Commit
·
1d0ec1a
1
Parent(s):
8853f4b
Upload README.md
Browse filesAdded the README file
README.md
ADDED
|
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- generated_from_trainer
|
| 4 |
+
- code
|
| 5 |
+
- coding
|
| 6 |
+
- llama-2
|
| 7 |
+
model-index:
|
| 8 |
+
- name: Llama-2-7b-python-coder
|
| 9 |
+
results: []
|
| 10 |
+
license: apache-2.0
|
| 11 |
+
language:
|
| 12 |
+
- code
|
| 13 |
+
datasets:
|
| 14 |
+
- iamtarun/python_code_instructions_18k_alpaca
|
| 15 |
+
pipeline_tag: text-generation
|
| 16 |
+
---
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
# LlaMa 2 7B Python Coder using Unsloth 👩💻
|
| 20 |
+
|
| 21 |
+
**LlaMa-2 7b** fine-tuned on the **python_code_instructions_18k_alpaca Code instructions dataset** by using the library [Unsloth](https://github.com/unslothai/unsloth).
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
## Pretrained description
|
| 25 |
+
|
| 26 |
+
[Llama-2](https://huggingface.co/meta-llama/Llama-2-7b)
|
| 27 |
+
|
| 28 |
+
Meta developed and publicly released the Llama 2 family of large language models (LLMs), a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters.
|
| 29 |
+
|
| 30 |
+
Model Architecture Llama 2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align to human preferences for helpfulness and safety
|
| 31 |
+
|
| 32 |
+
## Training data
|
| 33 |
+
|
| 34 |
+
[python_code_instructions_18k_alpaca](https://huggingface.co/datasets/iamtarun/python_code_instructions_18k_alpaca)
|
| 35 |
+
|
| 36 |
+
The dataset contains problem descriptions and code in python language. This dataset is taken from sahil2801/code_instructions_120k, which adds a prompt column in alpaca style.
|
| 37 |
+
|
| 38 |
+
### Training hyperparameters
|
| 39 |
+
|
| 40 |
+
**SFTTrainer arguments**
|
| 41 |
+
```py
|
| 42 |
+
# Model Parameters
|
| 43 |
+
max_seq_length = 2048
|
| 44 |
+
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
|
| 45 |
+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
|
| 46 |
+
|
| 47 |
+
# LoRA Parameters
|
| 48 |
+
r = 16
|
| 49 |
+
target_modules = ["gate_proj", "up_proj", "down_proj"]
|
| 50 |
+
#target_modules = ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj",],
|
| 51 |
+
lora_alpha = 16
|
| 52 |
+
|
| 53 |
+
# Training parameters
|
| 54 |
+
learning_rate = 2e-4
|
| 55 |
+
weight_decay = 0.01
|
| 56 |
+
#Evaluation
|
| 57 |
+
evaluation_strategy="no"
|
| 58 |
+
eval_steps= 50
|
| 59 |
+
|
| 60 |
+
# if training in epochs
|
| 61 |
+
#num_train_epochs=2
|
| 62 |
+
#save_strategy="epoch"
|
| 63 |
+
|
| 64 |
+
# if training in steps
|
| 65 |
+
max_steps = 1500
|
| 66 |
+
save_strategy="steps"
|
| 67 |
+
save_steps=500
|
| 68 |
+
|
| 69 |
+
logging_steps=100
|
| 70 |
+
warmup_steps = 10
|
| 71 |
+
warmup_ratio=0.01
|
| 72 |
+
batch_size = 4
|
| 73 |
+
gradient_accumulation_steps = 4
|
| 74 |
+
lr_scheduler_type = "linear"
|
| 75 |
+
optimizer = "adamw_8bit"
|
| 76 |
+
use_gradient_checkpointing = True
|
| 77 |
+
random_state = 42
|
| 78 |
+
```
|
| 79 |
+
|
| 80 |
+
### Framework versions
|
| 81 |
+
- Unsloth
|
| 82 |
+
|
| 83 |
+
### Example of usage
|
| 84 |
+
|
| 85 |
+
```py
|
| 86 |
+
import torch
|
| 87 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 88 |
+
|
| 89 |
+
model_id = "edumunozsala/unsloth-llama-2-7B-python-coder"
|
| 90 |
+
|
| 91 |
+
# Load the entire model on the GPU 0
|
| 92 |
+
device_map = {"": 0}
|
| 93 |
+
|
| 94 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 95 |
+
|
| 96 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True, torch_dtype=torch.float16,
|
| 97 |
+
device_map="auto")
|
| 98 |
+
|
| 99 |
+
instruction="Write a Python function to display the first and last elements of a list."
|
| 100 |
+
input=""
|
| 101 |
+
|
| 102 |
+
prompt = f"""### Instruction:
|
| 103 |
+
Use the Task below and the Input given to write the Response, which is a programming code that can solve the Task.
|
| 104 |
+
|
| 105 |
+
### Task:
|
| 106 |
+
{instruction}
|
| 107 |
+
|
| 108 |
+
### Input:
|
| 109 |
+
{input}
|
| 110 |
+
|
| 111 |
+
### Response:
|
| 112 |
+
"""
|
| 113 |
+
|
| 114 |
+
input_ids = tokenizer(prompt, return_tensors="pt", truncation=True).input_ids.cuda()
|
| 115 |
+
# with torch.inference_mode():
|
| 116 |
+
outputs = model.generate(input_ids=input_ids, max_new_tokens=100, do_sample=True, top_p=0.9,temperature=0.3)
|
| 117 |
+
|
| 118 |
+
print(f"Prompt:\n{prompt}\n")
|
| 119 |
+
print(f"Generated instruction:\n{tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0][len(prompt):]}")
|
| 120 |
+
|
| 121 |
+
```
|
| 122 |
+
|
| 123 |
+
### Citation
|
| 124 |
+
|
| 125 |
+
```
|
| 126 |
+
@misc {edumunozsala_2023,
|
| 127 |
+
author = { {Eduardo Muñoz} },
|
| 128 |
+
title = { unsloth-llama-2-7B-python-coder },
|
| 129 |
+
year = 2024,
|
| 130 |
+
url = { https://huggingface.co/edumunozsala/unsloth-llama-2-7B-python-coder },
|
| 131 |
+
publisher = { Hugging Face }
|
| 132 |
+
}
|
| 133 |
+
```
|