File size: 23,870 Bytes
5178ef1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
from typing import List, Optional, Union, Dict

import torch

from diffusers import AutoencoderKLWan
from diffusers.configuration_utils import FrozenDict
from diffusers.schedulers import UniPCMultistepScheduler
from diffusers.utils import logging
from diffusers.utils.torch_utils import randn_tensor
from diffusers.video_processor import VideoProcessor
from diffusers.modular_pipelines import ModularPipeline, ModularPipelineBlocks, PipelineState
from diffusers.modular_pipelines.modular_pipeline_utils import ComponentSpec, InputParam, OutputParam

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

# Constants
FRAME_MULTIPLE = 4
DEFAULT_SAMPLES_PER_ACTION = 4
DEFAULT_FRAMES_PER_ACTION = 12

DEFAULT_MOUSE_DIM = 2
DEFAULT_KEYBOARD_DIM = 4

# Camera movement configuration
CAMERA_MOVEMENT_VALUE = 0.1
CAMERA_VALUE_MAP = {
    "camera_up": [CAMERA_MOVEMENT_VALUE, 0],
    "camera_down": [-CAMERA_MOVEMENT_VALUE, 0],
    "camera_l": [0, -CAMERA_MOVEMENT_VALUE],
    "camera_r": [0, CAMERA_MOVEMENT_VALUE],
    "camera_ur": [CAMERA_MOVEMENT_VALUE, CAMERA_MOVEMENT_VALUE],
    "camera_ul": [CAMERA_MOVEMENT_VALUE, -CAMERA_MOVEMENT_VALUE],
    "camera_dr": [-CAMERA_MOVEMENT_VALUE, CAMERA_MOVEMENT_VALUE],
    "camera_dl": [-CAMERA_MOVEMENT_VALUE, -CAMERA_MOVEMENT_VALUE],
}

# Define available actions
MOVEMENT_ACTIONS = ["forward", "left", "right"]
COMPOUND_MOVEMENTS = ["forward_left", "forward_right"]
CAMERA_ACTIONS = list(CAMERA_VALUE_MAP.keys())

# Keyboard action indices
KEYBOARD_ACTION_INDICES = {"forward": 0, "back": 1, "left": 2, "right": 3}


def sync_actions_to_frames(
    actions: List[str],
    num_frames: int,
    min_duration: int = 12
) -> List[Dict[str, Union[str, int]]]:
    """
    Synchronize a list of actions to fit exactly within the given number of frames
    using equal distribution strategy.

    Args:
        actions: List of action names to perform
        num_frames: Total frames to fill
        min_duration: Minimum frames per action (should be multiple of frame_multiple)
        frame_multiple: Actions must be multiples of this value

    Returns:
        List of action dictionaries with 'type', 'start_frame', and 'duration'
    """

    if not actions:
        raise ValueError("No actions provided")

    max_possible_actions = num_frames // DEFAULT_FRAMES_PER_ACTION
    if len(actions) > max_possible_actions:
        actions = actions[:max_possible_actions]

    num_actions = len(actions)

    frames_per_action = num_frames // num_actions
    frames_per_action = (frames_per_action // FRAME_MULTIPLE) * FRAME_MULTIPLE
    frames_per_action = max(DEFAULT_FRAMES_PER_ACTION, frames_per_action)

    remaining_frames = num_frames - (frames_per_action * num_actions)
    output = []
    current_frame = 0

    for i, action in enumerate(actions):
        duration = frames_per_action if i != num_actions - 1 else num_frames - current_frame

        output.append({
            "action_type": action,
            "start_frame": current_frame,
            "duration": duration
        })

        current_frame += duration

    return output


def actions_to_condition_tensors(actions, num_frames):
    keyboard_conditions = torch.zeros((num_frames, DEFAULT_KEYBOARD_DIM))
    mouse_conditions = torch.zeros((num_frames, DEFAULT_MOUSE_DIM))

    for action in actions:
        action_type = action['action_type']
        start_frame = action['start_frame']
        end_frame = start_frame + action['duration']

        action_components = action_type.split("_")
        for component in action_components:
            if component in KEYBOARD_ACTION_INDICES:
                action_idx = KEYBOARD_ACTION_INDICES[component]
                keyboard_conditions[start_frame:end_frame, action_idx] = 1.0

        if not "camera" in action_type:
            continue

        mouse_x = mouse_y = 0.0
        for idx, component in enumerate(action_components):
            if not action_components[idx] == "camera":
                continue

            camera_action = f"camera_{action_components[idx+1]}"
            if camera_action not in CAMERA_VALUE_MAP:
                continue

            camera_values = CAMERA_VALUE_MAP[camera_action]
            mouse_x += camera_values[0]
            mouse_y += camera_values[1]

        mouse_conditions[start_frame:end_frame, 0] = mouse_x
        mouse_conditions[start_frame:end_frame, 1] = mouse_y

    return keyboard_conditions, mouse_conditions


def _build_test_actions(
    movement_actions: List[str],
    compound_movements: List[str],
    camera_actions: List[str],
) -> List[str]:
    """Build comprehensive list of test action combinations.

    Args:
        movement_actions: List of basic movement actions
        compound_movements: List of compound movement actions
        camera_actions: List of camera control actions

    Returns:
        List of all action combinations to test
    """
    # Create base test actions with repetition for variety
    test_actions = compound_movements * 5 + camera_actions * 5 + movement_actions * 5

    # Add combined movement + camera actions
    for movement in movement_actions + compound_movements:
        for camera in camera_actions:
            combined_action = f"{movement}_{camera}"
            test_actions.append(combined_action)

    return test_actions


def generate_random_condition_tensors(num_frames: int) -> Dict[str, torch.Tensor]:
    """Generate benchmark action sequences for testing.

    Args:
        num_frames: Total number of frames to generate
        num_samples_per_action: Number of samples per action type

    Returns:
        Dictionary containing keyboard and mouse conditions for benchmark actions
    """
    # Build test action combinations
    actions = _build_test_actions(
        MOVEMENT_ACTIONS, COMPOUND_MOVEMENTS, CAMERA_ACTIONS
    )
    actions = sync_actions_to_frames(actions, num_frames)
    return actions_to_condition_tensors(actions, num_frames)


# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
    scheduler,
    num_inference_steps: Optional[int] = None,
    device: Optional[Union[str, torch.device]] = None,
    timesteps: Optional[List[int]] = None,
    sigmas: Optional[List[float]] = None,
    **kwargs,
):
    r"""
    Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
    custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.

    Args:
        scheduler (`SchedulerMixin`):
            The scheduler to get timesteps from.
        num_inference_steps (`int`):
            The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
            must be `None`.
        device (`str` or `torch.device`, *optional*):
            The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
        timesteps (`List[int]`, *optional*):
            Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
            `num_inference_steps` and `sigmas` must be `None`.
        sigmas (`List[float]`, *optional*):
            Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
            `num_inference_steps` and `timesteps` must be `None`.

    Returns:
        `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
        second element is the number of inference steps.
    """
    if timesteps is not None and sigmas is not None:
        raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
    if timesteps is not None:
        accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
        if not accepts_timesteps:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" timestep schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    elif sigmas is not None:
        accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
        if not accept_sigmas:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" sigmas schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    else:
        scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
        timesteps = scheduler.timesteps
    return timesteps, num_inference_steps


def retrieve_latents(
    encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
):
    if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
        return encoder_output.latent_dist.sample(generator)
    elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
        return encoder_output.latent_dist.mode()
    elif hasattr(encoder_output, "latents"):
        return encoder_output.latents
    else:
        raise AttributeError("Could not access latents of provided encoder_output")


class MatrixGameWanActionInputStep(ModularPipelineBlocks):
    model_name = "MatrixGameWan"

    @property
    def description(self) -> str:
        return "Action Input step"

    @property
    def expected_components(self) -> List[ComponentSpec]:
        return []

    @property
    def inputs(self) -> List[InputParam]:
        return [InputParam("num_frames", type_hint=int, required=True), InputParam("actions", type_hint=List[str])]

    @property
    def intermediate_outputs(self) -> List[OutputParam]:
        return [
            OutputParam(
                "keyboard_conditions",
                type_hint=torch.Tensor,
                description="image embeddings used to guide the image generation",
            ),
            OutputParam(
                "mouse_conditions",
                type_hint=torch.Tensor,
                description="image embeddings used to guide the image generation",
            )
        ]

    @torch.no_grad()
    def __call__(self, components: ModularPipeline, state: PipelineState) -> PipelineState:
        # Get inputs and intermediates
        block_state = self.get_block_state(state)
        block_state.device = components._execution_device
        actions = block_state.actions

        if actions is not None:
            actions = sync_actions_to_frames(actions, block_state.num_frames)
            keyboard_conditions, mouse_conditions = actions_to_condition_tensors(actions, block_state.num_frames)
        else:
            keyboard_conditions, mouse_conditions = generate_random_condition_tensors(block_state.num_frames)

        block_state.keyboard_conditions = keyboard_conditions.to(block_state.device)
        block_state.mouse_conditions = mouse_conditions.to(block_state.device)

        # Add outputs
        self.set_block_state(state, block_state)
        return components, state


class MatrixGameWanSetTimestepsStep(ModularPipelineBlocks):
    model_name = "MatrixGameWan"

    @property
    def expected_components(self) -> List[ComponentSpec]:
        return [
            ComponentSpec("scheduler", UniPCMultistepScheduler),
        ]

    @property
    def description(self) -> str:
        return "Step that sets the scheduler's timesteps for inference"

    @property
    def inputs(self) -> List[InputParam]:
        return [
            InputParam("num_inference_steps", default=4),
            InputParam("timesteps"),
            InputParam("sigmas"),
        ]

    @property
    def intermediate_outputs(self) -> List[OutputParam]:
        return [
            OutputParam("timesteps", type_hint=torch.Tensor, description="The timesteps to use for inference"),
            OutputParam(
                "num_inference_steps",
                type_hint=int,
                description="The number of denoising steps to perform at inference time",
            ),
        ]

    @torch.no_grad()
    def __call__(self, components: ModularPipeline, state: PipelineState) -> PipelineState:
        block_state = self.get_block_state(state)
        block_state.device = components._execution_device

        block_state.timesteps, block_state.num_inference_steps = retrieve_timesteps(
            components.scheduler,
            block_state.num_inference_steps,
            block_state.device,
            block_state.timesteps,
            block_state.sigmas,
        )

        self.set_block_state(state, block_state)
        return components, state


class MatrixGameWanPrepareLatentsStep(ModularPipelineBlocks):
    model_name = "MatrixGameWan"

    @property
    def expected_components(self) -> List[ComponentSpec]:
        return [ComponentSpec("vae", AutoencoderKLWan),]

    @property
    def description(self) -> str:
        return "Prepare latents step that prepares the latents for the text-to-video generation process"

    @property
    def inputs(self) -> List[InputParam]:
        return [
            InputParam("height", type_hint=int),
            InputParam("width", type_hint=int),
            InputParam("num_frames", type_hint=int),
            InputParam("latents", type_hint=Optional[torch.Tensor]),
            InputParam("num_videos_per_prompt", type_hint=int, default=1),
            InputParam("generator"),
            InputParam("dtype", type_hint=torch.dtype, description="The dtype of the model inputs"),
        ]

    @property
    def intermediate_outputs(self) -> List[OutputParam]:
        return [
            OutputParam(
                "latents", type_hint=torch.Tensor, description="The initial latents to use for the denoising process"
            )
        ]

    @staticmethod
    def check_inputs(components, block_state):
        if (block_state.height is not None and block_state.height % components.vae_scale_factor_spatial != 0) or (
            block_state.width is not None and block_state.width % components.vae_scale_factor_spatial != 0
        ):
            raise ValueError(
                f"`height` and `width` have to be divisible by {components.vae_scale_factor_spatial} but are {block_state.height} and {block_state.width}."
            )
        if block_state.num_frames is not None and (
            block_state.num_frames < 1 or (block_state.num_frames - 1) % components.vae_scale_factor_temporal != 0
        ):
            raise ValueError(
                f"`num_frames` has to be greater than 0, and (num_frames - 1) must be divisible by {components.vae_scale_factor_temporal}, but got {block_state.num_frames}."
            )

    @staticmethod
    def prepare_latents(
        components,
        batch_size: int,
        num_channels_latents: int = 16,
        height: int = 352,
        width: int = 640,
        num_frames: int = 81,
        dtype: Optional[torch.dtype] = None,
        device: Optional[torch.device] = None,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        if latents is not None:
            return latents.to(device=device, dtype=dtype)

        num_latent_frames = (num_frames - 1) // components.vae_scale_factor_temporal + 1
        shape = (
            batch_size,
            num_channels_latents,
            num_latent_frames,
            int(height) // components.vae_scale_factor_spatial,
            int(width) // components.vae_scale_factor_spatial,
        )
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
        return latents

    @torch.no_grad()
    def __call__(self, components: ModularPipeline, state: PipelineState) -> PipelineState:
        block_state = self.get_block_state(state)

        block_state.height = block_state.height or components.default_height
        block_state.width = block_state.width or components.default_width
        block_state.num_frames = block_state.num_frames or components.default_num_frames
        block_state.device = components._execution_device
        block_state.dtype = torch.float32  # Wan latents should be torch.float32 for best quality
        block_state.num_channels_latents = components.num_channels_latents

        self.check_inputs(components, block_state)

        block_state.latents = self.prepare_latents(
            components,
            1,
            block_state.num_channels_latents,
            block_state.height,
            block_state.width,
            block_state.num_frames,
            block_state.dtype,
            block_state.device,
            block_state.generator,
            block_state.latents,
        )

        self.set_block_state(state, block_state)

        return components, state


class MatrixGameWanPrepareImageMaskLatentsStep(ModularPipelineBlocks):
    model_name = "MatrixGameWan"

    @property
    def expected_components(self) -> List[ComponentSpec]:
        return [
            ComponentSpec("vae", AutoencoderKLWan),
            ComponentSpec("video_processor", VideoProcessor, config=FrozenDict({"vae_scale_factor": 8}))
        ]

    @property
    def description(self) -> str:
        return "Prepare latents step that prepares the latents for the text-to-video generation process"

    @property
    def inputs(self) -> List[InputParam]:
        return [
            InputParam("image"),
            InputParam("height", type_hint=int),
            InputParam("width", type_hint=int),
            InputParam("num_frames", type_hint=int),
            InputParam("image_mask_latents", type_hint=Optional[torch.Tensor]),
            InputParam("num_videos_per_prompt", type_hint=int, default=1),
            InputParam("generator"),
            InputParam("dtype", type_hint=torch.dtype, description="The dtype of the model inputs"),
        ]

    @property
    def intermediate_outputs(self) -> List[OutputParam]:
        return [
            OutputParam(
                "image_mask_latents", type_hint=torch.Tensor, description="The initial latents to use for the denoising process"
            )
        ]

    @staticmethod
    def check_inputs(components, block_state):
        if (block_state.height is not None and block_state.height % components.vae_scale_factor_spatial != 0) or (
            block_state.width is not None and block_state.width % components.vae_scale_factor_spatial != 0
        ):
            raise ValueError(
                f"`height` and `width` have to be divisible by {components.vae_scale_factor_spatial} but are {block_state.height} and {block_state.width}."
            )

    @staticmethod
    @torch.no_grad()
    def prepare_latents(
        components,
        image,
        batch_size: int,
        num_channels_latents: int = 16,
        height: int = 352,
        width: int = 640,
        num_frames: int = 81,
        dtype: Optional[torch.dtype] = None,
        device: Optional[torch.device] = None,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.Tensor] = None,
    ) -> torch.Tensor:
        if latents is not None:
            return latents.to(device=device, dtype=dtype)

        image = components.video_processor.preprocess(image, height, width).to(device, torch.float32)
        image = image.unsqueeze(2)  # [batch_size, channels, 1, height, width]

        video_condition = torch.cat(
            [image, image.new_zeros(image.shape[0], image.shape[1], num_frames - 1, height, width)], dim=2
        )
        video_condition = video_condition.to(device=device, dtype=components.vae.dtype)
        latent_condition = retrieve_latents(components.vae.encode(video_condition), sample_mode="argmax")
        latent_condition = latent_condition.repeat(batch_size, 1, 1, 1, 1)

        latents_mean = (
            torch.tensor(components.vae.config.latents_mean)
            .view(1, components.vae.config.z_dim, 1, 1, 1)
            .to(device, dtype)
        )
        latents_std = 1.0 / torch.tensor(components.vae.config.latents_std).view(1, components.vae.config.z_dim, 1, 1, 1).to(
            device, dtype
        )
        latent_condition = latent_condition.to(dtype)
        latent_condition = (latent_condition - latents_mean) * latents_std

        latent_height = height // components.vae_scale_factor_spatial
        latent_width = width // components.vae_scale_factor_spatial

        mask_lat_size = torch.ones(batch_size, 1, num_frames, latent_height, latent_width)
        mask_lat_size[:, :, list(range(1, num_frames))] = 0

        first_frame_mask = mask_lat_size[:, :, 0:1]
        first_frame_mask = torch.repeat_interleave(first_frame_mask, dim=2, repeats=components.vae_scale_factor_temporal)

        mask_lat_size = torch.concat([first_frame_mask, mask_lat_size[:, :, 1:, :]], dim=2)
        mask_lat_size = mask_lat_size.view(batch_size, -1, components.vae_scale_factor_temporal, latent_height, latent_width)
        mask_lat_size = mask_lat_size.transpose(1, 2).to(latent_condition.device)

        image_mask_latents = torch.concat([mask_lat_size, latent_condition], dim=1)
        return image_mask_latents

    @torch.no_grad()
    def __call__(self, components: ModularPipeline, state: PipelineState) -> PipelineState:
        block_state = self.get_block_state(state)

        block_state.height = block_state.height or components.default_height
        block_state.width = block_state.width or components.default_width
        block_state.num_frames = block_state.num_frames or components.default_num_frames
        block_state.device = components._execution_device
        block_state.dtype = torch.float32  # Wan latents should be torch.float32 for best quality
        block_state.num_channels_latents = components.num_channels_latents

        self.check_inputs(components, block_state)
        block_state.image_mask_latents = self.prepare_latents(
            components,
            block_state.image,
            1,
            block_state.num_channels_latents,
            block_state.height,
            block_state.width,
            block_state.num_frames,
            block_state.dtype,
            block_state.device,
            block_state.generator,
            block_state.image_mask_latents,
        )

        self.set_block_state(state, block_state)

        return components, state