Update README.md
Browse files
README.md
CHANGED
|
@@ -1,5 +1,66 @@
|
|
| 1 |
---
|
| 2 |
license: other
|
| 3 |
-
license_name: deepcode-
|
| 4 |
license_link: LICENSE
|
| 5 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: other
|
| 3 |
+
license_name: deepcode-ai
|
| 4 |
license_link: LICENSE
|
| 5 |
+
---
|
| 6 |
+
|
| 7 |
+
## 3. Quick Start
|
| 8 |
+
### Installation
|
| 9 |
+
On the basis of `Python >= 3.8` environment, install the necessary dependencies by running the following command:
|
| 10 |
+
```shell
|
| 11 |
+
git clone https://github.com/deepcode-ai/DeepCode-VL-VL
|
| 12 |
+
cd DeepCode-VL-VL
|
| 13 |
+
pip install -e .
|
| 14 |
+
```
|
| 15 |
+
### Simple Inference Example
|
| 16 |
+
```python
|
| 17 |
+
import torch
|
| 18 |
+
from transformers import AutoModelForCausalLM
|
| 19 |
+
from deepcode_vl.models import VLChatProcessor, MultiModalityCausalLM
|
| 20 |
+
from deepcode_vl.utils.io import load_pil_images
|
| 21 |
+
# specify the path to the model
|
| 22 |
+
model_path = "deepcode-ai/deepcode-base"
|
| 23 |
+
vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path)
|
| 24 |
+
tokenizer = vl_chat_processor.tokenizer
|
| 25 |
+
vl_gpt: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True)
|
| 26 |
+
vl_gpt = vl_gpt.to(torch.bfloat16).cuda().eval()
|
| 27 |
+
conversation = [
|
| 28 |
+
{
|
| 29 |
+
"role": "User",
|
| 30 |
+
"content": "<image_placeholder>Describe each stage of this image.",
|
| 31 |
+
"images": ["./images/training_pipelines.png"]
|
| 32 |
+
},
|
| 33 |
+
{
|
| 34 |
+
"role": "Assistant",
|
| 35 |
+
"content": ""
|
| 36 |
+
}
|
| 37 |
+
]
|
| 38 |
+
# load images and prepare for inputs
|
| 39 |
+
pil_images = load_pil_images(conversation)
|
| 40 |
+
prepare_inputs = vl_chat_processor(
|
| 41 |
+
conversations=conversation,
|
| 42 |
+
images=pil_images,
|
| 43 |
+
force_batchify=True
|
| 44 |
+
).to(vl_gpt.device)
|
| 45 |
+
# run image encoder to get the image embeddings
|
| 46 |
+
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
|
| 47 |
+
# run the model to get the response
|
| 48 |
+
outputs = vl_gpt.language_model.generate(
|
| 49 |
+
inputs_embeds=inputs_embeds,
|
| 50 |
+
attention_mask=prepare_inputs.attention_mask,
|
| 51 |
+
pad_token_id=tokenizer.eos_token_id,
|
| 52 |
+
bos_token_id=tokenizer.bos_token_id,
|
| 53 |
+
eos_token_id=tokenizer.eos_token_id,
|
| 54 |
+
max_new_tokens=512,
|
| 55 |
+
do_sample=False,
|
| 56 |
+
use_cache=True
|
| 57 |
+
)
|
| 58 |
+
answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
|
| 59 |
+
print(f"{prepare_inputs['sft_format'][0]}", answer)
|
| 60 |
+
```
|
| 61 |
+
### CLI Chat
|
| 62 |
+
```bash
|
| 63 |
+
python cli_chat.py --model_path "deepcode-ai/deepcode-base"
|
| 64 |
+
# or local path
|
| 65 |
+
python cli_chat.py --model_path "local model path"
|
| 66 |
+
``
|