path. load() → List[Document][source]¶ Load data into Document objects. Returns List of Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.blackboard.BlackboardLoader.html
289c8df19642-2
Load data into Document objects. Returns List of Documents. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. parse_filename(url: str) → str[source]¶ Parse the filename from an url. Parameters url – Url to parse the filename from. Returns The filename. scrape(parser: Optional[str] = None) → Any¶ Scrape data from webpage and return it in BeautifulSoup format. scrape_all(urls: List[str], parser: Optional[str] = None) → List[Any]¶ Fetch all urls, then return soups for all results. base_url: str¶ Base url of the blackboard course. bs_get_text_kwargs: Dict[str, Any] = {}¶ kwargs for beatifulsoup4 get_text default_parser: str = 'html.parser'¶ Default parser to use for BeautifulSoup. folder_path: str¶ Path to the folder containing the documents. load_all_recursively: bool¶ If True, load all documents recursively. raise_for_status: bool = False¶ Raise an exception if http status code denotes an error. requests_kwargs: Dict[str, Any] = {}¶ kwargs for requests requests_per_second: int = 2¶ Max number of concurrent requests to make. property web_path: str¶ web_paths: List[str]¶
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.blackboard.BlackboardLoader.html
297f35ea5968-0
langchain.document_loaders.parsers.html.bs4.BS4HTMLParser¶ class langchain.document_loaders.parsers.html.bs4.BS4HTMLParser(*, features: str = 'lxml', get_text_separator: str = '', **kwargs: Any)[source]¶ Bases: BaseBlobParser Parser that uses beautiful soup to parse HTML files. Initialize a bs4 based HTML parser. Methods __init__(*[, features, get_text_separator]) Initialize a bs4 based HTML parser. lazy_parse(blob) Load HTML document into document objects. parse(blob) Eagerly parse the blob into a document or documents. lazy_parse(blob: Blob) → Iterator[Document][source]¶ Load HTML document into document objects. parse(blob: Blob) → List[Document]¶ Eagerly parse the blob into a document or documents. This is a convenience method for interactive development environment. Production applications should favor the lazy_parse method instead. Subclasses should generally not over-ride this parse method. Parameters blob – Blob instance Returns List of documents
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.parsers.html.bs4.BS4HTMLParser.html
9407594d74f4-0
langchain.document_loaders.weather.WeatherDataLoader¶ class langchain.document_loaders.weather.WeatherDataLoader(client: OpenWeatherMapAPIWrapper, places: Sequence[str])[source]¶ Bases: BaseLoader Weather Reader. Reads the forecast & current weather of any location using OpenWeatherMap’s free API. Checkout ‘https://openweathermap.org/appid’ for more on how to generate a free OpenWeatherMap API. Initialize with parameters. Methods __init__(client, places) Initialize with parameters. from_params(places, *[, openweathermap_api_key]) lazy_load() Lazily load weather data for the given locations. load() Load weather data for the given locations. load_and_split([text_splitter]) Load Documents and split into chunks. classmethod from_params(places: Sequence[str], *, openweathermap_api_key: Optional[str] = None) → WeatherDataLoader[source]¶ lazy_load() → Iterator[Document][source]¶ Lazily load weather data for the given locations. load() → List[Document][source]¶ Load weather data for the given locations. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.weather.WeatherDataLoader.html
e970392e09f7-0
langchain.document_loaders.blob_loaders.schema.BlobLoader¶ class langchain.document_loaders.blob_loaders.schema.BlobLoader[source]¶ Bases: ABC Abstract interface for blob loaders implementation. Implementer should be able to load raw content from a storage system according to some criteria and return the raw content lazily as a stream of blobs. Methods __init__() yield_blobs() A lazy loader for raw data represented by LangChain's Blob object. abstract yield_blobs() → Iterable[Blob][source]¶ A lazy loader for raw data represented by LangChain’s Blob object. Returns A generator over blobs
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.blob_loaders.schema.BlobLoader.html
72c73fe36e30-0
langchain.document_loaders.html_bs.BSHTMLLoader¶ class langchain.document_loaders.html_bs.BSHTMLLoader(file_path: str, open_encoding: Optional[str] = None, bs_kwargs: Optional[dict] = None, get_text_separator: str = '')[source]¶ Bases: BaseLoader Loader that uses beautiful soup to parse HTML files. Initialise with path, and optionally, file encoding to use, and any kwargs to pass to the BeautifulSoup object. Parameters file_path – The path to the file to load. open_encoding – The encoding to use when opening the file. bs_kwargs – Any kwargs to pass to the BeautifulSoup object. get_text_separator – The separator to use when calling get_text on the soup. Methods __init__(file_path[, open_encoding, ...]) Initialise with path, and optionally, file encoding to use, and any kwargs to pass to the BeautifulSoup object. lazy_load() A lazy loader for Documents. load() Load HTML document into document objects. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load HTML document into document objects. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.html_bs.BSHTMLLoader.html
6bb002cba89c-0
langchain.document_loaders.pyspark_dataframe.PySparkDataFrameLoader¶ class langchain.document_loaders.pyspark_dataframe.PySparkDataFrameLoader(spark_session: Optional[SparkSession] = None, df: Optional[Any] = None, page_content_column: str = 'text', fraction_of_memory: float = 0.1)[source]¶ Bases: BaseLoader Load PySpark DataFrames Initialize with a Spark DataFrame object. Methods __init__([spark_session, df, ...]) Initialize with a Spark DataFrame object. get_num_rows() Gets the amount of "feasible" rows for the DataFrame lazy_load() A lazy loader for document content. load() Load from the dataframe. load_and_split([text_splitter]) Load Documents and split into chunks. get_num_rows() → Tuple[int, int][source]¶ Gets the amount of “feasible” rows for the DataFrame lazy_load() → Iterator[Document][source]¶ A lazy loader for document content. load() → List[Document][source]¶ Load from the dataframe. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.pyspark_dataframe.PySparkDataFrameLoader.html
0dc6d3b04307-0
langchain.document_loaders.mastodon.MastodonTootsLoader¶ class langchain.document_loaders.mastodon.MastodonTootsLoader(mastodon_accounts: Sequence[str], number_toots: Optional[int] = 100, exclude_replies: bool = False, access_token: Optional[str] = None, api_base_url: str = 'https://mastodon.social')[source]¶ Bases: BaseLoader Mastodon toots loader. Instantiate Mastodon toots loader. Parameters mastodon_accounts – The list of Mastodon accounts to query. number_toots – How many toots to pull for each account. Default is 100. exclude_replies – Whether to exclude reply toots from the load. Default is False. access_token – An access token if toots are loaded as a Mastodon app. Can also be specified via the environment variables “MASTODON_ACCESS_TOKEN”. api_base_url – A Mastodon API base URL to talk to, if not using the default. Default is “https://mastodon.social”. Methods __init__(mastodon_accounts[, number_toots, ...]) Instantiate Mastodon toots loader. lazy_load() A lazy loader for Documents. load() Load toots into documents. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load toots into documents. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.mastodon.MastodonTootsLoader.html
023e1c897d1a-0
langchain.document_loaders.youtube.YoutubeLoader¶ class langchain.document_loaders.youtube.YoutubeLoader(video_id: str, add_video_info: bool = False, language: Union[str, Sequence[str]] = 'en', translation: str = 'en', continue_on_failure: bool = False)[source]¶ Bases: BaseLoader Loader that loads Youtube transcripts. Initialize with YouTube video ID. Methods __init__(video_id[, add_video_info, ...]) Initialize with YouTube video ID. extract_video_id(youtube_url) Extract video id from common YT urls. from_youtube_url(youtube_url, **kwargs) Given youtube URL, load video. lazy_load() A lazy loader for Documents. load() Load documents. load_and_split([text_splitter]) Load Documents and split into chunks. static extract_video_id(youtube_url: str) → str[source]¶ Extract video id from common YT urls. classmethod from_youtube_url(youtube_url: str, **kwargs: Any) → YoutubeLoader[source]¶ Given youtube URL, load video. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load documents. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.youtube.YoutubeLoader.html
b434e991cb82-0
langchain.document_loaders.unstructured.UnstructuredAPIFileIOLoader¶ class langchain.document_loaders.unstructured.UnstructuredAPIFileIOLoader(file: Union[IO, Sequence[IO]], mode: str = 'single', url: str = 'https://api.unstructured.io/general/v0/general', api_key: str = '', **unstructured_kwargs: Any)[source]¶ Bases: UnstructuredFileIOLoader UnstructuredAPIFileIOLoader uses the Unstructured API to load files. By default, the loader makes a call to the hosted Unstructured API. If you are running the unstructured API locally, you can change the API rule by passing in the url parameter when you initialize the loader. The hosted Unstructured API requires an API key. See https://www.unstructured.io/api-key/ if you need to generate a key. You can run the loader in one of two modes: “single” and “elements”. If you use “single” mode, the document will be returned as a single langchain Document object. If you use “elements” mode, the unstructured library will split the document into elements such as Title and NarrativeText. You can pass in additional unstructured kwargs after mode to apply different unstructured settings. Examples ```python from langchain.document_loaders import UnstructuredAPIFileLoader with open(“example.pdf”, “rb”) as f: loader = UnstructuredFileAPILoader(f, mode=”elements”, strategy=”fast”, api_key=”MY_API_KEY”, ) docs = loader.load() ``` References https://unstructured-io.github.io/unstructured/bricks.html#partition https://www.unstructured.io/api-key/ https://github.com/Unstructured-IO/unstructured-api Initialize with file path. Methods
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.unstructured.UnstructuredAPIFileIOLoader.html
b434e991cb82-1
Initialize with file path. Methods __init__(file[, mode, url, api_key]) Initialize with file path. lazy_load() A lazy loader for Documents. load() Load file. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document]¶ Load file. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.unstructured.UnstructuredAPIFileIOLoader.html
8600292c08a0-0
langchain.document_loaders.odt.UnstructuredODTLoader¶ class langchain.document_loaders.odt.UnstructuredODTLoader(file_path: str, mode: str = 'single', **unstructured_kwargs: Any)[source]¶ Bases: UnstructuredFileLoader Loader that uses unstructured to load open office ODT files. Initialize with file path. Methods __init__(file_path[, mode]) Initialize with file path. lazy_load() A lazy loader for Documents. load() Load file. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document]¶ Load file. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.odt.UnstructuredODTLoader.html
feecd0461c4c-0
langchain.document_loaders.parsers.txt.TextParser¶ class langchain.document_loaders.parsers.txt.TextParser[source]¶ Bases: BaseBlobParser Parser for text blobs. Methods __init__() lazy_parse(blob) Lazily parse the blob. parse(blob) Eagerly parse the blob into a document or documents. lazy_parse(blob: Blob) → Iterator[Document][source]¶ Lazily parse the blob. parse(blob: Blob) → List[Document]¶ Eagerly parse the blob into a document or documents. This is a convenience method for interactive development environment. Production applications should favor the lazy_parse method instead. Subclasses should generally not over-ride this parse method. Parameters blob – Blob instance Returns List of documents
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.parsers.txt.TextParser.html
cc20d7ac98bd-0
langchain.document_loaders.python.PythonLoader¶ class langchain.document_loaders.python.PythonLoader(file_path: str)[source]¶ Bases: TextLoader Load Python files, respecting any non-default encoding if specified. Initialize with file path. Methods __init__(file_path) Initialize with file path. lazy_load() A lazy loader for Documents. load() Load from file path. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document]¶ Load from file path. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.python.PythonLoader.html
1a4f577c1edb-0
langchain.document_loaders.azure_blob_storage_container.AzureBlobStorageContainerLoader¶ class langchain.document_loaders.azure_blob_storage_container.AzureBlobStorageContainerLoader(conn_str: str, container: str, prefix: str = '')[source]¶ Bases: BaseLoader Loading Documents from Azure Blob Storage. Initialize with connection string, container and blob prefix. Methods __init__(conn_str, container[, prefix]) Initialize with connection string, container and blob prefix. lazy_load() A lazy loader for Documents. load() Load documents. load_and_split([text_splitter]) Load Documents and split into chunks. Attributes conn_str Connection string for Azure Blob Storage. container Container name. prefix Prefix for blob names. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load documents. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. conn_str¶ Connection string for Azure Blob Storage. container¶ Container name. prefix¶ Prefix for blob names.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.azure_blob_storage_container.AzureBlobStorageContainerLoader.html
f0bd5bce2eaf-0
langchain.document_loaders.gitbook.GitbookLoader¶ class langchain.document_loaders.gitbook.GitbookLoader(web_page: str, load_all_paths: bool = False, base_url: Optional[str] = None, content_selector: str = 'main')[source]¶ Bases: WebBaseLoader Load GitBook data. load from either a single page, or load all (relative) paths in the navbar. Initialize with web page and whether to load all paths. Parameters web_page – The web page to load or the starting point from where relative paths are discovered. load_all_paths – If set to True, all relative paths in the navbar are loaded instead of only web_page. base_url – If load_all_paths is True, the relative paths are appended to this base url. Defaults to web_page. content_selector – The CSS selector for the content to load. Defaults to “main”. Methods __init__(web_page[, load_all_paths, ...]) Initialize with web page and whether to load all paths. aload() Load text from the urls in web_path async into Documents. fetch_all(urls) Fetch all urls concurrently with rate limiting. lazy_load() Lazy load text from the url(s) in web_path. load() Fetch text from one single GitBook page. load_and_split([text_splitter]) Load Documents and split into chunks. scrape([parser]) Scrape data from webpage and return it in BeautifulSoup format. scrape_all(urls[, parser]) Fetch all urls, then return soups for all results. Attributes bs_get_text_kwargs kwargs for beatifulsoup4 get_text default_parser Default parser to use for BeautifulSoup. raise_for_status Raise an exception if http status code denotes an error. requests_kwargs kwargs for requests requests_per_second
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.gitbook.GitbookLoader.html
f0bd5bce2eaf-1
requests_kwargs kwargs for requests requests_per_second Max number of concurrent requests to make. web_path aload() → List[Document]¶ Load text from the urls in web_path async into Documents. async fetch_all(urls: List[str]) → Any¶ Fetch all urls concurrently with rate limiting. lazy_load() → Iterator[Document]¶ Lazy load text from the url(s) in web_path. load() → List[Document][source]¶ Fetch text from one single GitBook page. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. scrape(parser: Optional[str] = None) → Any¶ Scrape data from webpage and return it in BeautifulSoup format. scrape_all(urls: List[str], parser: Optional[str] = None) → List[Any]¶ Fetch all urls, then return soups for all results. bs_get_text_kwargs: Dict[str, Any] = {}¶ kwargs for beatifulsoup4 get_text default_parser: str = 'html.parser'¶ Default parser to use for BeautifulSoup. raise_for_status: bool = False¶ Raise an exception if http status code denotes an error. requests_kwargs: Dict[str, Any] = {}¶ kwargs for requests requests_per_second: int = 2¶ Max number of concurrent requests to make. property web_path: str¶ web_paths: List[str]¶
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.gitbook.GitbookLoader.html
fe5c13962b78-0
langchain.document_loaders.pdf.BasePDFLoader¶ class langchain.document_loaders.pdf.BasePDFLoader(file_path: str)[source]¶ Bases: BaseLoader, ABC Base loader class for PDF files. Defaults to check for local file, but if the file is a web path, it will download it to a temporary file, and use that, then clean up the temporary file after completion Initialize with file path. Methods __init__(file_path) Initialize with file path. lazy_load() A lazy loader for Documents. load() Load data into Document objects. load_and_split([text_splitter]) Load Documents and split into chunks. Attributes source lazy_load() → Iterator[Document]¶ A lazy loader for Documents. abstract load() → List[Document]¶ Load data into Document objects. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents. property source: str¶
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.pdf.BasePDFLoader.html
57fd968f01ff-0
langchain.document_loaders.snowflake_loader.SnowflakeLoader¶ class langchain.document_loaders.snowflake_loader.SnowflakeLoader(query: str, user: str, password: str, account: str, warehouse: str, role: str, database: str, schema: str, parameters: Optional[Dict[str, Any]] = None, page_content_columns: Optional[List[str]] = None, metadata_columns: Optional[List[str]] = None)[source]¶ Bases: BaseLoader Loads a query result from Snowflake into a list of documents. Each document represents one row of the result. The page_content_columns are written into the page_content of the document. The metadata_columns are written into the metadata of the document. By default, all columns are written into the page_content and none into the metadata. Initialize Snowflake document loader. Parameters query – The query to run in Snowflake. user – Snowflake user. password – Snowflake password. account – Snowflake account. warehouse – Snowflake warehouse. role – Snowflake role. database – Snowflake database schema – Snowflake schema page_content_columns – Optional. Columns written to Document page_content. metadata_columns – Optional. Columns written to Document metadata. Methods __init__(query, user, password, account, ...) Initialize Snowflake document loader. lazy_load() A lazy loader for Documents. load() Load data into document objects. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document][source]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load data into document objects. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.snowflake_loader.SnowflakeLoader.html
57fd968f01ff-1
Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.snowflake_loader.SnowflakeLoader.html
6ebadc7c5781-0
langchain.document_loaders.whatsapp_chat.concatenate_rows¶ langchain.document_loaders.whatsapp_chat.concatenate_rows(date: str, sender: str, text: str) → str[source]¶ Combine message information in a readable format ready to be used.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.whatsapp_chat.concatenate_rows.html
4fba2a21c30c-0
langchain.document_loaders.unstructured.validate_unstructured_version¶ langchain.document_loaders.unstructured.validate_unstructured_version(min_unstructured_version: str) → None[source]¶ Raises an error if the unstructured version does not exceed the specified minimum.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.unstructured.validate_unstructured_version.html
d077b494fcab-0
langchain.document_loaders.parsers.pdf.PyPDFium2Parser¶ class langchain.document_loaders.parsers.pdf.PyPDFium2Parser[source]¶ Bases: BaseBlobParser Parse PDFs with PyPDFium2. Initialize the parser. Methods __init__() Initialize the parser. lazy_parse(blob) Lazily parse the blob. parse(blob) Eagerly parse the blob into a document or documents. lazy_parse(blob: Blob) → Iterator[Document][source]¶ Lazily parse the blob. parse(blob: Blob) → List[Document]¶ Eagerly parse the blob into a document or documents. This is a convenience method for interactive development environment. Production applications should favor the lazy_parse method instead. Subclasses should generally not over-ride this parse method. Parameters blob – Blob instance Returns List of documents
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.parsers.pdf.PyPDFium2Parser.html
1840fedf226a-0
langchain.document_loaders.s3_directory.S3DirectoryLoader¶ class langchain.document_loaders.s3_directory.S3DirectoryLoader(bucket: str, prefix: str = '')[source]¶ Bases: BaseLoader Loading logic for loading documents from s3. Initialize with bucket and key name. Methods __init__(bucket[, prefix]) Initialize with bucket and key name. lazy_load() A lazy loader for Documents. load() Load documents. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document]¶ A lazy loader for Documents. load() → List[Document][source]¶ Load documents. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.s3_directory.S3DirectoryLoader.html
2e973dda6a1a-0
langchain.document_loaders.tencent_cos_directory.TencentCOSDirectoryLoader¶ class langchain.document_loaders.tencent_cos_directory.TencentCOSDirectoryLoader(conf: Any, bucket: str, prefix: str = '')[source]¶ Bases: BaseLoader Loading logic for loading documents from Tencent Cloud COS. Initialize with COS config, bucket and prefix. :param conf(CosConfig): COS config. :param bucket(str): COS bucket. :param prefix(str): prefix. Methods __init__(conf, bucket[, prefix]) Initialize with COS config, bucket and prefix. lazy_load() Load documents. load() Load data into Document objects. load_and_split([text_splitter]) Load Documents and split into chunks. lazy_load() → Iterator[Document][source]¶ Load documents. load() → List[Document][source]¶ Load data into Document objects. load_and_split(text_splitter: Optional[TextSplitter] = None) → List[Document]¶ Load Documents and split into chunks. Chunks are returned as Documents. Parameters text_splitter – TextSplitter instance to use for splitting documents. Defaults to RecursiveCharacterTextSplitter. Returns List of Documents.
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.tencent_cos_directory.TencentCOSDirectoryLoader.html
24473bed3080-0
langchain.document_loaders.embaas.EmbaasDocumentExtractionParameters¶ class langchain.document_loaders.embaas.EmbaasDocumentExtractionParameters[source]¶ Bases: TypedDict Parameters for the embaas document extraction API. Methods __init__(*args, **kwargs) clear() copy() fromkeys([value]) Create a new dictionary with keys from iterable and values set to value. get(key[, default]) Return the value for key if key is in the dictionary, else default. items() keys() pop(k[,d]) If the key is not found, return the default if given; otherwise, raise a KeyError. popitem() Remove and return a (key, value) pair as a 2-tuple. setdefault(key[, default]) Insert key with a value of default if key is not in the dictionary. update([E, ]**F) If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k] values() Attributes mime_type The mime type of the document. file_extension The file extension of the document. file_name The file name of the document. should_chunk Whether to chunk the document into pages. chunk_size The maximum size of the text chunks. chunk_overlap The maximum overlap allowed between chunks. chunk_splitter The text splitter class name for creating chunks. separators The separators for chunks. should_embed Whether to create embeddings for the document in the response. model
https://api.python.langchain.com/en/latest/document_loaders/langchain.document_loaders.embaas.EmbaasDocumentExtractionParameters.html