Update README.md
Browse files
README.md
CHANGED
|
@@ -1,249 +1,249 @@
|
|
| 1 |
-
---
|
| 2 |
-
license:
|
| 3 |
-
task_categories:
|
| 4 |
-
- object-detection
|
| 5 |
-
tags:
|
| 6 |
-
- COCO
|
| 7 |
-
- Detection
|
| 8 |
-
- '2017'
|
| 9 |
-
pretty_name: COCO detection dataset script
|
| 10 |
-
size_categories:
|
| 11 |
-
- 100K<n<1M
|
| 12 |
-
dataset_info:
|
| 13 |
-
config_name: '2017'
|
| 14 |
-
features:
|
| 15 |
-
- name: id
|
| 16 |
-
dtype: int64
|
| 17 |
-
- name: objects
|
| 18 |
-
struct:
|
| 19 |
-
- name: bbox_id
|
| 20 |
-
sequence: int64
|
| 21 |
-
- name: category_id
|
| 22 |
-
sequence:
|
| 23 |
-
class_label:
|
| 24 |
-
names:
|
| 25 |
-
'0': N/A
|
| 26 |
-
'1': person
|
| 27 |
-
'2': bicycle
|
| 28 |
-
'3': car
|
| 29 |
-
'4': motorcycle
|
| 30 |
-
'5': airplane
|
| 31 |
-
'6': bus
|
| 32 |
-
'7': train
|
| 33 |
-
'8': truck
|
| 34 |
-
'9': boat
|
| 35 |
-
'10': traffic light
|
| 36 |
-
'11': fire hydrant
|
| 37 |
-
'12': street sign
|
| 38 |
-
'13': stop sign
|
| 39 |
-
'14': parking meter
|
| 40 |
-
'15': bench
|
| 41 |
-
'16': bird
|
| 42 |
-
'17': cat
|
| 43 |
-
'18': dog
|
| 44 |
-
'19': horse
|
| 45 |
-
'20': sheep
|
| 46 |
-
'21': cow
|
| 47 |
-
'22': elephant
|
| 48 |
-
'23': bear
|
| 49 |
-
'24': zebra
|
| 50 |
-
'25': giraffe
|
| 51 |
-
'26': hat
|
| 52 |
-
'27': backpack
|
| 53 |
-
'28': umbrella
|
| 54 |
-
'29': shoe
|
| 55 |
-
'30': eye glasses
|
| 56 |
-
'31': handbag
|
| 57 |
-
'32': tie
|
| 58 |
-
'33': suitcase
|
| 59 |
-
'34': frisbee
|
| 60 |
-
'35': skis
|
| 61 |
-
'36': snowboard
|
| 62 |
-
'37': sports ball
|
| 63 |
-
'38': kite
|
| 64 |
-
'39': baseball bat
|
| 65 |
-
'40': baseball glove
|
| 66 |
-
'41': skateboard
|
| 67 |
-
'42': surfboard
|
| 68 |
-
'43': tennis racket
|
| 69 |
-
'44': bottle
|
| 70 |
-
'45': plate
|
| 71 |
-
'46': wine glass
|
| 72 |
-
'47': cup
|
| 73 |
-
'48': fork
|
| 74 |
-
'49': knife
|
| 75 |
-
'50': spoon
|
| 76 |
-
'51': bowl
|
| 77 |
-
'52': banana
|
| 78 |
-
'53': apple
|
| 79 |
-
'54': sandwich
|
| 80 |
-
'55': orange
|
| 81 |
-
'56': broccoli
|
| 82 |
-
'57': carrot
|
| 83 |
-
'58': hot dog
|
| 84 |
-
'59': pizza
|
| 85 |
-
'60': donut
|
| 86 |
-
'61': cake
|
| 87 |
-
'62': chair
|
| 88 |
-
'63': couch
|
| 89 |
-
'64': potted plant
|
| 90 |
-
'65': bed
|
| 91 |
-
'66': mirror
|
| 92 |
-
'67': dining table
|
| 93 |
-
'68': window
|
| 94 |
-
'69': desk
|
| 95 |
-
'70': toilet
|
| 96 |
-
'71': door
|
| 97 |
-
'72': tv
|
| 98 |
-
'73': laptop
|
| 99 |
-
'74': mouse
|
| 100 |
-
'75': remote
|
| 101 |
-
'76': keyboard
|
| 102 |
-
'77': cell phone
|
| 103 |
-
'78': microwave
|
| 104 |
-
'79': oven
|
| 105 |
-
'80': toaster
|
| 106 |
-
'81': sink
|
| 107 |
-
'82': refrigerator
|
| 108 |
-
'83': blender
|
| 109 |
-
'84': book
|
| 110 |
-
'85': clock
|
| 111 |
-
'86': vase
|
| 112 |
-
'87': scissors
|
| 113 |
-
'88': teddy bear
|
| 114 |
-
'89': hair drier
|
| 115 |
-
'90': toothbrush
|
| 116 |
-
- name: bbox
|
| 117 |
-
sequence:
|
| 118 |
-
sequence: float64
|
| 119 |
-
length: 4
|
| 120 |
-
- name: iscrowd
|
| 121 |
-
sequence: int64
|
| 122 |
-
- name: area
|
| 123 |
-
sequence: float64
|
| 124 |
-
- name: height
|
| 125 |
-
dtype: int64
|
| 126 |
-
- name: width
|
| 127 |
-
dtype: int64
|
| 128 |
-
- name: file_name
|
| 129 |
-
dtype: string
|
| 130 |
-
- name: coco_url
|
| 131 |
-
dtype: string
|
| 132 |
-
- name: image_path
|
| 133 |
-
dtype: string
|
| 134 |
-
splits:
|
| 135 |
-
- name: train
|
| 136 |
-
num_bytes: 87231216
|
| 137 |
-
num_examples: 117266
|
| 138 |
-
- name: validation
|
| 139 |
-
num_bytes: 3692192
|
| 140 |
-
num_examples: 4952
|
| 141 |
-
download_size: 20405354669
|
| 142 |
-
dataset_size: 90923408
|
| 143 |
-
---
|
| 144 |
-
## Usage
|
| 145 |
-
For using the COCO dataset (2017), you need to download it manually first:
|
| 146 |
-
```bash
|
| 147 |
-
wget http://images.cocodataset.org/zips/train2017.zip
|
| 148 |
-
wget http://images.cocodataset.org/zips/val2017.zip
|
| 149 |
-
wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip
|
| 150 |
-
```
|
| 151 |
-
|
| 152 |
-
Then to load the dataset:
|
| 153 |
-
```python
|
| 154 |
-
COCO_DIR = ...(path to the downloaded dataset directory)...
|
| 155 |
-
ds = datasets.load_dataset(
|
| 156 |
-
"yonigozlan/coco_2017_detection_script",
|
| 157 |
-
"2017",
|
| 158 |
-
data_dir=COCO_DIR,
|
| 159 |
-
trust_remote_code=True,
|
| 160 |
-
)
|
| 161 |
-
```
|
| 162 |
-
|
| 163 |
-
## Benchmarking
|
| 164 |
-
Here is an example of how to benchmark a 🤗 Transformers object detection model on the validation data of the COCO dataset:
|
| 165 |
-
|
| 166 |
-
```python
|
| 167 |
-
import datasets
|
| 168 |
-
import torch
|
| 169 |
-
from PIL import Image
|
| 170 |
-
from torch.utils.data import DataLoader
|
| 171 |
-
from torchmetrics.detection.mean_ap import MeanAveragePrecision
|
| 172 |
-
from tqdm import tqdm
|
| 173 |
-
|
| 174 |
-
from transformers import AutoImageProcessor, AutoModelForObjectDetection
|
| 175 |
-
|
| 176 |
-
# prepare data
|
| 177 |
-
COCO_DIR = ...(path to the downloaded dataset directory)...
|
| 178 |
-
ds = datasets.load_dataset(
|
| 179 |
-
"yonigozlan/coco_2017_detection_script",
|
| 180 |
-
"2017",
|
| 181 |
-
data_dir=COCO_DIR,
|
| 182 |
-
trust_remote_code=True,
|
| 183 |
-
)
|
| 184 |
-
val_data = ds["validation"]
|
| 185 |
-
categories = val_data.features["objects"]["category_id"].feature.names
|
| 186 |
-
id2label = {index: x for index, x in enumerate(categories, start=0)}
|
| 187 |
-
label2id = {v: k for k, v in id2label.items()}
|
| 188 |
-
checkpoint = "facebook/detr-resnet-50"
|
| 189 |
-
|
| 190 |
-
# load model and processor
|
| 191 |
-
model = AutoModelForObjectDetection.from_pretrained(
|
| 192 |
-
checkpoint, torch_dtype=torch.float16
|
| 193 |
-
).to("cuda")
|
| 194 |
-
id2label_model = model.config.id2label
|
| 195 |
-
processor = AutoImageProcessor.from_pretrained(checkpoint)
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
def collate_fn(batch):
|
| 199 |
-
data = {}
|
| 200 |
-
images = [Image.open(x["image_path"]).convert("RGB") for x in batch]
|
| 201 |
-
data["images"] = images
|
| 202 |
-
annotations = []
|
| 203 |
-
for x in batch:
|
| 204 |
-
boxes = x["objects"]["bbox"]
|
| 205 |
-
# convert to xyxy format
|
| 206 |
-
boxes = [[box[0], box[1], box[0] + box[2], box[1] + box[3]] for box in boxes]
|
| 207 |
-
labels = x["objects"]["category_id"]
|
| 208 |
-
boxes = torch.tensor(boxes)
|
| 209 |
-
labels = torch.tensor(labels)
|
| 210 |
-
annotations.append({"boxes": boxes, "labels": labels})
|
| 211 |
-
data["original_size"] = [(x["height"], x["width"]) for x in batch]
|
| 212 |
-
data["annotations"] = annotations
|
| 213 |
-
return data
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
# prepare dataloader
|
| 217 |
-
dataloader = DataLoader(val_data, batch_size=8, collate_fn=collate_fn)
|
| 218 |
-
|
| 219 |
-
# prepare metric
|
| 220 |
-
metric = MeanAveragePrecision(box_format="xyxy", class_metrics=True)
|
| 221 |
-
|
| 222 |
-
# evaluation loop
|
| 223 |
-
for i, batch in tqdm(enumerate(dataloader), total=len(dataloader)):
|
| 224 |
-
inputs = (
|
| 225 |
-
processor(batch["images"], return_tensors="pt").to("cuda").to(torch.float16)
|
| 226 |
-
)
|
| 227 |
-
with torch.no_grad():
|
| 228 |
-
outputs = model(**inputs)
|
| 229 |
-
target_sizes = torch.tensor([x for x in batch["original_size"]]).to("cuda")
|
| 230 |
-
results = processor.post_process_object_detection(
|
| 231 |
-
outputs, threshold=0.0, target_sizes=target_sizes
|
| 232 |
-
)
|
| 233 |
-
|
| 234 |
-
# convert predicted label id to dataset label id
|
| 235 |
-
if len(id2label_model) != len(id2label):
|
| 236 |
-
for result in results:
|
| 237 |
-
result["labels"] = torch.tensor(
|
| 238 |
-
[label2id.get(id2label_model[x.item()], 0) for x in result["labels"]]
|
| 239 |
-
)
|
| 240 |
-
# put results back to cpu
|
| 241 |
-
for result in results:
|
| 242 |
-
for k, v in result.items():
|
| 243 |
-
if isinstance(v, torch.Tensor):
|
| 244 |
-
result[k] = v.to("cpu")
|
| 245 |
-
metric.update(results, batch["annotations"])
|
| 246 |
-
|
| 247 |
-
metrics = metric.compute()
|
| 248 |
-
print(metrics)
|
| 249 |
-
```
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: cc-by-4.0
|
| 3 |
+
task_categories:
|
| 4 |
+
- object-detection
|
| 5 |
+
tags:
|
| 6 |
+
- COCO
|
| 7 |
+
- Detection
|
| 8 |
+
- '2017'
|
| 9 |
+
pretty_name: COCO detection dataset script
|
| 10 |
+
size_categories:
|
| 11 |
+
- 100K<n<1M
|
| 12 |
+
dataset_info:
|
| 13 |
+
config_name: '2017'
|
| 14 |
+
features:
|
| 15 |
+
- name: id
|
| 16 |
+
dtype: int64
|
| 17 |
+
- name: objects
|
| 18 |
+
struct:
|
| 19 |
+
- name: bbox_id
|
| 20 |
+
sequence: int64
|
| 21 |
+
- name: category_id
|
| 22 |
+
sequence:
|
| 23 |
+
class_label:
|
| 24 |
+
names:
|
| 25 |
+
'0': N/A
|
| 26 |
+
'1': person
|
| 27 |
+
'2': bicycle
|
| 28 |
+
'3': car
|
| 29 |
+
'4': motorcycle
|
| 30 |
+
'5': airplane
|
| 31 |
+
'6': bus
|
| 32 |
+
'7': train
|
| 33 |
+
'8': truck
|
| 34 |
+
'9': boat
|
| 35 |
+
'10': traffic light
|
| 36 |
+
'11': fire hydrant
|
| 37 |
+
'12': street sign
|
| 38 |
+
'13': stop sign
|
| 39 |
+
'14': parking meter
|
| 40 |
+
'15': bench
|
| 41 |
+
'16': bird
|
| 42 |
+
'17': cat
|
| 43 |
+
'18': dog
|
| 44 |
+
'19': horse
|
| 45 |
+
'20': sheep
|
| 46 |
+
'21': cow
|
| 47 |
+
'22': elephant
|
| 48 |
+
'23': bear
|
| 49 |
+
'24': zebra
|
| 50 |
+
'25': giraffe
|
| 51 |
+
'26': hat
|
| 52 |
+
'27': backpack
|
| 53 |
+
'28': umbrella
|
| 54 |
+
'29': shoe
|
| 55 |
+
'30': eye glasses
|
| 56 |
+
'31': handbag
|
| 57 |
+
'32': tie
|
| 58 |
+
'33': suitcase
|
| 59 |
+
'34': frisbee
|
| 60 |
+
'35': skis
|
| 61 |
+
'36': snowboard
|
| 62 |
+
'37': sports ball
|
| 63 |
+
'38': kite
|
| 64 |
+
'39': baseball bat
|
| 65 |
+
'40': baseball glove
|
| 66 |
+
'41': skateboard
|
| 67 |
+
'42': surfboard
|
| 68 |
+
'43': tennis racket
|
| 69 |
+
'44': bottle
|
| 70 |
+
'45': plate
|
| 71 |
+
'46': wine glass
|
| 72 |
+
'47': cup
|
| 73 |
+
'48': fork
|
| 74 |
+
'49': knife
|
| 75 |
+
'50': spoon
|
| 76 |
+
'51': bowl
|
| 77 |
+
'52': banana
|
| 78 |
+
'53': apple
|
| 79 |
+
'54': sandwich
|
| 80 |
+
'55': orange
|
| 81 |
+
'56': broccoli
|
| 82 |
+
'57': carrot
|
| 83 |
+
'58': hot dog
|
| 84 |
+
'59': pizza
|
| 85 |
+
'60': donut
|
| 86 |
+
'61': cake
|
| 87 |
+
'62': chair
|
| 88 |
+
'63': couch
|
| 89 |
+
'64': potted plant
|
| 90 |
+
'65': bed
|
| 91 |
+
'66': mirror
|
| 92 |
+
'67': dining table
|
| 93 |
+
'68': window
|
| 94 |
+
'69': desk
|
| 95 |
+
'70': toilet
|
| 96 |
+
'71': door
|
| 97 |
+
'72': tv
|
| 98 |
+
'73': laptop
|
| 99 |
+
'74': mouse
|
| 100 |
+
'75': remote
|
| 101 |
+
'76': keyboard
|
| 102 |
+
'77': cell phone
|
| 103 |
+
'78': microwave
|
| 104 |
+
'79': oven
|
| 105 |
+
'80': toaster
|
| 106 |
+
'81': sink
|
| 107 |
+
'82': refrigerator
|
| 108 |
+
'83': blender
|
| 109 |
+
'84': book
|
| 110 |
+
'85': clock
|
| 111 |
+
'86': vase
|
| 112 |
+
'87': scissors
|
| 113 |
+
'88': teddy bear
|
| 114 |
+
'89': hair drier
|
| 115 |
+
'90': toothbrush
|
| 116 |
+
- name: bbox
|
| 117 |
+
sequence:
|
| 118 |
+
sequence: float64
|
| 119 |
+
length: 4
|
| 120 |
+
- name: iscrowd
|
| 121 |
+
sequence: int64
|
| 122 |
+
- name: area
|
| 123 |
+
sequence: float64
|
| 124 |
+
- name: height
|
| 125 |
+
dtype: int64
|
| 126 |
+
- name: width
|
| 127 |
+
dtype: int64
|
| 128 |
+
- name: file_name
|
| 129 |
+
dtype: string
|
| 130 |
+
- name: coco_url
|
| 131 |
+
dtype: string
|
| 132 |
+
- name: image_path
|
| 133 |
+
dtype: string
|
| 134 |
+
splits:
|
| 135 |
+
- name: train
|
| 136 |
+
num_bytes: 87231216
|
| 137 |
+
num_examples: 117266
|
| 138 |
+
- name: validation
|
| 139 |
+
num_bytes: 3692192
|
| 140 |
+
num_examples: 4952
|
| 141 |
+
download_size: 20405354669
|
| 142 |
+
dataset_size: 90923408
|
| 143 |
+
---
|
| 144 |
+
## Usage
|
| 145 |
+
For using the COCO dataset (2017), you need to download it manually first:
|
| 146 |
+
```bash
|
| 147 |
+
wget http://images.cocodataset.org/zips/train2017.zip
|
| 148 |
+
wget http://images.cocodataset.org/zips/val2017.zip
|
| 149 |
+
wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip
|
| 150 |
+
```
|
| 151 |
+
|
| 152 |
+
Then to load the dataset:
|
| 153 |
+
```python
|
| 154 |
+
COCO_DIR = ...(path to the downloaded dataset directory)...
|
| 155 |
+
ds = datasets.load_dataset(
|
| 156 |
+
"yonigozlan/coco_2017_detection_script",
|
| 157 |
+
"2017",
|
| 158 |
+
data_dir=COCO_DIR,
|
| 159 |
+
trust_remote_code=True,
|
| 160 |
+
)
|
| 161 |
+
```
|
| 162 |
+
|
| 163 |
+
## Benchmarking
|
| 164 |
+
Here is an example of how to benchmark a 🤗 Transformers object detection model on the validation data of the COCO dataset:
|
| 165 |
+
|
| 166 |
+
```python
|
| 167 |
+
import datasets
|
| 168 |
+
import torch
|
| 169 |
+
from PIL import Image
|
| 170 |
+
from torch.utils.data import DataLoader
|
| 171 |
+
from torchmetrics.detection.mean_ap import MeanAveragePrecision
|
| 172 |
+
from tqdm import tqdm
|
| 173 |
+
|
| 174 |
+
from transformers import AutoImageProcessor, AutoModelForObjectDetection
|
| 175 |
+
|
| 176 |
+
# prepare data
|
| 177 |
+
COCO_DIR = ...(path to the downloaded dataset directory)...
|
| 178 |
+
ds = datasets.load_dataset(
|
| 179 |
+
"yonigozlan/coco_2017_detection_script",
|
| 180 |
+
"2017",
|
| 181 |
+
data_dir=COCO_DIR,
|
| 182 |
+
trust_remote_code=True,
|
| 183 |
+
)
|
| 184 |
+
val_data = ds["validation"]
|
| 185 |
+
categories = val_data.features["objects"]["category_id"].feature.names
|
| 186 |
+
id2label = {index: x for index, x in enumerate(categories, start=0)}
|
| 187 |
+
label2id = {v: k for k, v in id2label.items()}
|
| 188 |
+
checkpoint = "facebook/detr-resnet-50"
|
| 189 |
+
|
| 190 |
+
# load model and processor
|
| 191 |
+
model = AutoModelForObjectDetection.from_pretrained(
|
| 192 |
+
checkpoint, torch_dtype=torch.float16
|
| 193 |
+
).to("cuda")
|
| 194 |
+
id2label_model = model.config.id2label
|
| 195 |
+
processor = AutoImageProcessor.from_pretrained(checkpoint)
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
def collate_fn(batch):
|
| 199 |
+
data = {}
|
| 200 |
+
images = [Image.open(x["image_path"]).convert("RGB") for x in batch]
|
| 201 |
+
data["images"] = images
|
| 202 |
+
annotations = []
|
| 203 |
+
for x in batch:
|
| 204 |
+
boxes = x["objects"]["bbox"]
|
| 205 |
+
# convert to xyxy format
|
| 206 |
+
boxes = [[box[0], box[1], box[0] + box[2], box[1] + box[3]] for box in boxes]
|
| 207 |
+
labels = x["objects"]["category_id"]
|
| 208 |
+
boxes = torch.tensor(boxes)
|
| 209 |
+
labels = torch.tensor(labels)
|
| 210 |
+
annotations.append({"boxes": boxes, "labels": labels})
|
| 211 |
+
data["original_size"] = [(x["height"], x["width"]) for x in batch]
|
| 212 |
+
data["annotations"] = annotations
|
| 213 |
+
return data
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
# prepare dataloader
|
| 217 |
+
dataloader = DataLoader(val_data, batch_size=8, collate_fn=collate_fn)
|
| 218 |
+
|
| 219 |
+
# prepare metric
|
| 220 |
+
metric = MeanAveragePrecision(box_format="xyxy", class_metrics=True)
|
| 221 |
+
|
| 222 |
+
# evaluation loop
|
| 223 |
+
for i, batch in tqdm(enumerate(dataloader), total=len(dataloader)):
|
| 224 |
+
inputs = (
|
| 225 |
+
processor(batch["images"], return_tensors="pt").to("cuda").to(torch.float16)
|
| 226 |
+
)
|
| 227 |
+
with torch.no_grad():
|
| 228 |
+
outputs = model(**inputs)
|
| 229 |
+
target_sizes = torch.tensor([x for x in batch["original_size"]]).to("cuda")
|
| 230 |
+
results = processor.post_process_object_detection(
|
| 231 |
+
outputs, threshold=0.0, target_sizes=target_sizes
|
| 232 |
+
)
|
| 233 |
+
|
| 234 |
+
# convert predicted label id to dataset label id
|
| 235 |
+
if len(id2label_model) != len(id2label):
|
| 236 |
+
for result in results:
|
| 237 |
+
result["labels"] = torch.tensor(
|
| 238 |
+
[label2id.get(id2label_model[x.item()], 0) for x in result["labels"]]
|
| 239 |
+
)
|
| 240 |
+
# put results back to cpu
|
| 241 |
+
for result in results:
|
| 242 |
+
for k, v in result.items():
|
| 243 |
+
if isinstance(v, torch.Tensor):
|
| 244 |
+
result[k] = v.to("cpu")
|
| 245 |
+
metric.update(results, batch["annotations"])
|
| 246 |
+
|
| 247 |
+
metrics = metric.compute()
|
| 248 |
+
print(metrics)
|
| 249 |
+
```
|