Update ImageRewardDB.py
Browse files- ImageRewardDB.py +134 -33
ImageRewardDB.py
CHANGED
|
@@ -43,14 +43,14 @@ To build the ImageRewadDB, we design a pipeline tailored for it, establishing cr
|
|
| 43 |
annotator training, optimizing labeling experience, and ensuring quality validation. \
|
| 44 |
"""
|
| 45 |
|
| 46 |
-
_HOMEPAGE = "https://huggingface.co/datasets/
|
| 47 |
_VERSION = datasets.Version("1.0.0")
|
| 48 |
|
| 49 |
_LICENSE = "Apache License 2.0"
|
| 50 |
|
| 51 |
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
| 52 |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
| 53 |
-
_REPO_ID = "
|
| 54 |
_URLS = {}
|
| 55 |
_PART_IDS = {
|
| 56 |
"train": 32,
|
|
@@ -107,26 +107,56 @@ class ImageRewardDB(datasets.GeneratorBasedBuilder):
|
|
| 107 |
"validation": 2,
|
| 108 |
"test": 2
|
| 109 |
}
|
|
|
|
|
|
|
|
|
|
| 110 |
BUILDER_CONFIGS.append(
|
| 111 |
ImageRewardDBConfig(name=f"{num_k}k", part_ids=part_ids, description=f"This is a {num_k}k-scale ImageRewardDB")
|
| 112 |
)
|
|
|
|
|
|
|
|
|
|
| 113 |
|
| 114 |
DEFAULT_CONFIG_NAME = "8k" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
| 115 |
|
| 116 |
def _info(self):
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
return datasets.DatasetInfo(
|
| 131 |
# This is the description that will appear on the datasets page.
|
| 132 |
description=_DESCRIPTION,
|
|
@@ -199,22 +229,93 @@ class ImageRewardDB(datasets.GeneratorBasedBuilder):
|
|
| 199 |
assert num_data_dirs == len(json_paths)
|
| 200 |
|
| 201 |
#Iterate throug all extracted zip folders for images
|
| 202 |
-
metadata_table = pd.read_parquet(metadata_path)
|
| 203 |
for index, json_path in enumerate(json_paths):
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
annotator training, optimizing labeling experience, and ensuring quality validation. \
|
| 44 |
"""
|
| 45 |
|
| 46 |
+
_HOMEPAGE = "https://huggingface.co/datasets/THUDM/ImageRewardDB"
|
| 47 |
_VERSION = datasets.Version("1.0.0")
|
| 48 |
|
| 49 |
_LICENSE = "Apache License 2.0"
|
| 50 |
|
| 51 |
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
| 52 |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
| 53 |
+
_REPO_ID = "THUDM/ImageRewardDB"
|
| 54 |
_URLS = {}
|
| 55 |
_PART_IDS = {
|
| 56 |
"train": 32,
|
|
|
|
| 107 |
"validation": 2,
|
| 108 |
"test": 2
|
| 109 |
}
|
| 110 |
+
BUILDER_CONFIGS.append(
|
| 111 |
+
ImageRewardDBConfig(name=f"{num_k}k_group", part_ids=part_ids, description=f"This is a {num_k}k-scale groups of ImageRewardDB")
|
| 112 |
+
)
|
| 113 |
BUILDER_CONFIGS.append(
|
| 114 |
ImageRewardDBConfig(name=f"{num_k}k", part_ids=part_ids, description=f"This is a {num_k}k-scale ImageRewardDB")
|
| 115 |
)
|
| 116 |
+
BUILDER_CONFIGS.append(
|
| 117 |
+
ImageRewardDBConfig(name=f"{num_k}k_pair", part_ids=part_ids, description=f"This is a {num_k}k-scale pairs of ImageRewardDB")
|
| 118 |
+
)
|
| 119 |
|
| 120 |
DEFAULT_CONFIG_NAME = "8k" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
| 121 |
|
| 122 |
def _info(self):
|
| 123 |
+
if "group" in self.config.name:
|
| 124 |
+
features = datasets.Features(
|
| 125 |
+
{
|
| 126 |
+
"prompt_id": datasets.Value("string"),
|
| 127 |
+
"prompt": datasets.Value("string"),
|
| 128 |
+
"classification": datasets.Value("string"),
|
| 129 |
+
"image": datasets.Sequence(datasets.Image()),
|
| 130 |
+
"rank": datasets.Sequence(datasets.Value("int8")),
|
| 131 |
+
"overall_rating": datasets.Sequence(datasets.Value("int8")),
|
| 132 |
+
"image_text_alignment_rating": datasets.Sequence(datasets.Value("int8")),
|
| 133 |
+
"fidelity_rating": datasets.Sequence(datasets.Value("int8"))
|
| 134 |
+
}
|
| 135 |
+
)
|
| 136 |
+
elif "pair" in self.config.name:
|
| 137 |
+
features = datasets.Features(
|
| 138 |
+
{
|
| 139 |
+
"prompt_id": datasets.Value("string"),
|
| 140 |
+
"prompt": datasets.Value("string"),
|
| 141 |
+
"classification": datasets.Value("string"),
|
| 142 |
+
"img_better": datasets.Image(),
|
| 143 |
+
"img_worse": datasets.Image()
|
| 144 |
+
}
|
| 145 |
+
)
|
| 146 |
+
else:
|
| 147 |
+
features = datasets.Features(
|
| 148 |
+
{
|
| 149 |
+
"image": datasets.Image(),
|
| 150 |
+
"prompt_id": datasets.Value("string"),
|
| 151 |
+
"prompt": datasets.Value("string"),
|
| 152 |
+
"classification": datasets.Value("string"),
|
| 153 |
+
"image_amount_in_total": datasets.Value("int8"),
|
| 154 |
+
"rank": datasets.Value("int8"),
|
| 155 |
+
"overall_rating": datasets.Value("int8"),
|
| 156 |
+
"image_text_alignment_rating": datasets.Value("int8"),
|
| 157 |
+
"fidelity_rating": datasets.Value("int8")
|
| 158 |
+
}
|
| 159 |
+
)
|
| 160 |
return datasets.DatasetInfo(
|
| 161 |
# This is the description that will appear on the datasets page.
|
| 162 |
description=_DESCRIPTION,
|
|
|
|
| 229 |
assert num_data_dirs == len(json_paths)
|
| 230 |
|
| 231 |
#Iterate throug all extracted zip folders for images
|
| 232 |
+
# metadata_table = pd.read_parquet(metadata_path)
|
| 233 |
for index, json_path in enumerate(json_paths):
|
| 234 |
+
json_data = json.load(open(json_path, "r", encoding="utf-8"))
|
| 235 |
+
if "group" in self.config.name or "pair" in self.config.name:
|
| 236 |
+
group_num = 0
|
| 237 |
+
image_path = []
|
| 238 |
+
rank = []
|
| 239 |
+
overall_rating, image_text_alignment_rating, fidelity_rating = [], [], []
|
| 240 |
+
for sample in json_data:
|
| 241 |
+
if group_num == 0:
|
| 242 |
+
image_path.clear()
|
| 243 |
+
rank.clear()
|
| 244 |
+
overall_rating.clear()
|
| 245 |
+
image_text_alignment_rating.clear()
|
| 246 |
+
fidelity_rating.clear()
|
| 247 |
+
prompt_id = sample["prompt_id"]
|
| 248 |
+
prompt = sample["prompt"]
|
| 249 |
+
classification = sample["classification"]
|
| 250 |
+
image_amount_in_total = sample["image_amount_in_total"]
|
| 251 |
+
# image_path.append(sample["image_path"])
|
| 252 |
+
image_path.append(os.path.join(data_dirs[index], str(sample["image_path"]).split("/")[-1]))
|
| 253 |
+
rank.append(sample["rank"])
|
| 254 |
+
overall_rating.append(sample["overall_rating"])
|
| 255 |
+
image_text_alignment_rating.append(sample["image_text_alignment_rating"])
|
| 256 |
+
fidelity_rating.append(sample["fidelity_rating"])
|
| 257 |
+
group_num += 1
|
| 258 |
+
if group_num == image_amount_in_total:
|
| 259 |
+
group_num = 0
|
| 260 |
+
if "group" in self.config.name:
|
| 261 |
+
yield prompt_id, ({
|
| 262 |
+
"prompt_id": prompt_id,
|
| 263 |
+
"prompt": prompt,
|
| 264 |
+
"classification": classification,
|
| 265 |
+
"image": [{
|
| 266 |
+
"path": image_path[idx],
|
| 267 |
+
"bytes": open(image_path[idx], "rb").read()
|
| 268 |
+
} for idx in range(image_amount_in_total)],
|
| 269 |
+
"rank": rank,
|
| 270 |
+
"overall_rating": overall_rating,
|
| 271 |
+
"image_text_alignment_rating": image_text_alignment_rating,
|
| 272 |
+
"fidelity_rating": fidelity_rating,
|
| 273 |
+
})
|
| 274 |
+
else:
|
| 275 |
+
for idx in range(image_amount_in_total):
|
| 276 |
+
for idy in range(idx+1, image_amount_in_total):
|
| 277 |
+
if rank[idx] < rank[idy]:
|
| 278 |
+
yield prompt_id, ({
|
| 279 |
+
"prompt_id": prompt_id,
|
| 280 |
+
"prompt": prompt,
|
| 281 |
+
"classification": classification,
|
| 282 |
+
"img_better": {
|
| 283 |
+
"path": image_path[idx],
|
| 284 |
+
"bytes": open(image_path[idx], "rb").read()
|
| 285 |
+
},
|
| 286 |
+
"img_worse": {
|
| 287 |
+
"path": image_path[idy],
|
| 288 |
+
"bytes": open(image_path[idy], "rb").read()
|
| 289 |
+
}
|
| 290 |
+
})
|
| 291 |
+
elif rank[idx] > rank[idy]:
|
| 292 |
+
yield prompt_id, ({
|
| 293 |
+
"prompt_id": prompt_id,
|
| 294 |
+
"prompt": prompt,
|
| 295 |
+
"classification": classification,
|
| 296 |
+
"img_better": {
|
| 297 |
+
"path": image_path[idy],
|
| 298 |
+
"bytes": open(image_path[idy], "rb").read()
|
| 299 |
+
},
|
| 300 |
+
"img_worse": {
|
| 301 |
+
"path": image_path[idx],
|
| 302 |
+
"bytes": open(image_path[idx], "rb").read()
|
| 303 |
+
}
|
| 304 |
+
})
|
| 305 |
+
else:
|
| 306 |
+
for example in json_data:
|
| 307 |
+
image_path = os.path.join(data_dirs[index], str(example["image_path"]).split("/")[-1])
|
| 308 |
+
yield example["image_path"], {
|
| 309 |
+
"image": {
|
| 310 |
+
"path": image_path,
|
| 311 |
+
"bytes": open(image_path, "rb").read()
|
| 312 |
+
},
|
| 313 |
+
"prompt_id": example["prompt_id"],
|
| 314 |
+
"prompt": example["prompt"],
|
| 315 |
+
"classification": example["classification"],
|
| 316 |
+
"image_amount_in_total": example["image_amount_in_total"],
|
| 317 |
+
"rank": example["rank"],
|
| 318 |
+
"overall_rating": example["overall_rating"],
|
| 319 |
+
"image_text_alignment_rating": example["image_text_alignment_rating"],
|
| 320 |
+
"fidelity_rating": example["fidelity_rating"]
|
| 321 |
+
}
|