id
stringlengths 14
15
| text
stringlengths 22
2.51k
| source
stringlengths 61
154
|
|---|---|---|
a97207446420-7
|
Validate and prepare chain inputs, including adding inputs from memory.
Parameters
inputs – Dictionary of raw inputs, or single input if chain expects
only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
memory.
Returns
A dictionary of all inputs, including those added by the chain’s memory.
prep_outputs(inputs: Dict[str, str], outputs: Dict[str, str], return_only_outputs: bool = False) → Dict[str, str]¶
Validate and prepare chain outputs, and save info about this run to memory.
Parameters
inputs – Dictionary of chain inputs, including any inputs added by chain
memory.
outputs – Dictionary of initial chain outputs.
return_only_outputs – Whether to only return the chain outputs. If False,
inputs are also added to the final outputs.
Returns
A dict of the final chain outputs.
prep_prompts(input_list: List[Dict[str, Any]], run_manager: Optional[CallbackManagerForChainRun] = None) → Tuple[List[PromptValue], Optional[List[str]]]¶
Prepare prompts from inputs.
validator raise_callback_manager_deprecation » all fields¶
Raise deprecation warning if callback_manager is used.
run(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → str¶
Convenience method for executing chain when there’s a single string output.
The main difference between this method and Chain.__call__ is that this methodcan only be used for chains that return a single string output. If a Chain
has more outputs, a non-string output, or you want to return the inputs/run
info along with the outputs, use Chain.__call__.
|
https://api.python.langchain.com/en/latest/experimental/langchain.experimental.autonomous_agents.baby_agi.task_execution.TaskExecutionChain.html
|
a97207446420-8
|
info along with the outputs, use Chain.__call__.
The other difference is that this method expects inputs to be passed directly in
as positional arguments or keyword arguments, whereas Chain.__call__ expects
a single input dictionary with all the inputs.
Parameters
*args – If the chain expects a single input, it can be passed in as the
sole positional argument.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
**kwargs – If the chain expects multiple inputs, they can be passed in
directly as keyword arguments.
Returns
The chain output as a string.
Example
# Suppose we have a single-input chain that takes a 'question' string:
chain.run("What's the temperature in Boise, Idaho?")
# -> "The temperature in Boise is..."
# Suppose we have a multi-input chain that takes a 'question' string
# and 'context' string:
question = "What's the temperature in Boise, Idaho?"
context = "Weather report for Boise, Idaho on 07/03/23..."
chain.run(question=question, context=context)
# -> "The temperature in Boise is..."
save(file_path: Union[Path, str]) → None¶
Save the chain.
Expects Chain._chain_type property to be implemented and for memory to benull.
Parameters
file_path – Path to file to save the chain to.
Example
chain.save(file_path="path/chain.yaml")
validator set_verbose » verbose¶
Set the chain verbosity.
|
https://api.python.langchain.com/en/latest/experimental/langchain.experimental.autonomous_agents.baby_agi.task_execution.TaskExecutionChain.html
|
a97207446420-9
|
validator set_verbose » verbose¶
Set the chain verbosity.
Defaults to the global setting if not specified by the user.
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
property lc_attributes: Dict¶
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]¶
Return the namespace of the langchain object.
eg. [“langchain”, “llms”, “openai”]
property lc_secrets: Dict[str, str]¶
Return a map of constructor argument names to secret ids.
eg. {“openai_api_key”: “OPENAI_API_KEY”}
property lc_serializable: bool¶
Return whether or not the class is serializable.
model Config¶
Bases: object
Configuration for this pydantic object.
arbitrary_types_allowed = True¶
extra = 'forbid'¶
|
https://api.python.langchain.com/en/latest/experimental/langchain.experimental.autonomous_agents.baby_agi.task_execution.TaskExecutionChain.html
|
65ba4e959c54-0
|
langchain.experimental.autonomous_agents.autogpt.output_parser.AutoGPTAction¶
class langchain.experimental.autonomous_agents.autogpt.output_parser.AutoGPTAction(name, args)[source]¶
Bases: NamedTuple
Create new instance of AutoGPTAction(name, args)
Methods
__init__()
count(value, /)
Return number of occurrences of value.
index(value[, start, stop])
Return first index of value.
Attributes
args
Alias for field number 1
name
Alias for field number 0
count(value, /)¶
Return number of occurrences of value.
index(value, start=0, stop=9223372036854775807, /)¶
Return first index of value.
Raises ValueError if the value is not present.
args: Dict¶
Alias for field number 1
name: str¶
Alias for field number 0
|
https://api.python.langchain.com/en/latest/experimental/langchain.experimental.autonomous_agents.autogpt.output_parser.AutoGPTAction.html
|
dee4bcd6479c-0
|
langchain.experimental.autonomous_agents.baby_agi.task_prioritization.TaskPrioritizationChain¶
class langchain.experimental.autonomous_agents.baby_agi.task_prioritization.TaskPrioritizationChain(*, memory: Optional[BaseMemory] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, verbose: bool = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, prompt: BasePromptTemplate, llm: BaseLanguageModel, output_key: str = 'text', output_parser: BaseLLMOutputParser = None, return_final_only: bool = True, llm_kwargs: dict = None)[source]¶
Bases: LLMChain
Chain to prioritize tasks.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param callback_manager: Optional[BaseCallbackManager] = None¶
Deprecated, use callbacks instead.
param callbacks: Callbacks = None¶
Optional list of callback handlers (or callback manager). Defaults to None.
Callback handlers are called throughout the lifecycle of a call to a chain,
starting with on_chain_start, ending with on_chain_end or on_chain_error.
Each custom chain can optionally call additional callback methods, see Callback docs
for full details.
param llm: BaseLanguageModel [Required]¶
Language model to call.
param llm_kwargs: dict [Optional]¶
param memory: Optional[BaseMemory] = None¶
Optional memory object. Defaults to None.
Memory is a class that gets called at the start
and at the end of every chain. At the start, memory loads variables and passes
them along in the chain. At the end, it saves any returned variables.
|
https://api.python.langchain.com/en/latest/experimental/langchain.experimental.autonomous_agents.baby_agi.task_prioritization.TaskPrioritizationChain.html
|
dee4bcd6479c-1
|
them along in the chain. At the end, it saves any returned variables.
There are many different types of memory - please see memory docs
for the full catalog.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the chain. Defaults to None
This metadata will be associated with each call to this chain,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a chain with its use case.
param output_key: str = 'text'¶
param output_parser: BaseLLMOutputParser [Optional]¶
Output parser to use.
Defaults to one that takes the most likely string but does not change it
otherwise.
param prompt: BasePromptTemplate [Required]¶
Prompt object to use.
param return_final_only: bool = True¶
Whether to return only the final parsed result. Defaults to True.
If false, will return a bunch of extra information about the generation.
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the chain. Defaults to None
These tags will be associated with each call to this chain,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a chain with its use case.
param verbose: bool [Optional]¶
Whether or not run in verbose mode. In verbose mode, some intermediate logs
will be printed to the console. Defaults to langchain.verbose value.
__call__(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, include_run_info: bool = False) → Dict[str, Any]¶
|
https://api.python.langchain.com/en/latest/experimental/langchain.experimental.autonomous_agents.baby_agi.task_prioritization.TaskPrioritizationChain.html
|
dee4bcd6479c-2
|
Execute the chain.
Parameters
inputs – Dictionary of inputs, or single input if chain expects
only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
memory.
return_only_outputs – Whether to return only outputs in the
response. If True, only new keys generated by this chain will be
returned. If False, both input keys and new keys generated by this
chain will be returned. Defaults to False.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
metadata – Optional metadata associated with the chain. Defaults to None
include_run_info – Whether to include run info in the response. Defaults
to False.
Returns
A dict of named outputs. Should contain all outputs specified inChain.output_keys.
async aapply(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → List[Dict[str, str]]¶
Utilize the LLM generate method for speed gains.
async aapply_and_parse(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → Sequence[Union[str, List[str], Dict[str, str]]]¶
Call apply and then parse the results.
|
https://api.python.langchain.com/en/latest/experimental/langchain.experimental.autonomous_agents.baby_agi.task_prioritization.TaskPrioritizationChain.html
|
dee4bcd6479c-3
|
Call apply and then parse the results.
async acall(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, include_run_info: bool = False) → Dict[str, Any]¶
Asynchronously execute the chain.
Parameters
inputs – Dictionary of inputs, or single input if chain expects
only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
memory.
return_only_outputs – Whether to return only outputs in the
response. If True, only new keys generated by this chain will be
returned. If False, both input keys and new keys generated by this
chain will be returned. Defaults to False.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
metadata – Optional metadata associated with the chain. Defaults to None
include_run_info – Whether to include run info in the response. Defaults
to False.
Returns
A dict of named outputs. Should contain all outputs specified inChain.output_keys.
async agenerate(input_list: List[Dict[str, Any]], run_manager: Optional[AsyncCallbackManagerForChainRun] = None) → LLMResult¶
Generate LLM result from inputs.
|
https://api.python.langchain.com/en/latest/experimental/langchain.experimental.autonomous_agents.baby_agi.task_prioritization.TaskPrioritizationChain.html
|
dee4bcd6479c-4
|
Generate LLM result from inputs.
apply(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → List[Dict[str, str]]¶
Utilize the LLM generate method for speed gains.
apply_and_parse(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → Sequence[Union[str, List[str], Dict[str, str]]]¶
Call apply and then parse the results.
async apredict(callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶
Format prompt with kwargs and pass to LLM.
Parameters
callbacks – Callbacks to pass to LLMChain
**kwargs – Keys to pass to prompt template.
Returns
Completion from LLM.
Example
completion = llm.predict(adjective="funny")
async apredict_and_parse(callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → Union[str, List[str], Dict[str, str]]¶
Call apredict and then parse the results.
async aprep_prompts(input_list: List[Dict[str, Any]], run_manager: Optional[AsyncCallbackManagerForChainRun] = None) → Tuple[List[PromptValue], Optional[List[str]]]¶
Prepare prompts from inputs.
async arun(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → str¶
Convenience method for executing chain when there’s a single string output.
|
https://api.python.langchain.com/en/latest/experimental/langchain.experimental.autonomous_agents.baby_agi.task_prioritization.TaskPrioritizationChain.html
|
dee4bcd6479c-5
|
Convenience method for executing chain when there’s a single string output.
The main difference between this method and Chain.__call__ is that this methodcan only be used for chains that return a single string output. If a Chain
has more outputs, a non-string output, or you want to return the inputs/run
info along with the outputs, use Chain.__call__.
The other difference is that this method expects inputs to be passed directly in
as positional arguments or keyword arguments, whereas Chain.__call__ expects
a single input dictionary with all the inputs.
Parameters
*args – If the chain expects a single input, it can be passed in as the
sole positional argument.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
**kwargs – If the chain expects multiple inputs, they can be passed in
directly as keyword arguments.
Returns
The chain output as a string.
Example
# Suppose we have a single-input chain that takes a 'question' string:
await chain.arun("What's the temperature in Boise, Idaho?")
# -> "The temperature in Boise is..."
# Suppose we have a multi-input chain that takes a 'question' string
# and 'context' string:
question = "What's the temperature in Boise, Idaho?"
context = "Weather report for Boise, Idaho on 07/03/23..."
await chain.arun(question=question, context=context)
# -> "The temperature in Boise is..."
|
https://api.python.langchain.com/en/latest/experimental/langchain.experimental.autonomous_agents.baby_agi.task_prioritization.TaskPrioritizationChain.html
|
dee4bcd6479c-6
|
# -> "The temperature in Boise is..."
create_outputs(llm_result: LLMResult) → List[Dict[str, Any]]¶
Create outputs from response.
dict(**kwargs: Any) → Dict¶
Return dictionary representation of chain.
Expects Chain._chain_type property to be implemented and for memory to benull.
Parameters
**kwargs – Keyword arguments passed to default pydantic.BaseModel.dict
method.
Returns
A dictionary representation of the chain.
Example
..code-block:: python
chain.dict(exclude_unset=True)
# -> {“_type”: “foo”, “verbose”: False, …}
classmethod from_llm(llm: BaseLanguageModel, verbose: bool = True) → LLMChain[source]¶
Get the response parser.
classmethod from_string(llm: BaseLanguageModel, template: str) → LLMChain¶
Create LLMChain from LLM and template.
generate(input_list: List[Dict[str, Any]], run_manager: Optional[CallbackManagerForChainRun] = None) → LLMResult¶
Generate LLM result from inputs.
predict(callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → str¶
Format prompt with kwargs and pass to LLM.
Parameters
callbacks – Callbacks to pass to LLMChain
**kwargs – Keys to pass to prompt template.
Returns
Completion from LLM.
Example
completion = llm.predict(adjective="funny")
predict_and_parse(callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → Union[str, List[str], Dict[str, Any]]¶
Call predict and then parse the results.
prep_inputs(inputs: Union[Dict[str, Any], Any]) → Dict[str, str]¶
|
https://api.python.langchain.com/en/latest/experimental/langchain.experimental.autonomous_agents.baby_agi.task_prioritization.TaskPrioritizationChain.html
|
dee4bcd6479c-7
|
Validate and prepare chain inputs, including adding inputs from memory.
Parameters
inputs – Dictionary of raw inputs, or single input if chain expects
only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
memory.
Returns
A dictionary of all inputs, including those added by the chain’s memory.
prep_outputs(inputs: Dict[str, str], outputs: Dict[str, str], return_only_outputs: bool = False) → Dict[str, str]¶
Validate and prepare chain outputs, and save info about this run to memory.
Parameters
inputs – Dictionary of chain inputs, including any inputs added by chain
memory.
outputs – Dictionary of initial chain outputs.
return_only_outputs – Whether to only return the chain outputs. If False,
inputs are also added to the final outputs.
Returns
A dict of the final chain outputs.
prep_prompts(input_list: List[Dict[str, Any]], run_manager: Optional[CallbackManagerForChainRun] = None) → Tuple[List[PromptValue], Optional[List[str]]]¶
Prepare prompts from inputs.
validator raise_callback_manager_deprecation » all fields¶
Raise deprecation warning if callback_manager is used.
run(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → str¶
Convenience method for executing chain when there’s a single string output.
The main difference between this method and Chain.__call__ is that this methodcan only be used for chains that return a single string output. If a Chain
has more outputs, a non-string output, or you want to return the inputs/run
info along with the outputs, use Chain.__call__.
|
https://api.python.langchain.com/en/latest/experimental/langchain.experimental.autonomous_agents.baby_agi.task_prioritization.TaskPrioritizationChain.html
|
dee4bcd6479c-8
|
info along with the outputs, use Chain.__call__.
The other difference is that this method expects inputs to be passed directly in
as positional arguments or keyword arguments, whereas Chain.__call__ expects
a single input dictionary with all the inputs.
Parameters
*args – If the chain expects a single input, it can be passed in as the
sole positional argument.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
**kwargs – If the chain expects multiple inputs, they can be passed in
directly as keyword arguments.
Returns
The chain output as a string.
Example
# Suppose we have a single-input chain that takes a 'question' string:
chain.run("What's the temperature in Boise, Idaho?")
# -> "The temperature in Boise is..."
# Suppose we have a multi-input chain that takes a 'question' string
# and 'context' string:
question = "What's the temperature in Boise, Idaho?"
context = "Weather report for Boise, Idaho on 07/03/23..."
chain.run(question=question, context=context)
# -> "The temperature in Boise is..."
save(file_path: Union[Path, str]) → None¶
Save the chain.
Expects Chain._chain_type property to be implemented and for memory to benull.
Parameters
file_path – Path to file to save the chain to.
Example
chain.save(file_path="path/chain.yaml")
validator set_verbose » verbose¶
Set the chain verbosity.
|
https://api.python.langchain.com/en/latest/experimental/langchain.experimental.autonomous_agents.baby_agi.task_prioritization.TaskPrioritizationChain.html
|
dee4bcd6479c-9
|
validator set_verbose » verbose¶
Set the chain verbosity.
Defaults to the global setting if not specified by the user.
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
property lc_attributes: Dict¶
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]¶
Return the namespace of the langchain object.
eg. [“langchain”, “llms”, “openai”]
property lc_secrets: Dict[str, str]¶
Return a map of constructor argument names to secret ids.
eg. {“openai_api_key”: “OPENAI_API_KEY”}
property lc_serializable: bool¶
Return whether or not the class is serializable.
model Config¶
Bases: object
Configuration for this pydantic object.
arbitrary_types_allowed = True¶
extra = 'forbid'¶
|
https://api.python.langchain.com/en/latest/experimental/langchain.experimental.autonomous_agents.baby_agi.task_prioritization.TaskPrioritizationChain.html
|
237fab5692e6-0
|
langchain.experimental.llms.rellm_decoder.import_rellm¶
langchain.experimental.llms.rellm_decoder.import_rellm() → rellm[source]¶
Lazily import rellm.
|
https://api.python.langchain.com/en/latest/experimental/langchain.experimental.llms.rellm_decoder.import_rellm.html
|
d9b5bbbac762-0
|
langchain.experimental.plan_and_execute.agent_executor.PlanAndExecute¶
class langchain.experimental.plan_and_execute.agent_executor.PlanAndExecute(*, memory: Optional[BaseMemory] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, verbose: bool = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, planner: BasePlanner, executor: BaseExecutor, step_container: BaseStepContainer = None, input_key: str = 'input', output_key: str = 'output')[source]¶
Bases: Chain
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param callback_manager: Optional[BaseCallbackManager] = None¶
Deprecated, use callbacks instead.
param callbacks: Callbacks = None¶
Optional list of callback handlers (or callback manager). Defaults to None.
Callback handlers are called throughout the lifecycle of a call to a chain,
starting with on_chain_start, ending with on_chain_end or on_chain_error.
Each custom chain can optionally call additional callback methods, see Callback docs
for full details.
param executor: langchain.experimental.plan_and_execute.executors.base.BaseExecutor [Required]¶
param input_key: str = 'input'¶
param memory: Optional[BaseMemory] = None¶
Optional memory object. Defaults to None.
Memory is a class that gets called at the start
and at the end of every chain. At the start, memory loads variables and passes
them along in the chain. At the end, it saves any returned variables.
There are many different types of memory - please see memory docs
for the full catalog.
param metadata: Optional[Dict[str, Any]] = None¶
|
https://api.python.langchain.com/en/latest/experimental/langchain.experimental.plan_and_execute.agent_executor.PlanAndExecute.html
|
d9b5bbbac762-1
|
for the full catalog.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the chain. Defaults to None
This metadata will be associated with each call to this chain,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a chain with its use case.
param output_key: str = 'output'¶
param planner: langchain.experimental.plan_and_execute.planners.base.BasePlanner [Required]¶
param step_container: langchain.experimental.plan_and_execute.schema.BaseStepContainer [Optional]¶
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the chain. Defaults to None
These tags will be associated with each call to this chain,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a chain with its use case.
param verbose: bool [Optional]¶
Whether or not run in verbose mode. In verbose mode, some intermediate logs
will be printed to the console. Defaults to langchain.verbose value.
__call__(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, include_run_info: bool = False) → Dict[str, Any]¶
Execute the chain.
Parameters
inputs – Dictionary of inputs, or single input if chain expects
only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
memory.
return_only_outputs – Whether to return only outputs in the
response. If True, only new keys generated by this chain will be
|
https://api.python.langchain.com/en/latest/experimental/langchain.experimental.plan_and_execute.agent_executor.PlanAndExecute.html
|
d9b5bbbac762-2
|
response. If True, only new keys generated by this chain will be
returned. If False, both input keys and new keys generated by this
chain will be returned. Defaults to False.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
metadata – Optional metadata associated with the chain. Defaults to None
include_run_info – Whether to include run info in the response. Defaults
to False.
Returns
A dict of named outputs. Should contain all outputs specified inChain.output_keys.
async acall(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, include_run_info: bool = False) → Dict[str, Any]¶
Asynchronously execute the chain.
Parameters
inputs – Dictionary of inputs, or single input if chain expects
only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
memory.
return_only_outputs – Whether to return only outputs in the
response. If True, only new keys generated by this chain will be
returned. If False, both input keys and new keys generated by this
chain will be returned. Defaults to False.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
|
https://api.python.langchain.com/en/latest/experimental/langchain.experimental.plan_and_execute.agent_executor.PlanAndExecute.html
|
d9b5bbbac762-3
|
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
metadata – Optional metadata associated with the chain. Defaults to None
include_run_info – Whether to include run info in the response. Defaults
to False.
Returns
A dict of named outputs. Should contain all outputs specified inChain.output_keys.
apply(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → List[Dict[str, str]]¶
Call the chain on all inputs in the list.
async arun(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → str¶
Convenience method for executing chain when there’s a single string output.
The main difference between this method and Chain.__call__ is that this methodcan only be used for chains that return a single string output. If a Chain
has more outputs, a non-string output, or you want to return the inputs/run
info along with the outputs, use Chain.__call__.
The other difference is that this method expects inputs to be passed directly in
as positional arguments or keyword arguments, whereas Chain.__call__ expects
a single input dictionary with all the inputs.
Parameters
*args – If the chain expects a single input, it can be passed in as the
sole positional argument.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
|
https://api.python.langchain.com/en/latest/experimental/langchain.experimental.plan_and_execute.agent_executor.PlanAndExecute.html
|
d9b5bbbac762-4
|
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
**kwargs – If the chain expects multiple inputs, they can be passed in
directly as keyword arguments.
Returns
The chain output as a string.
Example
# Suppose we have a single-input chain that takes a 'question' string:
await chain.arun("What's the temperature in Boise, Idaho?")
# -> "The temperature in Boise is..."
# Suppose we have a multi-input chain that takes a 'question' string
# and 'context' string:
question = "What's the temperature in Boise, Idaho?"
context = "Weather report for Boise, Idaho on 07/03/23..."
await chain.arun(question=question, context=context)
# -> "The temperature in Boise is..."
dict(**kwargs: Any) → Dict¶
Return dictionary representation of chain.
Expects Chain._chain_type property to be implemented and for memory to benull.
Parameters
**kwargs – Keyword arguments passed to default pydantic.BaseModel.dict
method.
Returns
A dictionary representation of the chain.
Example
..code-block:: python
chain.dict(exclude_unset=True)
# -> {“_type”: “foo”, “verbose”: False, …}
prep_inputs(inputs: Union[Dict[str, Any], Any]) → Dict[str, str]¶
Validate and prepare chain inputs, including adding inputs from memory.
Parameters
inputs – Dictionary of raw inputs, or single input if chain expects
only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
|
https://api.python.langchain.com/en/latest/experimental/langchain.experimental.plan_and_execute.agent_executor.PlanAndExecute.html
|
d9b5bbbac762-5
|
Chain.input_keys except for inputs that will be set by the chain’s
memory.
Returns
A dictionary of all inputs, including those added by the chain’s memory.
prep_outputs(inputs: Dict[str, str], outputs: Dict[str, str], return_only_outputs: bool = False) → Dict[str, str]¶
Validate and prepare chain outputs, and save info about this run to memory.
Parameters
inputs – Dictionary of chain inputs, including any inputs added by chain
memory.
outputs – Dictionary of initial chain outputs.
return_only_outputs – Whether to only return the chain outputs. If False,
inputs are also added to the final outputs.
Returns
A dict of the final chain outputs.
validator raise_callback_manager_deprecation » all fields¶
Raise deprecation warning if callback_manager is used.
run(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → str¶
Convenience method for executing chain when there’s a single string output.
The main difference between this method and Chain.__call__ is that this methodcan only be used for chains that return a single string output. If a Chain
has more outputs, a non-string output, or you want to return the inputs/run
info along with the outputs, use Chain.__call__.
The other difference is that this method expects inputs to be passed directly in
as positional arguments or keyword arguments, whereas Chain.__call__ expects
a single input dictionary with all the inputs.
Parameters
*args – If the chain expects a single input, it can be passed in as the
sole positional argument.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
|
https://api.python.langchain.com/en/latest/experimental/langchain.experimental.plan_and_execute.agent_executor.PlanAndExecute.html
|
d9b5bbbac762-6
|
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
**kwargs – If the chain expects multiple inputs, they can be passed in
directly as keyword arguments.
Returns
The chain output as a string.
Example
# Suppose we have a single-input chain that takes a 'question' string:
chain.run("What's the temperature in Boise, Idaho?")
# -> "The temperature in Boise is..."
# Suppose we have a multi-input chain that takes a 'question' string
# and 'context' string:
question = "What's the temperature in Boise, Idaho?"
context = "Weather report for Boise, Idaho on 07/03/23..."
chain.run(question=question, context=context)
# -> "The temperature in Boise is..."
save(file_path: Union[Path, str]) → None¶
Save the chain.
Expects Chain._chain_type property to be implemented and for memory to benull.
Parameters
file_path – Path to file to save the chain to.
Example
chain.save(file_path="path/chain.yaml")
validator set_verbose » verbose¶
Set the chain verbosity.
Defaults to the global setting if not specified by the user.
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
property input_keys: List[str]¶
Return the keys expected to be in the chain input.
property lc_attributes: Dict¶
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
|
https://api.python.langchain.com/en/latest/experimental/langchain.experimental.plan_and_execute.agent_executor.PlanAndExecute.html
|
d9b5bbbac762-7
|
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]¶
Return the namespace of the langchain object.
eg. [“langchain”, “llms”, “openai”]
property lc_secrets: Dict[str, str]¶
Return a map of constructor argument names to secret ids.
eg. {“openai_api_key”: “OPENAI_API_KEY”}
property lc_serializable: bool¶
Return whether or not the class is serializable.
property output_keys: List[str]¶
Return the keys expected to be in the chain output.
model Config¶
Bases: object
Configuration for this pydantic object.
arbitrary_types_allowed = True¶
|
https://api.python.langchain.com/en/latest/experimental/langchain.experimental.plan_and_execute.agent_executor.PlanAndExecute.html
|
49350bcf0575-0
|
langchain.experimental.autonomous_agents.autogpt.prompt_generator.get_prompt¶
langchain.experimental.autonomous_agents.autogpt.prompt_generator.get_prompt(tools: List[BaseTool]) → str[source]¶
This function generates a prompt string.
It includes various constraints, commands, resources, and performance evaluations.
Returns
The generated prompt string.
Return type
str
|
https://api.python.langchain.com/en/latest/experimental/langchain.experimental.autonomous_agents.autogpt.prompt_generator.get_prompt.html
|
83236a380a09-0
|
langchain.experimental.plan_and_execute.schema.Plan¶
class langchain.experimental.plan_and_execute.schema.Plan(*, steps: List[Step])[source]¶
Bases: BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param steps: List[langchain.experimental.plan_and_execute.schema.Step] [Required]¶
|
https://api.python.langchain.com/en/latest/experimental/langchain.experimental.plan_and_execute.schema.Plan.html
|
2ee473459cbf-0
|
langchain.experimental.plan_and_execute.planners.chat_planner.PlanningOutputParser¶
class langchain.experimental.plan_and_execute.planners.chat_planner.PlanningOutputParser[source]¶
Bases: PlanOutputParser
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
dict(**kwargs: Any) → Dict¶
Return dictionary representation of output parser.
get_format_instructions() → str¶
Instructions on how the LLM output should be formatted.
parse(text: str) → Plan[source]¶
Parse into a plan.
parse_result(result: List[Generation]) → T¶
Parse a list of candidate model Generations into a specific format.
The return value is parsed from only the first Generation in the result, whichis assumed to be the highest-likelihood Generation.
Parameters
result – A list of Generations to be parsed. The Generations are assumed
to be different candidate outputs for a single model input.
Returns
Structured output.
parse_with_prompt(completion: str, prompt: PromptValue) → Any¶
Parse the output of an LLM call with the input prompt for context.
The prompt is largely provided in the event the OutputParser wants
to retry or fix the output in some way, and needs information from
the prompt to do so.
Parameters
completion – String output of language model.
prompt – Input PromptValue.
Returns
Structured output
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
property lc_attributes: Dict¶
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]¶
Return the namespace of the langchain object.
|
https://api.python.langchain.com/en/latest/experimental/langchain.experimental.plan_and_execute.planners.chat_planner.PlanningOutputParser.html
|
2ee473459cbf-1
|
property lc_namespace: List[str]¶
Return the namespace of the langchain object.
eg. [“langchain”, “llms”, “openai”]
property lc_secrets: Dict[str, str]¶
Return a map of constructor argument names to secret ids.
eg. {“openai_api_key”: “OPENAI_API_KEY”}
property lc_serializable: bool¶
Return whether or not the class is serializable.
model Config¶
Bases: object
extra = 'ignore'¶
|
https://api.python.langchain.com/en/latest/experimental/langchain.experimental.plan_and_execute.planners.chat_planner.PlanningOutputParser.html
|
078bff171a89-0
|
langchain.experimental.llms.rellm_decoder.RELLM¶
class langchain.experimental.llms.rellm_decoder.RELLM(*, cache: Optional[bool] = None, verbose: bool = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, pipeline: Any = None, model_id: str = 'gpt2', model_kwargs: Optional[dict] = None, pipeline_kwargs: Optional[dict] = None, regex: RegexPattern, max_new_tokens: int = 200)[source]¶
Bases: HuggingFacePipeline
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param cache: Optional[bool] = None¶
param callback_manager: Optional[BaseCallbackManager] = None¶
param callbacks: Callbacks = None¶
param max_new_tokens: int = 200¶
Maximum number of new tokens to generate.
param metadata: Optional[Dict[str, Any]] = None¶
Metadata to add to the run trace.
param model_id: str = 'gpt2'¶
Model name to use.
param model_kwargs: Optional[dict] = None¶
Key word arguments passed to the model.
param pipeline_kwargs: Optional[dict] = None¶
Key word arguments passed to the pipeline.
param regex: RegexPattern [Required]¶
The structured format to complete.
param tags: Optional[List[str]] = None¶
Tags to add to the run trace.
param verbose: bool [Optional]¶
Whether to print out response text.
|
https://api.python.langchain.com/en/latest/experimental/langchain.experimental.llms.rellm_decoder.RELLM.html
|
078bff171a89-1
|
param verbose: bool [Optional]¶
Whether to print out response text.
__call__(prompt: str, stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → str¶
Check Cache and run the LLM on the given prompt and input.
async agenerate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → LLMResult¶
Run the LLM on the given prompt and input.
async agenerate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶
Asynchronously pass a sequence of prompts and return model generations.
This method should make use of batched calls for models that expose a batched
API.
Use this method when you want to:
take advantage of batched calls,
need more output from the model than just the top generated value,
are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models).
Parameters
prompts – List of PromptValues. A PromptValue is an object that can be
converted to match the format of any language model (string for pure
text generation models and BaseMessages for chat models).
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
|
https://api.python.langchain.com/en/latest/experimental/langchain.experimental.llms.rellm_decoder.RELLM.html
|
078bff171a89-2
|
first occurrence of any of these substrings.
callbacks – Callbacks to pass through. Used for executing additional
functionality, such as logging or streaming, throughout generation.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output.
async apredict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶
Asynchronously pass a string to the model and return a string prediction.
Use this method when calling pure text generation models and only the topcandidate generation is needed.
Parameters
text – String input to pass to the model.
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
Top model prediction as a string.
async apredict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶
Asynchronously pass messages to the model and return a message prediction.
Use this method when calling chat models and only the topcandidate generation is needed.
Parameters
messages – A sequence of chat messages corresponding to a single model input.
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
Top model prediction as a message.
validator check_rellm_installation » all fields[source]¶
dict(**kwargs: Any) → Dict¶
Return a dictionary of the LLM.
|
https://api.python.langchain.com/en/latest/experimental/langchain.experimental.llms.rellm_decoder.RELLM.html
|
078bff171a89-3
|
dict(**kwargs: Any) → Dict¶
Return a dictionary of the LLM.
classmethod from_model_id(model_id: str, task: str, device: int = - 1, model_kwargs: Optional[dict] = None, pipeline_kwargs: Optional[dict] = None, **kwargs: Any) → LLM¶
Construct the pipeline object from model_id and task.
generate(prompts: List[str], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → LLMResult¶
Run the LLM on the given prompt and input.
generate_prompt(prompts: List[PromptValue], stop: Optional[List[str]] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → LLMResult¶
Pass a sequence of prompts to the model and return model generations.
This method should make use of batched calls for models that expose a batched
API.
Use this method when you want to:
take advantage of batched calls,
need more output from the model than just the top generated value,
are building chains that are agnostic to the underlying language modeltype (e.g., pure text completion models vs chat models).
Parameters
prompts – List of PromptValues. A PromptValue is an object that can be
converted to match the format of any language model (string for pure
text generation models and BaseMessages for chat models).
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
callbacks – Callbacks to pass through. Used for executing additional
functionality, such as logging or streaming, throughout generation.
|
https://api.python.langchain.com/en/latest/experimental/langchain.experimental.llms.rellm_decoder.RELLM.html
|
078bff171a89-4
|
functionality, such as logging or streaming, throughout generation.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
An LLMResult, which contains a list of candidate Generations for each inputprompt and additional model provider-specific output.
get_num_tokens(text: str) → int¶
Get the number of tokens present in the text.
Useful for checking if an input will fit in a model’s context window.
Parameters
text – The string input to tokenize.
Returns
The integer number of tokens in the text.
get_num_tokens_from_messages(messages: List[BaseMessage]) → int¶
Get the number of tokens in the messages.
Useful for checking if an input will fit in a model’s context window.
Parameters
messages – The message inputs to tokenize.
Returns
The sum of the number of tokens across the messages.
get_token_ids(text: str) → List[int]¶
Return the ordered ids of the tokens in a text.
Parameters
text – The string input to tokenize.
Returns
A list of ids corresponding to the tokens in the text, in order they occurin the text.
predict(text: str, *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → str¶
Pass a single string input to the model and return a string prediction.
Use this method when passing in raw text. If you want to pass in specifictypes of chat messages, use predict_messages.
Parameters
text – String input to pass to the model.
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
Top model prediction as a string.
|
https://api.python.langchain.com/en/latest/experimental/langchain.experimental.llms.rellm_decoder.RELLM.html
|
078bff171a89-5
|
to the model provider API call.
Returns
Top model prediction as a string.
predict_messages(messages: List[BaseMessage], *, stop: Optional[Sequence[str]] = None, **kwargs: Any) → BaseMessage¶
Pass a message sequence to the model and return a message prediction.
Use this method when passing in chat messages. If you want to pass in raw text,use predict.
Parameters
messages – A sequence of chat messages corresponding to a single model input.
stop – Stop words to use when generating. Model output is cut off at the
first occurrence of any of these substrings.
**kwargs – Arbitrary additional keyword arguments. These are usually passed
to the model provider API call.
Returns
Top model prediction as a message.
validator raise_deprecation » all fields¶
Raise deprecation warning if callback_manager is used.
save(file_path: Union[Path, str]) → None¶
Save the LLM.
Parameters
file_path – Path to file to save the LLM to.
Example:
.. code-block:: python
llm.save(file_path=”path/llm.yaml”)
validator set_verbose » verbose¶
If verbose is None, set it.
This allows users to pass in None as verbose to access the global setting.
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
property lc_attributes: Dict¶
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]¶
Return the namespace of the langchain object.
eg. [“langchain”, “llms”, “openai”]
property lc_secrets: Dict[str, str]¶
Return a map of constructor argument names to secret ids.
|
https://api.python.langchain.com/en/latest/experimental/langchain.experimental.llms.rellm_decoder.RELLM.html
|
078bff171a89-6
|
Return a map of constructor argument names to secret ids.
eg. {“openai_api_key”: “OPENAI_API_KEY”}
property lc_serializable: bool¶
Return whether or not the class is serializable.
model Config¶
Bases: object
Configuration for this pydantic object.
extra = 'forbid'¶
|
https://api.python.langchain.com/en/latest/experimental/langchain.experimental.llms.rellm_decoder.RELLM.html
|
743cacdcc69e-0
|
langchain.experimental.plan_and_execute.executors.base.BaseExecutor¶
class langchain.experimental.plan_and_execute.executors.base.BaseExecutor[source]¶
Bases: BaseModel
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
abstract async astep(inputs: dict, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → StepResponse[source]¶
Take step.
abstract step(inputs: dict, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, **kwargs: Any) → StepResponse[source]¶
Take step.
|
https://api.python.langchain.com/en/latest/experimental/langchain.experimental.plan_and_execute.executors.base.BaseExecutor.html
|
1ada9c25e36d-0
|
langchain.experimental.autonomous_agents.baby_agi.baby_agi.BabyAGI¶
class langchain.experimental.autonomous_agents.baby_agi.baby_agi.BabyAGI(*, memory: Optional[BaseMemory] = None, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, callback_manager: Optional[BaseCallbackManager] = None, verbose: bool = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, task_list: deque = None, task_creation_chain: Chain, task_prioritization_chain: Chain, execution_chain: Chain, task_id_counter: int = 1, vectorstore: VectorStore, max_iterations: Optional[int] = None)[source]¶
Bases: Chain, BaseModel
Controller model for the BabyAGI agent.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param callback_manager: Optional[BaseCallbackManager] = None¶
Deprecated, use callbacks instead.
param callbacks: Callbacks = None¶
Optional list of callback handlers (or callback manager). Defaults to None.
Callback handlers are called throughout the lifecycle of a call to a chain,
starting with on_chain_start, ending with on_chain_end or on_chain_error.
Each custom chain can optionally call additional callback methods, see Callback docs
for full details.
param execution_chain: langchain.chains.base.Chain [Required]¶
param max_iterations: Optional[int] = None¶
param memory: Optional[BaseMemory] = None¶
Optional memory object. Defaults to None.
Memory is a class that gets called at the start
and at the end of every chain. At the start, memory loads variables and passes
them along in the chain. At the end, it saves any returned variables.
|
https://api.python.langchain.com/en/latest/experimental/langchain.experimental.autonomous_agents.baby_agi.baby_agi.BabyAGI.html
|
1ada9c25e36d-1
|
them along in the chain. At the end, it saves any returned variables.
There are many different types of memory - please see memory docs
for the full catalog.
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the chain. Defaults to None
This metadata will be associated with each call to this chain,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a chain with its use case.
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the chain. Defaults to None
These tags will be associated with each call to this chain,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a chain with its use case.
param task_creation_chain: langchain.chains.base.Chain [Required]¶
param task_id_counter: int = 1¶
param task_list: collections.deque [Optional]¶
param task_prioritization_chain: langchain.chains.base.Chain [Required]¶
param vectorstore: langchain.vectorstores.base.VectorStore [Required]¶
param verbose: bool [Optional]¶
Whether or not run in verbose mode. In verbose mode, some intermediate logs
will be printed to the console. Defaults to langchain.verbose value.
__call__(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, include_run_info: bool = False) → Dict[str, Any]¶
Execute the chain.
Parameters
inputs – Dictionary of inputs, or single input if chain expects
only one param. Should contain all inputs specified in
|
https://api.python.langchain.com/en/latest/experimental/langchain.experimental.autonomous_agents.baby_agi.baby_agi.BabyAGI.html
|
1ada9c25e36d-2
|
only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
memory.
return_only_outputs – Whether to return only outputs in the
response. If True, only new keys generated by this chain will be
returned. If False, both input keys and new keys generated by this
chain will be returned. Defaults to False.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
metadata – Optional metadata associated with the chain. Defaults to None
include_run_info – Whether to include run info in the response. Defaults
to False.
Returns
A dict of named outputs. Should contain all outputs specified inChain.output_keys.
async acall(inputs: Union[Dict[str, Any], Any], return_only_outputs: bool = False, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, *, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, include_run_info: bool = False) → Dict[str, Any]¶
Asynchronously execute the chain.
Parameters
inputs – Dictionary of inputs, or single input if chain expects
only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
memory.
return_only_outputs – Whether to return only outputs in the
response. If True, only new keys generated by this chain will be
returned. If False, both input keys and new keys generated by this
chain will be returned. Defaults to False.
|
https://api.python.langchain.com/en/latest/experimental/langchain.experimental.autonomous_agents.baby_agi.baby_agi.BabyAGI.html
|
1ada9c25e36d-3
|
chain will be returned. Defaults to False.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
metadata – Optional metadata associated with the chain. Defaults to None
include_run_info – Whether to include run info in the response. Defaults
to False.
Returns
A dict of named outputs. Should contain all outputs specified inChain.output_keys.
add_task(task: Dict) → None[source]¶
apply(input_list: List[Dict[str, Any]], callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None) → List[Dict[str, str]]¶
Call the chain on all inputs in the list.
async arun(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → str¶
Convenience method for executing chain when there’s a single string output.
The main difference between this method and Chain.__call__ is that this methodcan only be used for chains that return a single string output. If a Chain
has more outputs, a non-string output, or you want to return the inputs/run
info along with the outputs, use Chain.__call__.
The other difference is that this method expects inputs to be passed directly in
as positional arguments or keyword arguments, whereas Chain.__call__ expects
a single input dictionary with all the inputs.
Parameters
|
https://api.python.langchain.com/en/latest/experimental/langchain.experimental.autonomous_agents.baby_agi.baby_agi.BabyAGI.html
|
1ada9c25e36d-4
|
a single input dictionary with all the inputs.
Parameters
*args – If the chain expects a single input, it can be passed in as the
sole positional argument.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
**kwargs – If the chain expects multiple inputs, they can be passed in
directly as keyword arguments.
Returns
The chain output as a string.
Example
# Suppose we have a single-input chain that takes a 'question' string:
await chain.arun("What's the temperature in Boise, Idaho?")
# -> "The temperature in Boise is..."
# Suppose we have a multi-input chain that takes a 'question' string
# and 'context' string:
question = "What's the temperature in Boise, Idaho?"
context = "Weather report for Boise, Idaho on 07/03/23..."
await chain.arun(question=question, context=context)
# -> "The temperature in Boise is..."
dict(**kwargs: Any) → Dict¶
Return dictionary representation of chain.
Expects Chain._chain_type property to be implemented and for memory to benull.
Parameters
**kwargs – Keyword arguments passed to default pydantic.BaseModel.dict
method.
Returns
A dictionary representation of the chain.
Example
..code-block:: python
chain.dict(exclude_unset=True)
# -> {“_type”: “foo”, “verbose”: False, …}
|
https://api.python.langchain.com/en/latest/experimental/langchain.experimental.autonomous_agents.baby_agi.baby_agi.BabyAGI.html
|
1ada9c25e36d-5
|
# -> {“_type”: “foo”, “verbose”: False, …}
execute_task(objective: str, task: str, k: int = 5) → str[source]¶
Execute a task.
classmethod from_llm(llm: BaseLanguageModel, vectorstore: VectorStore, verbose: bool = False, task_execution_chain: Optional[Chain] = None, **kwargs: Dict[str, Any]) → BabyAGI[source]¶
Initialize the BabyAGI Controller.
get_next_task(result: str, task_description: str, objective: str) → List[Dict][source]¶
Get the next task.
prep_inputs(inputs: Union[Dict[str, Any], Any]) → Dict[str, str]¶
Validate and prepare chain inputs, including adding inputs from memory.
Parameters
inputs – Dictionary of raw inputs, or single input if chain expects
only one param. Should contain all inputs specified in
Chain.input_keys except for inputs that will be set by the chain’s
memory.
Returns
A dictionary of all inputs, including those added by the chain’s memory.
prep_outputs(inputs: Dict[str, str], outputs: Dict[str, str], return_only_outputs: bool = False) → Dict[str, str]¶
Validate and prepare chain outputs, and save info about this run to memory.
Parameters
inputs – Dictionary of chain inputs, including any inputs added by chain
memory.
outputs – Dictionary of initial chain outputs.
return_only_outputs – Whether to only return the chain outputs. If False,
inputs are also added to the final outputs.
Returns
A dict of the final chain outputs.
print_next_task(task: Dict) → None[source]¶
print_task_list() → None[source]¶
print_task_result(result: str) → None[source]¶
|
https://api.python.langchain.com/en/latest/experimental/langchain.experimental.autonomous_agents.baby_agi.baby_agi.BabyAGI.html
|
1ada9c25e36d-6
|
print_task_result(result: str) → None[source]¶
prioritize_tasks(this_task_id: int, objective: str) → List[Dict][source]¶
Prioritize tasks.
validator raise_callback_manager_deprecation » all fields¶
Raise deprecation warning if callback_manager is used.
run(*args: Any, callbacks: Optional[Union[List[BaseCallbackHandler], BaseCallbackManager]] = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → str¶
Convenience method for executing chain when there’s a single string output.
The main difference between this method and Chain.__call__ is that this methodcan only be used for chains that return a single string output. If a Chain
has more outputs, a non-string output, or you want to return the inputs/run
info along with the outputs, use Chain.__call__.
The other difference is that this method expects inputs to be passed directly in
as positional arguments or keyword arguments, whereas Chain.__call__ expects
a single input dictionary with all the inputs.
Parameters
*args – If the chain expects a single input, it can be passed in as the
sole positional argument.
callbacks – Callbacks to use for this chain run. These will be called in
addition to callbacks passed to the chain during construction, but only
these runtime callbacks will propagate to calls to other objects.
tags – List of string tags to pass to all callbacks. These will be passed in
addition to tags passed to the chain during construction, but only
these runtime tags will propagate to calls to other objects.
**kwargs – If the chain expects multiple inputs, they can be passed in
directly as keyword arguments.
Returns
The chain output as a string.
Example
# Suppose we have a single-input chain that takes a 'question' string:
|
https://api.python.langchain.com/en/latest/experimental/langchain.experimental.autonomous_agents.baby_agi.baby_agi.BabyAGI.html
|
1ada9c25e36d-7
|
Example
# Suppose we have a single-input chain that takes a 'question' string:
chain.run("What's the temperature in Boise, Idaho?")
# -> "The temperature in Boise is..."
# Suppose we have a multi-input chain that takes a 'question' string
# and 'context' string:
question = "What's the temperature in Boise, Idaho?"
context = "Weather report for Boise, Idaho on 07/03/23..."
chain.run(question=question, context=context)
# -> "The temperature in Boise is..."
save(file_path: Union[Path, str]) → None¶
Save the chain.
Expects Chain._chain_type property to be implemented and for memory to benull.
Parameters
file_path – Path to file to save the chain to.
Example
chain.save(file_path="path/chain.yaml")
validator set_verbose » verbose¶
Set the chain verbosity.
Defaults to the global setting if not specified by the user.
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
property input_keys: List[str]¶
Return the keys expected to be in the chain input.
property lc_attributes: Dict¶
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]¶
Return the namespace of the langchain object.
eg. [“langchain”, “llms”, “openai”]
property lc_secrets: Dict[str, str]¶
Return a map of constructor argument names to secret ids.
eg. {“openai_api_key”: “OPENAI_API_KEY”}
property lc_serializable: bool¶
Return whether or not the class is serializable.
property output_keys: List[str]¶
|
https://api.python.langchain.com/en/latest/experimental/langchain.experimental.autonomous_agents.baby_agi.baby_agi.BabyAGI.html
|
1ada9c25e36d-8
|
Return whether or not the class is serializable.
property output_keys: List[str]¶
Return the keys expected to be in the chain output.
model Config[source]¶
Bases: object
Configuration for this pydantic object.
arbitrary_types_allowed = True¶
|
https://api.python.langchain.com/en/latest/experimental/langchain.experimental.autonomous_agents.baby_agi.baby_agi.BabyAGI.html
|
4beb151281a4-0
|
langchain.example_generator.generate_example¶
langchain.example_generator.generate_example(examples: List[dict], llm: BaseLanguageModel, prompt_template: PromptTemplate) → str[source]¶
Return another example given a list of examples for a prompt.
|
https://api.python.langchain.com/en/latest/example_generator/langchain.example_generator.generate_example.html
|
572ab970ff1f-0
|
langchain.input.get_color_mapping¶
langchain.input.get_color_mapping(items: List[str], excluded_colors: Optional[List] = None) → Dict[str, str][source]¶
Get mapping for items to a support color.
|
https://api.python.langchain.com/en/latest/input/langchain.input.get_color_mapping.html
|
cfecb620ae9a-0
|
langchain.input.get_colored_text¶
langchain.input.get_colored_text(text: str, color: str) → str[source]¶
Get colored text.
|
https://api.python.langchain.com/en/latest/input/langchain.input.get_colored_text.html
|
6f035b17afcb-0
|
langchain.input.get_bolded_text¶
langchain.input.get_bolded_text(text: str) → str[source]¶
Get bolded text.
|
https://api.python.langchain.com/en/latest/input/langchain.input.get_bolded_text.html
|
74dcd1b813c0-0
|
langchain.input.print_text¶
langchain.input.print_text(text: str, color: Optional[str] = None, end: str = '', file: Optional[TextIO] = None) → None[source]¶
Print text with highlighting and no end characters.
|
https://api.python.langchain.com/en/latest/input/langchain.input.print_text.html
|
13366315bc63-0
|
langchain.text_splitter.SpacyTextSplitter¶
class langchain.text_splitter.SpacyTextSplitter(separator: str = '\n\n', pipeline: str = 'en_core_web_sm', **kwargs: Any)[source]¶
Bases: TextSplitter
Implementation of splitting text that looks at sentences using Spacy.
Initialize the spacy text splitter.
Methods
__init__([separator, pipeline])
Initialize the spacy text splitter.
atransform_documents(documents, **kwargs)
Asynchronously transform a sequence of documents by splitting them.
create_documents(texts[, metadatas])
Create documents from a list of texts.
from_huggingface_tokenizer(tokenizer, **kwargs)
Text splitter that uses HuggingFace tokenizer to count length.
from_tiktoken_encoder([encoding_name, ...])
Text splitter that uses tiktoken encoder to count length.
split_documents(documents)
Split documents.
split_text(text)
Split incoming text and return chunks.
transform_documents(documents, **kwargs)
Transform sequence of documents by splitting them.
async atransform_documents(documents: Sequence[Document], **kwargs: Any) → Sequence[Document]¶
Asynchronously transform a sequence of documents by splitting them.
create_documents(texts: List[str], metadatas: Optional[List[dict]] = None) → List[Document]¶
Create documents from a list of texts.
classmethod from_huggingface_tokenizer(tokenizer: Any, **kwargs: Any) → TextSplitter¶
Text splitter that uses HuggingFace tokenizer to count length.
|
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.SpacyTextSplitter.html
|
13366315bc63-1
|
Text splitter that uses HuggingFace tokenizer to count length.
classmethod from_tiktoken_encoder(encoding_name: str = 'gpt2', model_name: Optional[str] = None, allowed_special: Union[Literal['all'], AbstractSet[str]] = {}, disallowed_special: Union[Literal['all'], Collection[str]] = 'all', **kwargs: Any) → TS¶
Text splitter that uses tiktoken encoder to count length.
split_documents(documents: Iterable[Document]) → List[Document]¶
Split documents.
split_text(text: str) → List[str][source]¶
Split incoming text and return chunks.
transform_documents(documents: Sequence[Document], **kwargs: Any) → Sequence[Document]¶
Transform sequence of documents by splitting them.
|
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.SpacyTextSplitter.html
|
c39ffc5ccfbe-0
|
langchain.text_splitter.HeaderType¶
class langchain.text_splitter.HeaderType[source]¶
Bases: TypedDict
Header type as typed dict.
Methods
__init__(*args, **kwargs)
clear()
copy()
fromkeys([value])
Create a new dictionary with keys from iterable and values set to value.
get(key[, default])
Return the value for key if key is in the dictionary, else default.
items()
keys()
pop(k[,d])
If the key is not found, return the default if given; otherwise, raise a KeyError.
popitem()
Remove and return a (key, value) pair as a 2-tuple.
setdefault(key[, default])
Insert key with a value of default if key is not in the dictionary.
update([E, ]**F)
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]
values()
Attributes
level
name
data
clear() → None. Remove all items from D.¶
copy() → a shallow copy of D¶
fromkeys(value=None, /)¶
Create a new dictionary with keys from iterable and values set to value.
get(key, default=None, /)¶
Return the value for key if key is in the dictionary, else default.
items() → a set-like object providing a view on D's items¶
keys() → a set-like object providing a view on D's keys¶
pop(k[, d]) → v, remove specified key and return the corresponding value.¶
|
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.HeaderType.html
|
c39ffc5ccfbe-1
|
pop(k[, d]) → v, remove specified key and return the corresponding value.¶
If the key is not found, return the default if given; otherwise,
raise a KeyError.
popitem()¶
Remove and return a (key, value) pair as a 2-tuple.
Pairs are returned in LIFO (last-in, first-out) order.
Raises KeyError if the dict is empty.
setdefault(key, default=None, /)¶
Insert key with a value of default if key is not in the dictionary.
Return the value for key if key is in the dictionary, else default.
update([E, ]**F) → None. Update D from dict/iterable E and F.¶
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k]
If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v
In either case, this is followed by: for k in F: D[k] = F[k]
values() → an object providing a view on D's values¶
data: str¶
level: int¶
name: str¶
|
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.HeaderType.html
|
4b33f6a0cda4-0
|
langchain.text_splitter.TextSplitter¶
class langchain.text_splitter.TextSplitter(chunk_size: int = 4000, chunk_overlap: int = 200, length_function: ~typing.Callable[[str], int] = <built-in function len>, keep_separator: bool = False, add_start_index: bool = False)[source]¶
Bases: BaseDocumentTransformer, ABC
Interface for splitting text into chunks.
Create a new TextSplitter.
Parameters
chunk_size – Maximum size of chunks to return
chunk_overlap – Overlap in characters between chunks
length_function – Function that measures the length of given chunks
keep_separator – Whether to keep the separator in the chunks
add_start_index – If True, includes chunk’s start index in metadata
Methods
__init__([chunk_size, chunk_overlap, ...])
Create a new TextSplitter.
atransform_documents(documents, **kwargs)
Asynchronously transform a sequence of documents by splitting them.
create_documents(texts[, metadatas])
Create documents from a list of texts.
from_huggingface_tokenizer(tokenizer, **kwargs)
Text splitter that uses HuggingFace tokenizer to count length.
from_tiktoken_encoder([encoding_name, ...])
Text splitter that uses tiktoken encoder to count length.
split_documents(documents)
Split documents.
split_text(text)
Split text into multiple components.
transform_documents(documents, **kwargs)
Transform sequence of documents by splitting them.
async atransform_documents(documents: Sequence[Document], **kwargs: Any) → Sequence[Document][source]¶
Asynchronously transform a sequence of documents by splitting them.
create_documents(texts: List[str], metadatas: Optional[List[dict]] = None) → List[Document][source]¶
Create documents from a list of texts.
|
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.TextSplitter.html
|
4b33f6a0cda4-1
|
Create documents from a list of texts.
classmethod from_huggingface_tokenizer(tokenizer: Any, **kwargs: Any) → TextSplitter[source]¶
Text splitter that uses HuggingFace tokenizer to count length.
classmethod from_tiktoken_encoder(encoding_name: str = 'gpt2', model_name: Optional[str] = None, allowed_special: Union[Literal['all'], AbstractSet[str]] = {}, disallowed_special: Union[Literal['all'], Collection[str]] = 'all', **kwargs: Any) → TS[source]¶
Text splitter that uses tiktoken encoder to count length.
split_documents(documents: Iterable[Document]) → List[Document][source]¶
Split documents.
abstract split_text(text: str) → List[str][source]¶
Split text into multiple components.
transform_documents(documents: Sequence[Document], **kwargs: Any) → Sequence[Document][source]¶
Transform sequence of documents by splitting them.
|
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.TextSplitter.html
|
575157d001f8-0
|
langchain.text_splitter.NLTKTextSplitter¶
class langchain.text_splitter.NLTKTextSplitter(separator: str = '\n\n', **kwargs: Any)[source]¶
Bases: TextSplitter
Implementation of splitting text that looks at sentences using NLTK.
Initialize the NLTK splitter.
Methods
__init__([separator])
Initialize the NLTK splitter.
atransform_documents(documents, **kwargs)
Asynchronously transform a sequence of documents by splitting them.
create_documents(texts[, metadatas])
Create documents from a list of texts.
from_huggingface_tokenizer(tokenizer, **kwargs)
Text splitter that uses HuggingFace tokenizer to count length.
from_tiktoken_encoder([encoding_name, ...])
Text splitter that uses tiktoken encoder to count length.
split_documents(documents)
Split documents.
split_text(text)
Split incoming text and return chunks.
transform_documents(documents, **kwargs)
Transform sequence of documents by splitting them.
async atransform_documents(documents: Sequence[Document], **kwargs: Any) → Sequence[Document]¶
Asynchronously transform a sequence of documents by splitting them.
create_documents(texts: List[str], metadatas: Optional[List[dict]] = None) → List[Document]¶
Create documents from a list of texts.
classmethod from_huggingface_tokenizer(tokenizer: Any, **kwargs: Any) → TextSplitter¶
Text splitter that uses HuggingFace tokenizer to count length.
classmethod from_tiktoken_encoder(encoding_name: str = 'gpt2', model_name: Optional[str] = None, allowed_special: Union[Literal['all'], AbstractSet[str]] = {}, disallowed_special: Union[Literal['all'], Collection[str]] = 'all', **kwargs: Any) → TS¶
|
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.NLTKTextSplitter.html
|
575157d001f8-1
|
Text splitter that uses tiktoken encoder to count length.
split_documents(documents: Iterable[Document]) → List[Document]¶
Split documents.
split_text(text: str) → List[str][source]¶
Split incoming text and return chunks.
transform_documents(documents: Sequence[Document], **kwargs: Any) → Sequence[Document]¶
Transform sequence of documents by splitting them.
|
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.NLTKTextSplitter.html
|
dae5c65b9e81-0
|
langchain.text_splitter.split_text_on_tokens¶
langchain.text_splitter.split_text_on_tokens(*, text: str, tokenizer: Tokenizer) → List[str][source]¶
Split incoming text and return chunks.
|
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.split_text_on_tokens.html
|
833e9f6f0825-0
|
langchain.text_splitter.Language¶
class langchain.text_splitter.Language(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)[source]¶
Bases: str, Enum
Enum of the programming languages.
Methods
__init__(*args, **kwds)
capitalize()
Return a capitalized version of the string.
casefold()
Return a version of the string suitable for caseless comparisons.
center(width[, fillchar])
Return a centered string of length width.
count(sub[, start[, end]])
Return the number of non-overlapping occurrences of substring sub in string S[start:end].
encode([encoding, errors])
Encode the string using the codec registered for encoding.
endswith(suffix[, start[, end]])
Return True if S ends with the specified suffix, False otherwise.
expandtabs([tabsize])
Return a copy where all tab characters are expanded using spaces.
find(sub[, start[, end]])
Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end].
format(*args, **kwargs)
Return a formatted version of S, using substitutions from args and kwargs.
format_map(mapping)
Return a formatted version of S, using substitutions from mapping.
index(sub[, start[, end]])
Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end].
isalnum()
Return True if the string is an alpha-numeric string, False otherwise.
isalpha()
Return True if the string is an alphabetic string, False otherwise.
isascii()
Return True if all characters in the string are ASCII, False otherwise.
isdecimal()
Return True if the string is a decimal string, False otherwise.
isdigit()
|
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.Language.html
|
833e9f6f0825-1
|
Return True if the string is a decimal string, False otherwise.
isdigit()
Return True if the string is a digit string, False otherwise.
isidentifier()
Return True if the string is a valid Python identifier, False otherwise.
islower()
Return True if the string is a lowercase string, False otherwise.
isnumeric()
Return True if the string is a numeric string, False otherwise.
isprintable()
Return True if the string is printable, False otherwise.
isspace()
Return True if the string is a whitespace string, False otherwise.
istitle()
Return True if the string is a title-cased string, False otherwise.
isupper()
Return True if the string is an uppercase string, False otherwise.
join(iterable, /)
Concatenate any number of strings.
ljust(width[, fillchar])
Return a left-justified string of length width.
lower()
Return a copy of the string converted to lowercase.
lstrip([chars])
Return a copy of the string with leading whitespace removed.
maketrans
Return a translation table usable for str.translate().
partition(sep, /)
Partition the string into three parts using the given separator.
removeprefix(prefix, /)
Return a str with the given prefix string removed if present.
removesuffix(suffix, /)
Return a str with the given suffix string removed if present.
replace(old, new[, count])
Return a copy with all occurrences of substring old replaced by new.
rfind(sub[, start[, end]])
Return the highest index in S where substring sub is found, such that sub is contained within S[start:end].
rindex(sub[, start[, end]])
Return the highest index in S where substring sub is found, such that sub is contained within S[start:end].
|
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.Language.html
|
833e9f6f0825-2
|
rjust(width[, fillchar])
Return a right-justified string of length width.
rpartition(sep, /)
Partition the string into three parts using the given separator.
rsplit([sep, maxsplit])
Return a list of the substrings in the string, using sep as the separator string.
rstrip([chars])
Return a copy of the string with trailing whitespace removed.
split([sep, maxsplit])
Return a list of the substrings in the string, using sep as the separator string.
splitlines([keepends])
Return a list of the lines in the string, breaking at line boundaries.
startswith(prefix[, start[, end]])
Return True if S starts with the specified prefix, False otherwise.
strip([chars])
Return a copy of the string with leading and trailing whitespace removed.
swapcase()
Convert uppercase characters to lowercase and lowercase characters to uppercase.
title()
Return a version of the string where each word is titlecased.
translate(table, /)
Replace each character in the string using the given translation table.
upper()
Return a copy of the string converted to uppercase.
zfill(width, /)
Pad a numeric string with zeros on the left, to fill a field of the given width.
Attributes
CPP
GO
JAVA
JS
PHP
PROTO
PYTHON
RST
RUBY
RUST
SCALA
SWIFT
MARKDOWN
LATEX
HTML
SOL
capitalize()¶
Return a capitalized version of the string.
More specifically, make the first character have upper case and the rest lower
case.
casefold()¶
Return a version of the string suitable for caseless comparisons.
center(width, fillchar=' ', /)¶
Return a centered string of length width.
|
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.Language.html
|
833e9f6f0825-3
|
center(width, fillchar=' ', /)¶
Return a centered string of length width.
Padding is done using the specified fill character (default is a space).
count(sub[, start[, end]]) → int¶
Return the number of non-overlapping occurrences of substring sub in
string S[start:end]. Optional arguments start and end are
interpreted as in slice notation.
encode(encoding='utf-8', errors='strict')¶
Encode the string using the codec registered for encoding.
encodingThe encoding in which to encode the string.
errorsThe error handling scheme to use for encoding errors.
The default is ‘strict’ meaning that encoding errors raise a
UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and
‘xmlcharrefreplace’ as well as any other name registered with
codecs.register_error that can handle UnicodeEncodeErrors.
endswith(suffix[, start[, end]]) → bool¶
Return True if S ends with the specified suffix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
suffix can also be a tuple of strings to try.
expandtabs(tabsize=8)¶
Return a copy where all tab characters are expanded using spaces.
If tabsize is not given, a tab size of 8 characters is assumed.
find(sub[, start[, end]]) → int¶
Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.
Return -1 on failure.
format(*args, **kwargs) → str¶
Return a formatted version of S, using substitutions from args and kwargs.
The substitutions are identified by braces (‘{’ and ‘}’).
format_map(mapping) → str¶
|
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.Language.html
|
833e9f6f0825-4
|
format_map(mapping) → str¶
Return a formatted version of S, using substitutions from mapping.
The substitutions are identified by braces (‘{’ and ‘}’).
index(sub[, start[, end]]) → int¶
Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.
Raises ValueError when the substring is not found.
isalnum()¶
Return True if the string is an alpha-numeric string, False otherwise.
A string is alpha-numeric if all characters in the string are alpha-numeric and
there is at least one character in the string.
isalpha()¶
Return True if the string is an alphabetic string, False otherwise.
A string is alphabetic if all characters in the string are alphabetic and there
is at least one character in the string.
isascii()¶
Return True if all characters in the string are ASCII, False otherwise.
ASCII characters have code points in the range U+0000-U+007F.
Empty string is ASCII too.
isdecimal()¶
Return True if the string is a decimal string, False otherwise.
A string is a decimal string if all characters in the string are decimal and
there is at least one character in the string.
isdigit()¶
Return True if the string is a digit string, False otherwise.
A string is a digit string if all characters in the string are digits and there
is at least one character in the string.
isidentifier()¶
Return True if the string is a valid Python identifier, False otherwise.
Call keyword.iskeyword(s) to test whether string s is a reserved identifier,
such as “def” or “class”.
islower()¶
Return True if the string is a lowercase string, False otherwise.
|
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.Language.html
|
833e9f6f0825-5
|
islower()¶
Return True if the string is a lowercase string, False otherwise.
A string is lowercase if all cased characters in the string are lowercase and
there is at least one cased character in the string.
isnumeric()¶
Return True if the string is a numeric string, False otherwise.
A string is numeric if all characters in the string are numeric and there is at
least one character in the string.
isprintable()¶
Return True if the string is printable, False otherwise.
A string is printable if all of its characters are considered printable in
repr() or if it is empty.
isspace()¶
Return True if the string is a whitespace string, False otherwise.
A string is whitespace if all characters in the string are whitespace and there
is at least one character in the string.
istitle()¶
Return True if the string is a title-cased string, False otherwise.
In a title-cased string, upper- and title-case characters may only
follow uncased characters and lowercase characters only cased ones.
isupper()¶
Return True if the string is an uppercase string, False otherwise.
A string is uppercase if all cased characters in the string are uppercase and
there is at least one cased character in the string.
join(iterable, /)¶
Concatenate any number of strings.
The string whose method is called is inserted in between each given string.
The result is returned as a new string.
Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’
ljust(width, fillchar=' ', /)¶
Return a left-justified string of length width.
Padding is done using the specified fill character (default is a space).
lower()¶
Return a copy of the string converted to lowercase.
|
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.Language.html
|
833e9f6f0825-6
|
lower()¶
Return a copy of the string converted to lowercase.
lstrip(chars=None, /)¶
Return a copy of the string with leading whitespace removed.
If chars is given and not None, remove characters in chars instead.
static maketrans()¶
Return a translation table usable for str.translate().
If there is only one argument, it must be a dictionary mapping Unicode
ordinals (integers) or characters to Unicode ordinals, strings or None.
Character keys will be then converted to ordinals.
If there are two arguments, they must be strings of equal length, and
in the resulting dictionary, each character in x will be mapped to the
character at the same position in y. If there is a third argument, it
must be a string, whose characters will be mapped to None in the result.
partition(sep, /)¶
Partition the string into three parts using the given separator.
This will search for the separator in the string. If the separator is found,
returns a 3-tuple containing the part before the separator, the separator
itself, and the part after it.
If the separator is not found, returns a 3-tuple containing the original string
and two empty strings.
removeprefix(prefix, /)¶
Return a str with the given prefix string removed if present.
If the string starts with the prefix string, return string[len(prefix):].
Otherwise, return a copy of the original string.
removesuffix(suffix, /)¶
Return a str with the given suffix string removed if present.
If the string ends with the suffix string and that suffix is not empty,
return string[:-len(suffix)]. Otherwise, return a copy of the original
string.
replace(old, new, count=- 1, /)¶
Return a copy with all occurrences of substring old replaced by new.
|
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.Language.html
|
833e9f6f0825-7
|
Return a copy with all occurrences of substring old replaced by new.
countMaximum number of occurrences to replace.
-1 (the default value) means replace all occurrences.
If the optional argument count is given, only the first count occurrences are
replaced.
rfind(sub[, start[, end]]) → int¶
Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.
Return -1 on failure.
rindex(sub[, start[, end]]) → int¶
Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice notation.
Raises ValueError when the substring is not found.
rjust(width, fillchar=' ', /)¶
Return a right-justified string of length width.
Padding is done using the specified fill character (default is a space).
rpartition(sep, /)¶
Partition the string into three parts using the given separator.
This will search for the separator in the string, starting at the end. If
the separator is found, returns a 3-tuple containing the part before the
separator, the separator itself, and the part after it.
If the separator is not found, returns a 3-tuple containing two empty strings
and the original string.
rsplit(sep=None, maxsplit=- 1)¶
Return a list of the substrings in the string, using sep as the separator string.
sepThe separator used to split the string.
When set to None (the default value), will split on any whitespace
character (including \n \r \t \f and spaces) and will discard
empty strings from the result.
maxsplitMaximum number of splits (starting from the left).
|
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.Language.html
|
833e9f6f0825-8
|
empty strings from the result.
maxsplitMaximum number of splits (starting from the left).
-1 (the default value) means no limit.
Splitting starts at the end of the string and works to the front.
rstrip(chars=None, /)¶
Return a copy of the string with trailing whitespace removed.
If chars is given and not None, remove characters in chars instead.
split(sep=None, maxsplit=- 1)¶
Return a list of the substrings in the string, using sep as the separator string.
sepThe separator used to split the string.
When set to None (the default value), will split on any whitespace
character (including \n \r \t \f and spaces) and will discard
empty strings from the result.
maxsplitMaximum number of splits (starting from the left).
-1 (the default value) means no limit.
Note, str.split() is mainly useful for data that has been intentionally
delimited. With natural text that includes punctuation, consider using
the regular expression module.
splitlines(keepends=False)¶
Return a list of the lines in the string, breaking at line boundaries.
Line breaks are not included in the resulting list unless keepends is given and
true.
startswith(prefix[, start[, end]]) → bool¶
Return True if S starts with the specified prefix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
prefix can also be a tuple of strings to try.
strip(chars=None, /)¶
Return a copy of the string with leading and trailing whitespace removed.
If chars is given and not None, remove characters in chars instead.
swapcase()¶
Convert uppercase characters to lowercase and lowercase characters to uppercase.
title()¶
|
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.Language.html
|
833e9f6f0825-9
|
Convert uppercase characters to lowercase and lowercase characters to uppercase.
title()¶
Return a version of the string where each word is titlecased.
More specifically, words start with uppercased characters and all remaining
cased characters have lower case.
translate(table, /)¶
Replace each character in the string using the given translation table.
tableTranslation table, which must be a mapping of Unicode ordinals to
Unicode ordinals, strings, or None.
The table must implement lookup/indexing via __getitem__, for instance a
dictionary or list. If this operation raises LookupError, the character is
left untouched. Characters mapped to None are deleted.
upper()¶
Return a copy of the string converted to uppercase.
zfill(width, /)¶
Pad a numeric string with zeros on the left, to fill a field of the given width.
The string is never truncated.
CPP = 'cpp'¶
GO = 'go'¶
HTML = 'html'¶
JAVA = 'java'¶
JS = 'js'¶
LATEX = 'latex'¶
MARKDOWN = 'markdown'¶
PHP = 'php'¶
PROTO = 'proto'¶
PYTHON = 'python'¶
RST = 'rst'¶
RUBY = 'ruby'¶
RUST = 'rust'¶
SCALA = 'scala'¶
SOL = 'sol'¶
SWIFT = 'swift'¶
|
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.Language.html
|
683f9f0d8d9c-0
|
langchain.text_splitter.LatexTextSplitter¶
class langchain.text_splitter.LatexTextSplitter(**kwargs: Any)[source]¶
Bases: RecursiveCharacterTextSplitter
Attempts to split the text along Latex-formatted layout elements.
Initialize a LatexTextSplitter.
Methods
__init__(**kwargs)
Initialize a LatexTextSplitter.
atransform_documents(documents, **kwargs)
Asynchronously transform a sequence of documents by splitting them.
create_documents(texts[, metadatas])
Create documents from a list of texts.
from_huggingface_tokenizer(tokenizer, **kwargs)
Text splitter that uses HuggingFace tokenizer to count length.
from_language(language, **kwargs)
from_tiktoken_encoder([encoding_name, ...])
Text splitter that uses tiktoken encoder to count length.
get_separators_for_language(language)
split_documents(documents)
Split documents.
split_text(text)
Split text into multiple components.
transform_documents(documents, **kwargs)
Transform sequence of documents by splitting them.
async atransform_documents(documents: Sequence[Document], **kwargs: Any) → Sequence[Document]¶
Asynchronously transform a sequence of documents by splitting them.
create_documents(texts: List[str], metadatas: Optional[List[dict]] = None) → List[Document]¶
Create documents from a list of texts.
classmethod from_huggingface_tokenizer(tokenizer: Any, **kwargs: Any) → TextSplitter¶
Text splitter that uses HuggingFace tokenizer to count length.
classmethod from_language(language: Language, **kwargs: Any) → RecursiveCharacterTextSplitter¶
|
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.LatexTextSplitter.html
|
683f9f0d8d9c-1
|
classmethod from_language(language: Language, **kwargs: Any) → RecursiveCharacterTextSplitter¶
classmethod from_tiktoken_encoder(encoding_name: str = 'gpt2', model_name: Optional[str] = None, allowed_special: Union[Literal['all'], AbstractSet[str]] = {}, disallowed_special: Union[Literal['all'], Collection[str]] = 'all', **kwargs: Any) → TS¶
Text splitter that uses tiktoken encoder to count length.
static get_separators_for_language(language: Language) → List[str]¶
split_documents(documents: Iterable[Document]) → List[Document]¶
Split documents.
split_text(text: str) → List[str]¶
Split text into multiple components.
transform_documents(documents: Sequence[Document], **kwargs: Any) → Sequence[Document]¶
Transform sequence of documents by splitting them.
|
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.LatexTextSplitter.html
|
00e8fa4ace3f-0
|
langchain.text_splitter.CharacterTextSplitter¶
class langchain.text_splitter.CharacterTextSplitter(separator: str = '\n\n', **kwargs: Any)[source]¶
Bases: TextSplitter
Implementation of splitting text that looks at characters.
Create a new TextSplitter.
Methods
__init__([separator])
Create a new TextSplitter.
atransform_documents(documents, **kwargs)
Asynchronously transform a sequence of documents by splitting them.
create_documents(texts[, metadatas])
Create documents from a list of texts.
from_huggingface_tokenizer(tokenizer, **kwargs)
Text splitter that uses HuggingFace tokenizer to count length.
from_tiktoken_encoder([encoding_name, ...])
Text splitter that uses tiktoken encoder to count length.
split_documents(documents)
Split documents.
split_text(text)
Split incoming text and return chunks.
transform_documents(documents, **kwargs)
Transform sequence of documents by splitting them.
async atransform_documents(documents: Sequence[Document], **kwargs: Any) → Sequence[Document]¶
Asynchronously transform a sequence of documents by splitting them.
create_documents(texts: List[str], metadatas: Optional[List[dict]] = None) → List[Document]¶
Create documents from a list of texts.
classmethod from_huggingface_tokenizer(tokenizer: Any, **kwargs: Any) → TextSplitter¶
Text splitter that uses HuggingFace tokenizer to count length.
classmethod from_tiktoken_encoder(encoding_name: str = 'gpt2', model_name: Optional[str] = None, allowed_special: Union[Literal['all'], AbstractSet[str]] = {}, disallowed_special: Union[Literal['all'], Collection[str]] = 'all', **kwargs: Any) → TS¶
|
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.CharacterTextSplitter.html
|
00e8fa4ace3f-1
|
Text splitter that uses tiktoken encoder to count length.
split_documents(documents: Iterable[Document]) → List[Document]¶
Split documents.
split_text(text: str) → List[str][source]¶
Split incoming text and return chunks.
transform_documents(documents: Sequence[Document], **kwargs: Any) → Sequence[Document]¶
Transform sequence of documents by splitting them.
|
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.CharacterTextSplitter.html
|
7f0fab09eeb4-0
|
langchain.text_splitter.LineType¶
class langchain.text_splitter.LineType[source]¶
Bases: TypedDict
Line type as typed dict.
Methods
__init__(*args, **kwargs)
clear()
copy()
fromkeys([value])
Create a new dictionary with keys from iterable and values set to value.
get(key[, default])
Return the value for key if key is in the dictionary, else default.
items()
keys()
pop(k[,d])
If the key is not found, return the default if given; otherwise, raise a KeyError.
popitem()
Remove and return a (key, value) pair as a 2-tuple.
setdefault(key[, default])
Insert key with a value of default if key is not in the dictionary.
update([E, ]**F)
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]
values()
Attributes
metadata
content
clear() → None. Remove all items from D.¶
copy() → a shallow copy of D¶
fromkeys(value=None, /)¶
Create a new dictionary with keys from iterable and values set to value.
get(key, default=None, /)¶
Return the value for key if key is in the dictionary, else default.
items() → a set-like object providing a view on D's items¶
keys() → a set-like object providing a view on D's keys¶
pop(k[, d]) → v, remove specified key and return the corresponding value.¶
|
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.LineType.html
|
7f0fab09eeb4-1
|
pop(k[, d]) → v, remove specified key and return the corresponding value.¶
If the key is not found, return the default if given; otherwise,
raise a KeyError.
popitem()¶
Remove and return a (key, value) pair as a 2-tuple.
Pairs are returned in LIFO (last-in, first-out) order.
Raises KeyError if the dict is empty.
setdefault(key, default=None, /)¶
Insert key with a value of default if key is not in the dictionary.
Return the value for key if key is in the dictionary, else default.
update([E, ]**F) → None. Update D from dict/iterable E and F.¶
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k]
If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v
In either case, this is followed by: for k in F: D[k] = F[k]
values() → an object providing a view on D's values¶
content: str¶
metadata: Dict[str, str]¶
|
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.LineType.html
|
c7f88da7ad2e-0
|
langchain.text_splitter.RecursiveCharacterTextSplitter¶
class langchain.text_splitter.RecursiveCharacterTextSplitter(separators: Optional[List[str]] = None, keep_separator: bool = True, **kwargs: Any)[source]¶
Bases: TextSplitter
Implementation of splitting text that looks at characters.
Recursively tries to split by different characters to find one
that works.
Create a new TextSplitter.
Methods
__init__([separators, keep_separator])
Create a new TextSplitter.
atransform_documents(documents, **kwargs)
Asynchronously transform a sequence of documents by splitting them.
create_documents(texts[, metadatas])
Create documents from a list of texts.
from_huggingface_tokenizer(tokenizer, **kwargs)
Text splitter that uses HuggingFace tokenizer to count length.
from_language(language, **kwargs)
from_tiktoken_encoder([encoding_name, ...])
Text splitter that uses tiktoken encoder to count length.
get_separators_for_language(language)
split_documents(documents)
Split documents.
split_text(text)
Split text into multiple components.
transform_documents(documents, **kwargs)
Transform sequence of documents by splitting them.
async atransform_documents(documents: Sequence[Document], **kwargs: Any) → Sequence[Document]¶
Asynchronously transform a sequence of documents by splitting them.
create_documents(texts: List[str], metadatas: Optional[List[dict]] = None) → List[Document]¶
Create documents from a list of texts.
classmethod from_huggingface_tokenizer(tokenizer: Any, **kwargs: Any) → TextSplitter¶
Text splitter that uses HuggingFace tokenizer to count length.
classmethod from_language(language: Language, **kwargs: Any) → RecursiveCharacterTextSplitter[source]¶
|
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.RecursiveCharacterTextSplitter.html
|
c7f88da7ad2e-1
|
classmethod from_tiktoken_encoder(encoding_name: str = 'gpt2', model_name: Optional[str] = None, allowed_special: Union[Literal['all'], AbstractSet[str]] = {}, disallowed_special: Union[Literal['all'], Collection[str]] = 'all', **kwargs: Any) → TS¶
Text splitter that uses tiktoken encoder to count length.
static get_separators_for_language(language: Language) → List[str][source]¶
split_documents(documents: Iterable[Document]) → List[Document]¶
Split documents.
split_text(text: str) → List[str][source]¶
Split text into multiple components.
transform_documents(documents: Sequence[Document], **kwargs: Any) → Sequence[Document]¶
Transform sequence of documents by splitting them.
|
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.RecursiveCharacterTextSplitter.html
|
e21c38695ce2-0
|
langchain.text_splitter.TokenTextSplitter¶
class langchain.text_splitter.TokenTextSplitter(encoding_name: str = 'gpt2', model_name: Optional[str] = None, allowed_special: Union[Literal['all'], AbstractSet[str]] = {}, disallowed_special: Union[Literal['all'], Collection[str]] = 'all', **kwargs: Any)[source]¶
Bases: TextSplitter
Implementation of splitting text that looks at tokens.
Create a new TextSplitter.
Methods
__init__([encoding_name, model_name, ...])
Create a new TextSplitter.
atransform_documents(documents, **kwargs)
Asynchronously transform a sequence of documents by splitting them.
create_documents(texts[, metadatas])
Create documents from a list of texts.
from_huggingface_tokenizer(tokenizer, **kwargs)
Text splitter that uses HuggingFace tokenizer to count length.
from_tiktoken_encoder([encoding_name, ...])
Text splitter that uses tiktoken encoder to count length.
split_documents(documents)
Split documents.
split_text(text)
Split text into multiple components.
transform_documents(documents, **kwargs)
Transform sequence of documents by splitting them.
async atransform_documents(documents: Sequence[Document], **kwargs: Any) → Sequence[Document]¶
Asynchronously transform a sequence of documents by splitting them.
create_documents(texts: List[str], metadatas: Optional[List[dict]] = None) → List[Document]¶
Create documents from a list of texts.
classmethod from_huggingface_tokenizer(tokenizer: Any, **kwargs: Any) → TextSplitter¶
Text splitter that uses HuggingFace tokenizer to count length.
|
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.TokenTextSplitter.html
|
e21c38695ce2-1
|
Text splitter that uses HuggingFace tokenizer to count length.
classmethod from_tiktoken_encoder(encoding_name: str = 'gpt2', model_name: Optional[str] = None, allowed_special: Union[Literal['all'], AbstractSet[str]] = {}, disallowed_special: Union[Literal['all'], Collection[str]] = 'all', **kwargs: Any) → TS¶
Text splitter that uses tiktoken encoder to count length.
split_documents(documents: Iterable[Document]) → List[Document]¶
Split documents.
split_text(text: str) → List[str][source]¶
Split text into multiple components.
transform_documents(documents: Sequence[Document], **kwargs: Any) → Sequence[Document]¶
Transform sequence of documents by splitting them.
|
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.TokenTextSplitter.html
|
ab08d3dfd44a-0
|
langchain.text_splitter.SentenceTransformersTokenTextSplitter¶
class langchain.text_splitter.SentenceTransformersTokenTextSplitter(chunk_overlap: int = 50, model_name: str = 'sentence-transformers/all-mpnet-base-v2', tokens_per_chunk: Optional[int] = None, **kwargs: Any)[source]¶
Bases: TextSplitter
Implementation of splitting text that looks at tokens.
Create a new TextSplitter.
Methods
__init__([chunk_overlap, model_name, ...])
Create a new TextSplitter.
atransform_documents(documents, **kwargs)
Asynchronously transform a sequence of documents by splitting them.
count_tokens(*, text)
create_documents(texts[, metadatas])
Create documents from a list of texts.
from_huggingface_tokenizer(tokenizer, **kwargs)
Text splitter that uses HuggingFace tokenizer to count length.
from_tiktoken_encoder([encoding_name, ...])
Text splitter that uses tiktoken encoder to count length.
split_documents(documents)
Split documents.
split_text(text)
Split text into multiple components.
transform_documents(documents, **kwargs)
Transform sequence of documents by splitting them.
async atransform_documents(documents: Sequence[Document], **kwargs: Any) → Sequence[Document]¶
Asynchronously transform a sequence of documents by splitting them.
count_tokens(*, text: str) → int[source]¶
create_documents(texts: List[str], metadatas: Optional[List[dict]] = None) → List[Document]¶
Create documents from a list of texts.
classmethod from_huggingface_tokenizer(tokenizer: Any, **kwargs: Any) → TextSplitter¶
Text splitter that uses HuggingFace tokenizer to count length.
|
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.SentenceTransformersTokenTextSplitter.html
|
ab08d3dfd44a-1
|
Text splitter that uses HuggingFace tokenizer to count length.
classmethod from_tiktoken_encoder(encoding_name: str = 'gpt2', model_name: Optional[str] = None, allowed_special: Union[Literal['all'], AbstractSet[str]] = {}, disallowed_special: Union[Literal['all'], Collection[str]] = 'all', **kwargs: Any) → TS¶
Text splitter that uses tiktoken encoder to count length.
split_documents(documents: Iterable[Document]) → List[Document]¶
Split documents.
split_text(text: str) → List[str][source]¶
Split text into multiple components.
transform_documents(documents: Sequence[Document], **kwargs: Any) → Sequence[Document]¶
Transform sequence of documents by splitting them.
|
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.SentenceTransformersTokenTextSplitter.html
|
d0f3935f4191-0
|
langchain.text_splitter.MarkdownTextSplitter¶
class langchain.text_splitter.MarkdownTextSplitter(**kwargs: Any)[source]¶
Bases: RecursiveCharacterTextSplitter
Attempts to split the text along Markdown-formatted headings.
Initialize a MarkdownTextSplitter.
Methods
__init__(**kwargs)
Initialize a MarkdownTextSplitter.
atransform_documents(documents, **kwargs)
Asynchronously transform a sequence of documents by splitting them.
create_documents(texts[, metadatas])
Create documents from a list of texts.
from_huggingface_tokenizer(tokenizer, **kwargs)
Text splitter that uses HuggingFace tokenizer to count length.
from_language(language, **kwargs)
from_tiktoken_encoder([encoding_name, ...])
Text splitter that uses tiktoken encoder to count length.
get_separators_for_language(language)
split_documents(documents)
Split documents.
split_text(text)
Split text into multiple components.
transform_documents(documents, **kwargs)
Transform sequence of documents by splitting them.
async atransform_documents(documents: Sequence[Document], **kwargs: Any) → Sequence[Document]¶
Asynchronously transform a sequence of documents by splitting them.
create_documents(texts: List[str], metadatas: Optional[List[dict]] = None) → List[Document]¶
Create documents from a list of texts.
classmethod from_huggingface_tokenizer(tokenizer: Any, **kwargs: Any) → TextSplitter¶
Text splitter that uses HuggingFace tokenizer to count length.
classmethod from_language(language: Language, **kwargs: Any) → RecursiveCharacterTextSplitter¶
|
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.MarkdownTextSplitter.html
|
d0f3935f4191-1
|
classmethod from_language(language: Language, **kwargs: Any) → RecursiveCharacterTextSplitter¶
classmethod from_tiktoken_encoder(encoding_name: str = 'gpt2', model_name: Optional[str] = None, allowed_special: Union[Literal['all'], AbstractSet[str]] = {}, disallowed_special: Union[Literal['all'], Collection[str]] = 'all', **kwargs: Any) → TS¶
Text splitter that uses tiktoken encoder to count length.
static get_separators_for_language(language: Language) → List[str]¶
split_documents(documents: Iterable[Document]) → List[Document]¶
Split documents.
split_text(text: str) → List[str]¶
Split text into multiple components.
transform_documents(documents: Sequence[Document], **kwargs: Any) → Sequence[Document]¶
Transform sequence of documents by splitting them.
|
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.MarkdownTextSplitter.html
|
e57afc2d4776-0
|
langchain.text_splitter.PythonCodeTextSplitter¶
class langchain.text_splitter.PythonCodeTextSplitter(**kwargs: Any)[source]¶
Bases: RecursiveCharacterTextSplitter
Attempts to split the text along Python syntax.
Initialize a PythonCodeTextSplitter.
Methods
__init__(**kwargs)
Initialize a PythonCodeTextSplitter.
atransform_documents(documents, **kwargs)
Asynchronously transform a sequence of documents by splitting them.
create_documents(texts[, metadatas])
Create documents from a list of texts.
from_huggingface_tokenizer(tokenizer, **kwargs)
Text splitter that uses HuggingFace tokenizer to count length.
from_language(language, **kwargs)
from_tiktoken_encoder([encoding_name, ...])
Text splitter that uses tiktoken encoder to count length.
get_separators_for_language(language)
split_documents(documents)
Split documents.
split_text(text)
Split text into multiple components.
transform_documents(documents, **kwargs)
Transform sequence of documents by splitting them.
async atransform_documents(documents: Sequence[Document], **kwargs: Any) → Sequence[Document]¶
Asynchronously transform a sequence of documents by splitting them.
create_documents(texts: List[str], metadatas: Optional[List[dict]] = None) → List[Document]¶
Create documents from a list of texts.
classmethod from_huggingface_tokenizer(tokenizer: Any, **kwargs: Any) → TextSplitter¶
Text splitter that uses HuggingFace tokenizer to count length.
classmethod from_language(language: Language, **kwargs: Any) → RecursiveCharacterTextSplitter¶
|
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.PythonCodeTextSplitter.html
|
e57afc2d4776-1
|
classmethod from_language(language: Language, **kwargs: Any) → RecursiveCharacterTextSplitter¶
classmethod from_tiktoken_encoder(encoding_name: str = 'gpt2', model_name: Optional[str] = None, allowed_special: Union[Literal['all'], AbstractSet[str]] = {}, disallowed_special: Union[Literal['all'], Collection[str]] = 'all', **kwargs: Any) → TS¶
Text splitter that uses tiktoken encoder to count length.
static get_separators_for_language(language: Language) → List[str]¶
split_documents(documents: Iterable[Document]) → List[Document]¶
Split documents.
split_text(text: str) → List[str]¶
Split text into multiple components.
transform_documents(documents: Sequence[Document], **kwargs: Any) → Sequence[Document]¶
Transform sequence of documents by splitting them.
|
https://api.python.langchain.com/en/latest/text_splitter/langchain.text_splitter.PythonCodeTextSplitter.html
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.