Use ImageProcessor
Browse files
README.md
CHANGED
|
@@ -33,13 +33,13 @@ import torch
|
|
| 33 |
import numpy as np
|
| 34 |
from PIL import Image
|
| 35 |
|
| 36 |
-
from transformers import
|
| 37 |
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
|
| 38 |
from diffusers.utils import load_image
|
| 39 |
|
| 40 |
|
| 41 |
depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to("cuda")
|
| 42 |
-
|
| 43 |
controlnet = ControlNetModel.from_pretrained(
|
| 44 |
"diffusers/controlnet-depth-sdxl-1.0",
|
| 45 |
variant="fp16",
|
|
@@ -58,7 +58,7 @@ pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
|
| 58 |
pipe.enable_model_cpu_offload()
|
| 59 |
|
| 60 |
def get_depth_map(image):
|
| 61 |
-
image =
|
| 62 |
with torch.no_grad(), torch.autocast("cuda"):
|
| 63 |
depth_map = depth_estimator(image).predicted_depth
|
| 64 |
|
|
|
|
| 33 |
import numpy as np
|
| 34 |
from PIL import Image
|
| 35 |
|
| 36 |
+
from transformers import DPTImageProcessor, DPTForDepthEstimation
|
| 37 |
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
|
| 38 |
from diffusers.utils import load_image
|
| 39 |
|
| 40 |
|
| 41 |
depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to("cuda")
|
| 42 |
+
processor = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas")
|
| 43 |
controlnet = ControlNetModel.from_pretrained(
|
| 44 |
"diffusers/controlnet-depth-sdxl-1.0",
|
| 45 |
variant="fp16",
|
|
|
|
| 58 |
pipe.enable_model_cpu_offload()
|
| 59 |
|
| 60 |
def get_depth_map(image):
|
| 61 |
+
image = processor(images=image, return_tensors="pt").pixel_values.to("cuda")
|
| 62 |
with torch.no_grad(), torch.autocast("cuda"):
|
| 63 |
depth_map = depth_estimator(image).predicted_depth
|
| 64 |
|