Upload 3 files
Browse files- discriminator_final.h5 +3 -0
- generator_final.h5 +3 -0
- visible-to-thermal-f7984f.ipynb +1050 -0
discriminator_final.h5
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:be1a74166546ba9b56d53a6a00fcbb0b2ccf1c6efc2b11d5f79cf0b786562621
|
| 3 |
+
size 11140160
|
generator_final.h5
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:629fef04ed3743eee1185e94a738c6dd9609f01a31bb94dd469130ee7c8cf823
|
| 3 |
+
size 66766872
|
visible-to-thermal-f7984f.ipynb
ADDED
|
@@ -0,0 +1,1050 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 1,
|
| 6 |
+
"id": "2f21528f",
|
| 7 |
+
"metadata": {
|
| 8 |
+
"execution": {
|
| 9 |
+
"iopub.execute_input": "2025-10-20T07:03:19.866733Z",
|
| 10 |
+
"iopub.status.busy": "2025-10-20T07:03:19.866103Z",
|
| 11 |
+
"iopub.status.idle": "2025-10-20T07:03:34.800621Z",
|
| 12 |
+
"shell.execute_reply": "2025-10-20T07:03:34.799988Z"
|
| 13 |
+
},
|
| 14 |
+
"papermill": {
|
| 15 |
+
"duration": 14.941555,
|
| 16 |
+
"end_time": "2025-10-20T07:03:34.802099",
|
| 17 |
+
"exception": false,
|
| 18 |
+
"start_time": "2025-10-20T07:03:19.860544",
|
| 19 |
+
"status": "completed"
|
| 20 |
+
},
|
| 21 |
+
"tags": []
|
| 22 |
+
},
|
| 23 |
+
"outputs": [],
|
| 24 |
+
"source": [
|
| 25 |
+
"import tensorflow as tf\n",
|
| 26 |
+
"from tensorflow.keras import Model, Input\n",
|
| 27 |
+
"from tensorflow.keras.layers import Conv2D, Conv2DTranspose, LeakyReLU\n",
|
| 28 |
+
"from tensorflow.keras.optimizers import Adam\n",
|
| 29 |
+
"import numpy as np\n",
|
| 30 |
+
"import os, glob, time, matplotlib.pyplot as plt\n",
|
| 31 |
+
"\n",
|
| 32 |
+
"# -------------------- SETTINGS --------------------\n",
|
| 33 |
+
"IMG_SIZE = 256\n",
|
| 34 |
+
"BATCH_SIZE = 16\n",
|
| 35 |
+
"EPOCHS = 100\n",
|
| 36 |
+
"PRINT_INTERVAL = 100\n",
|
| 37 |
+
"SAVE_INTERVAL_EPOCHS = 5\n",
|
| 38 |
+
"OUTPUT_DIR = \"new/output\"\n",
|
| 39 |
+
"CKPT_DIR = \"new/ckpt\"\n",
|
| 40 |
+
"os.makedirs(OUTPUT_DIR, exist_ok=True)\n",
|
| 41 |
+
"os.makedirs(CKPT_DIR, exist_ok=True)\n",
|
| 42 |
+
"\n",
|
| 43 |
+
"# -------------------- DATASET --------------------\n",
|
| 44 |
+
"BASE_DIR = \"data\"\n",
|
| 45 |
+
"def load_image_pair(v_path, i_path):\n",
|
| 46 |
+
" vis = tf.image.decode_png(tf.io.read_file(v_path), channels=3)\n",
|
| 47 |
+
" ir = tf.image.decode_png(tf.io.read_file(i_path), channels=3)\n",
|
| 48 |
+
" vis = tf.image.resize(vis, (IMG_SIZE, IMG_SIZE))\n",
|
| 49 |
+
" ir = tf.image.resize(ir, (IMG_SIZE, IMG_SIZE))\n",
|
| 50 |
+
" vis = tf.cast(vis, tf.float32) / 127.5 - 1.0\n",
|
| 51 |
+
" ir = tf.cast(ir, tf.float32) / 127.5 - 1.0\n",
|
| 52 |
+
" return vis, ir\n",
|
| 53 |
+
"def augment(vis, ir):\n",
|
| 54 |
+
" vis = tf.image.random_brightness(vis, 0.1)\n",
|
| 55 |
+
" vis = tf.image.random_contrast(vis, 0.8, 1.2)\n",
|
| 56 |
+
" return vis,ir\n",
|
| 57 |
+
"\n",
|
| 58 |
+
"def make_dataset(v_dir, i_dir,train=True):\n",
|
| 59 |
+
" vis_files = sorted(glob.glob(os.path.join(v_dir, \"*\")))\n",
|
| 60 |
+
" ir_files = sorted(glob.glob(os.path.join(i_dir, \"*\")))\n",
|
| 61 |
+
" ds = tf.data.Dataset.from_tensor_slices((vis_files, ir_files))\n",
|
| 62 |
+
" ds = ds.map(load_image_pair, num_parallel_calls=tf.data.AUTOTUNE)\n",
|
| 63 |
+
" ds = ds.map(augment, num_parallel_calls=tf.data.AUTOTUNE)\n",
|
| 64 |
+
" ds = ds.shuffle(500, reshuffle_each_iteration=True)\n",
|
| 65 |
+
" ds = ds.batch(BATCH_SIZE).prefetch(tf.data.AUTOTUNE)\n",
|
| 66 |
+
" return ds"
|
| 67 |
+
]
|
| 68 |
+
},
|
| 69 |
+
{
|
| 70 |
+
"cell_type": "code",
|
| 71 |
+
"execution_count": 2,
|
| 72 |
+
"id": "d05541d3",
|
| 73 |
+
"metadata": {
|
| 74 |
+
"execution": {
|
| 75 |
+
"iopub.execute_input": "2025-10-20T07:03:34.810666Z",
|
| 76 |
+
"iopub.status.busy": "2025-10-20T07:03:34.809984Z",
|
| 77 |
+
"iopub.status.idle": "2025-10-20T07:03:36.136795Z",
|
| 78 |
+
"shell.execute_reply": "2025-10-20T07:03:36.135868Z"
|
| 79 |
+
},
|
| 80 |
+
"papermill": {
|
| 81 |
+
"duration": 1.332245,
|
| 82 |
+
"end_time": "2025-10-20T07:03:36.138219",
|
| 83 |
+
"exception": false,
|
| 84 |
+
"start_time": "2025-10-20T07:03:34.805974",
|
| 85 |
+
"status": "completed"
|
| 86 |
+
},
|
| 87 |
+
"tags": []
|
| 88 |
+
},
|
| 89 |
+
"outputs": [],
|
| 90 |
+
"source": [
|
| 91 |
+
"#train_ds = make_dataset(f\"{BASE_DIR}/train/visible\", f\"{BASE_DIR}/train/infrared\")"
|
| 92 |
+
]
|
| 93 |
+
},
|
| 94 |
+
{
|
| 95 |
+
"cell_type": "code",
|
| 96 |
+
"execution_count": 3,
|
| 97 |
+
"id": "c5fe4e05",
|
| 98 |
+
"metadata": {
|
| 99 |
+
"execution": {
|
| 100 |
+
"iopub.execute_input": "2025-10-20T07:03:36.146619Z",
|
| 101 |
+
"iopub.status.busy": "2025-10-20T07:03:36.146201Z",
|
| 102 |
+
"iopub.status.idle": "2025-10-20T07:03:37.528302Z",
|
| 103 |
+
"shell.execute_reply": "2025-10-20T07:03:37.527486Z"
|
| 104 |
+
},
|
| 105 |
+
"papermill": {
|
| 106 |
+
"duration": 1.387878,
|
| 107 |
+
"end_time": "2025-10-20T07:03:37.529837",
|
| 108 |
+
"exception": false,
|
| 109 |
+
"start_time": "2025-10-20T07:03:36.141959",
|
| 110 |
+
"status": "completed"
|
| 111 |
+
},
|
| 112 |
+
"tags": []
|
| 113 |
+
},
|
| 114 |
+
"outputs": [],
|
| 115 |
+
"source": [
|
| 116 |
+
"from tensorflow.keras.layers import Input, Conv2D, Conv2DTranspose, LeakyReLU, BatchNormalization, Concatenate, Activation, Dropout\n",
|
| 117 |
+
"from tensorflow.keras.models import Model\n",
|
| 118 |
+
"from tensorflow.keras.optimizers import Adam\n",
|
| 119 |
+
"\n",
|
| 120 |
+
"def build_generator(img_size=256, dropout_rate=0.05):\n",
|
| 121 |
+
" inp = Input(shape=(img_size, img_size, 3))\n",
|
| 122 |
+
"\n",
|
| 123 |
+
" # ---- Encoder ----\n",
|
| 124 |
+
" e1 = Conv2D(64, 4, strides=2, padding='same')(inp) # 128x128\n",
|
| 125 |
+
" e1 = LeakyReLU(0.2)(e1)\n",
|
| 126 |
+
"\n",
|
| 127 |
+
" e2 = Conv2D(128, 4, strides=2, padding='same')(e1) # 64x64\n",
|
| 128 |
+
" e2 = BatchNormalization()(e2)\n",
|
| 129 |
+
" e2 = LeakyReLU(0.2)(e2)\n",
|
| 130 |
+
"\n",
|
| 131 |
+
" e3 = Conv2D(256, 4, strides=2, padding='same')(e2) # 32x32\n",
|
| 132 |
+
" e3 = BatchNormalization()(e3)\n",
|
| 133 |
+
" e3 = LeakyReLU(0.2)(e3)\n",
|
| 134 |
+
"\n",
|
| 135 |
+
" e4 = Conv2D(512, 4, strides=2, padding='same')(e3) # 16x16\n",
|
| 136 |
+
" e4 = BatchNormalization()(e4)\n",
|
| 137 |
+
" e4 = LeakyReLU(0.2)(e4)\n",
|
| 138 |
+
"\n",
|
| 139 |
+
" # ---- Bottleneck ----\n",
|
| 140 |
+
" b = Conv2D(512, 4, strides=2, padding='same')(e4) # 8x8\n",
|
| 141 |
+
" b = Activation('relu')(b)\n",
|
| 142 |
+
" b = Dropout(dropout_rate)(b) # dropout in bottleneck\n",
|
| 143 |
+
"\n",
|
| 144 |
+
" # ---- Decoder ----\n",
|
| 145 |
+
" d1 = Conv2DTranspose(512, 4, strides=2, padding='same')(b) # 16x16\n",
|
| 146 |
+
" d1 = BatchNormalization()(d1)\n",
|
| 147 |
+
" d1 = Activation('relu')(d1)\n",
|
| 148 |
+
" d1 = Dropout(dropout_rate)(d1) # optional decoder dropout\n",
|
| 149 |
+
" d1 = Concatenate()([d1, e4])\n",
|
| 150 |
+
"\n",
|
| 151 |
+
" d2 = Conv2DTranspose(256, 4, strides=2, padding='same')(d1) # 32x32\n",
|
| 152 |
+
" d2 = BatchNormalization()(d2)\n",
|
| 153 |
+
" d2 = Activation('relu')(d2)\n",
|
| 154 |
+
" d2 = Dropout(dropout_rate)(d2)\n",
|
| 155 |
+
" d2 = Concatenate()([d2, e3])\n",
|
| 156 |
+
"\n",
|
| 157 |
+
" d3 = Conv2DTranspose(128, 4, strides=2, padding='same')(d2) # 64x64\n",
|
| 158 |
+
" d3 = BatchNormalization()(d3)\n",
|
| 159 |
+
" d3 = Activation('relu')(d3)\n",
|
| 160 |
+
" d3 = Dropout(dropout_rate)(d3)\n",
|
| 161 |
+
" d3 = Concatenate()([d3, e2])\n",
|
| 162 |
+
"\n",
|
| 163 |
+
" d4 = Conv2DTranspose(64, 4, strides=2, padding='same')(d3) # 128x128\n",
|
| 164 |
+
" d4 = BatchNormalization()(d4)\n",
|
| 165 |
+
" d4 = Activation('relu')(d4)\n",
|
| 166 |
+
" d4 = Dropout(dropout_rate)(d4)\n",
|
| 167 |
+
" d4 = Concatenate()([d4, e1])\n",
|
| 168 |
+
"\n",
|
| 169 |
+
" out = Conv2DTranspose(3, 4, strides=2, padding='same', activation='tanh')(d4) # 256x256\n",
|
| 170 |
+
"\n",
|
| 171 |
+
" return Model(inp, out, name=\"UNet_Generator\")\n",
|
| 172 |
+
"\n",
|
| 173 |
+
"\n",
|
| 174 |
+
"def build_small_discriminator(img_size=256, dropout_rate=0.2):\n",
|
| 175 |
+
" vis_inp = Input(shape=(img_size, img_size, 3))\n",
|
| 176 |
+
" ir_inp = Input(shape=(img_size, img_size, 3))\n",
|
| 177 |
+
" x = Concatenate()([vis_inp, ir_inp])\n",
|
| 178 |
+
" \n",
|
| 179 |
+
" x = Conv2D(64, 4, strides=2, padding='same')(x)\n",
|
| 180 |
+
" x = LeakyReLU(0.2)(x)\n",
|
| 181 |
+
"\n",
|
| 182 |
+
" x = Conv2D(128, 4, strides=2, padding='same')(x)\n",
|
| 183 |
+
" x = BatchNormalization()(x)\n",
|
| 184 |
+
" x = LeakyReLU(0.2)(x)\n",
|
| 185 |
+
" x = Dropout(dropout_rate)(x) # optional\n",
|
| 186 |
+
"\n",
|
| 187 |
+
" x = Conv2D(256, 4, strides=2, padding='same')(x)\n",
|
| 188 |
+
" x = BatchNormalization()(x)\n",
|
| 189 |
+
" x = LeakyReLU(0.2)(x)\n",
|
| 190 |
+
" x = Dropout(dropout_rate)(x)\n",
|
| 191 |
+
"\n",
|
| 192 |
+
" x = Conv2D(512, 4, strides=1, padding='same')(x)\n",
|
| 193 |
+
" x = BatchNormalization()(x)\n",
|
| 194 |
+
" x = LeakyReLU(0.2)(x)\n",
|
| 195 |
+
" x = Dropout(dropout_rate)(x)\n",
|
| 196 |
+
"\n",
|
| 197 |
+
" out = Conv2D(1, 4, strides=1, padding='same')(x)\n",
|
| 198 |
+
" return Model([vis_inp, ir_inp], out, name=\"CondPatchGAN_Discriminator\")\n",
|
| 199 |
+
"\n",
|
| 200 |
+
"\n",
|
| 201 |
+
"# Instantiate models\n",
|
| 202 |
+
"generator = build_generator(IMG_SIZE)\n",
|
| 203 |
+
"discriminator = build_small_discriminator(IMG_SIZE)\n",
|
| 204 |
+
"initial_lr = 2e-4\n",
|
| 205 |
+
"lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(\n",
|
| 206 |
+
" initial_learning_rate=initial_lr,\n",
|
| 207 |
+
" decay_steps=500, # number of steps before decay\n",
|
| 208 |
+
" decay_rate=0.96, # decay factor\n",
|
| 209 |
+
" staircase=True # True -> discrete steps\n",
|
| 210 |
+
")\n",
|
| 211 |
+
"\n",
|
| 212 |
+
"gen_opt = Adam(learning_rate=lr_schedule, beta_1=0.5)\n",
|
| 213 |
+
"disc_opt = Adam(learning_rate=lr_schedule, beta_1=0.5)"
|
| 214 |
+
]
|
| 215 |
+
},
|
| 216 |
+
{
|
| 217 |
+
"cell_type": "code",
|
| 218 |
+
"execution_count": 4,
|
| 219 |
+
"id": "1ffb77ec",
|
| 220 |
+
"metadata": {
|
| 221 |
+
"execution": {
|
| 222 |
+
"iopub.execute_input": "2025-10-20T07:03:38.403886Z",
|
| 223 |
+
"iopub.status.busy": "2025-10-20T07:03:38.403676Z",
|
| 224 |
+
"iopub.status.idle": "2025-10-20T07:03:38.410298Z",
|
| 225 |
+
"shell.execute_reply": "2025-10-20T07:03:38.409568Z"
|
| 226 |
+
},
|
| 227 |
+
"papermill": {
|
| 228 |
+
"duration": 0.011794,
|
| 229 |
+
"end_time": "2025-10-20T07:03:38.411366",
|
| 230 |
+
"exception": false,
|
| 231 |
+
"start_time": "2025-10-20T07:03:38.399572",
|
| 232 |
+
"status": "completed"
|
| 233 |
+
},
|
| 234 |
+
"tags": []
|
| 235 |
+
},
|
| 236 |
+
"outputs": [],
|
| 237 |
+
"source": [
|
| 238 |
+
"# -------------------- LOSSES --------------------\n",
|
| 239 |
+
"bce = tf.keras.losses.BinaryCrossentropy(from_logits=True)\n",
|
| 240 |
+
"\n",
|
| 241 |
+
"def perceptual_loss(y_true, y_pred):\n",
|
| 242 |
+
" return tf.reduce_mean(tf.abs(y_true - y_pred))\n",
|
| 243 |
+
"\n",
|
| 244 |
+
"def brightness_loss(y_true, y_pred):\n",
|
| 245 |
+
" true_b = tf.image.rgb_to_grayscale(y_true)\n",
|
| 246 |
+
" pred_b = tf.image.rgb_to_grayscale(y_pred)\n",
|
| 247 |
+
" return tf.reduce_mean(tf.abs(true_b - pred_b))\n",
|
| 248 |
+
"\n",
|
| 249 |
+
"def intensity_weighted_l1(y_true, y_pred): \n",
|
| 250 |
+
" weights = tf.abs(y_true) + 1 \n",
|
| 251 |
+
" return tf.reduce_mean(weights * tf.abs(y_true - y_pred))\n",
|
| 252 |
+
"\n",
|
| 253 |
+
"def ssim_loss(y_true, y_pred): \n",
|
| 254 |
+
" return -tf.reduce_mean(tf.image.ssim(y_true, y_pred, max_val=2.0)) \n",
|
| 255 |
+
"\n",
|
| 256 |
+
"def generator_adv_loss(fake_pred):\n",
|
| 257 |
+
" return bce(tf.ones_like(fake_pred), fake_pred)\n",
|
| 258 |
+
"\n",
|
| 259 |
+
"def discriminator_loss(real, fake):\n",
|
| 260 |
+
" real_loss = bce(tf.ones_like(real) * 0.9, real)\n",
|
| 261 |
+
" fake_loss = bce(tf.zeros_like(fake) + 0.1, fake)\n",
|
| 262 |
+
" return (real_loss + fake_loss) * 0.5\n",
|
| 263 |
+
"def generator_adv_loss(fake_pred):\n",
|
| 264 |
+
" return bce(tf.ones_like(fake_pred), fake_pred)\n",
|
| 265 |
+
"\n",
|
| 266 |
+
"def discriminator_loss(real, fake):\n",
|
| 267 |
+
"\n",
|
| 268 |
+
" real_loss = bce(tf.ones_like(real) * 0.9, real)\n",
|
| 269 |
+
" fake_loss = bce(tf.zeros_like(fake) + 0.1, fake)\n",
|
| 270 |
+
"\n",
|
| 271 |
+
" return (real_loss + fake_loss) * 0.5"
|
| 272 |
+
]
|
| 273 |
+
},
|
| 274 |
+
{
|
| 275 |
+
"cell_type": "code",
|
| 276 |
+
"execution_count": 5,
|
| 277 |
+
"id": "e7645bd3",
|
| 278 |
+
"metadata": {
|
| 279 |
+
"execution": {
|
| 280 |
+
"iopub.execute_input": "2025-10-20T07:03:38.419250Z",
|
| 281 |
+
"iopub.status.busy": "2025-10-20T07:03:38.418628Z",
|
| 282 |
+
"iopub.status.idle": "2025-10-20T07:03:38.425897Z",
|
| 283 |
+
"shell.execute_reply": "2025-10-20T07:03:38.425349Z"
|
| 284 |
+
},
|
| 285 |
+
"papermill": {
|
| 286 |
+
"duration": 0.012037,
|
| 287 |
+
"end_time": "2025-10-20T07:03:38.426854",
|
| 288 |
+
"exception": false,
|
| 289 |
+
"start_time": "2025-10-20T07:03:38.414817",
|
| 290 |
+
"status": "completed"
|
| 291 |
+
},
|
| 292 |
+
"tags": []
|
| 293 |
+
},
|
| 294 |
+
"outputs": [],
|
| 295 |
+
"source": [
|
| 296 |
+
"@tf.function\n",
|
| 297 |
+
"def train_step(input_vis, target_ir, adv_weight=1.0, noise_std=0.05):\n",
|
| 298 |
+
" with tf.GradientTape(persistent=True) as tape:\n",
|
| 299 |
+
" gen_out = generator(input_vis, training=True)\n",
|
| 300 |
+
" \n",
|
| 301 |
+
" # Add noise to D inputs (helps stabilize D)\n",
|
| 302 |
+
" noisy_real = target_ir \n",
|
| 303 |
+
" noisy_fake = gen_out \n",
|
| 304 |
+
" \n",
|
| 305 |
+
" real_pred = discriminator([input_vis, noisy_real], training=True)\n",
|
| 306 |
+
" fake_pred = discriminator([input_vis, noisy_fake], training=True)\n",
|
| 307 |
+
"\n",
|
| 308 |
+
" # Compute losses\n",
|
| 309 |
+
" p = perceptual_loss(target_ir, gen_out)\n",
|
| 310 |
+
" b = brightness_loss(target_ir, gen_out)\n",
|
| 311 |
+
" w = intensity_weighted_l1(target_ir, gen_out)\n",
|
| 312 |
+
" s = ssim_loss(target_ir, gen_out)\n",
|
| 313 |
+
" adv = generator_adv_loss(fake_pred)\n",
|
| 314 |
+
" gen_total = p*20.0 + b*2 + w*10.0 + s*1 + adv*adv_weight\n",
|
| 315 |
+
"\n",
|
| 316 |
+
" disc_total = discriminator_loss(real_pred, fake_pred)\n",
|
| 317 |
+
"\n",
|
| 318 |
+
" gen_grads = tape.gradient(gen_total, generator.trainable_variables)\n",
|
| 319 |
+
" disc_grads = tape.gradient(disc_total, discriminator.trainable_variables)\n",
|
| 320 |
+
" gen_grads, _ = tf.clip_by_global_norm(gen_grads, 5.0)\n",
|
| 321 |
+
" disc_grads, _ = tf.clip_by_global_norm(disc_grads, 5.0)\n",
|
| 322 |
+
" gen_opt.apply_gradients(zip(gen_grads, generator.trainable_variables))\n",
|
| 323 |
+
" disc_opt.apply_gradients(zip(disc_grads, discriminator.trainable_variables))\n",
|
| 324 |
+
" return gen_total, disc_total\n",
|
| 325 |
+
"\n",
|
| 326 |
+
"@tf.function\n",
|
| 327 |
+
"def val_step(input_vis, target_ir, adv_weight=1.0):\n",
|
| 328 |
+
" gen_out = generator(input_vis, training=False)\n",
|
| 329 |
+
" fake_pred = discriminator([input_vis, gen_out], training=False)\n",
|
| 330 |
+
" p = perceptual_loss(target_ir, gen_out)\n",
|
| 331 |
+
" b = brightness_loss(target_ir, gen_out)\n",
|
| 332 |
+
" w = intensity_weighted_l1(target_ir, gen_out)\n",
|
| 333 |
+
" s = ssim_loss(target_ir, gen_out)\n",
|
| 334 |
+
" adv = generator_adv_loss(fake_pred)\n",
|
| 335 |
+
" gen_total = p*20.0 + b*2 + w*10.0 + s*1 + adv*adv_weight\n",
|
| 336 |
+
" return gen_total"
|
| 337 |
+
]
|
| 338 |
+
},
|
| 339 |
+
{
|
| 340 |
+
"cell_type": "code",
|
| 341 |
+
"execution_count": 6,
|
| 342 |
+
"id": "f9166e0b",
|
| 343 |
+
"metadata": {
|
| 344 |
+
"execution": {
|
| 345 |
+
"iopub.execute_input": "2025-10-20T07:03:38.434108Z",
|
| 346 |
+
"iopub.status.busy": "2025-10-20T07:03:38.433926Z",
|
| 347 |
+
"iopub.status.idle": "2025-10-20T07:03:38.439152Z",
|
| 348 |
+
"shell.execute_reply": "2025-10-20T07:03:38.438642Z"
|
| 349 |
+
},
|
| 350 |
+
"papermill": {
|
| 351 |
+
"duration": 0.010044,
|
| 352 |
+
"end_time": "2025-10-20T07:03:38.440202",
|
| 353 |
+
"exception": false,
|
| 354 |
+
"start_time": "2025-10-20T07:03:38.430158",
|
| 355 |
+
"status": "completed"
|
| 356 |
+
},
|
| 357 |
+
"tags": []
|
| 358 |
+
},
|
| 359 |
+
"outputs": [],
|
| 360 |
+
"source": [
|
| 361 |
+
"# -------------------- UTILITIES --------------------\n",
|
| 362 |
+
"def to_uint8(x):\n",
|
| 363 |
+
" x = (x + 1.0) * 127.5\n",
|
| 364 |
+
" return tf.cast(tf.clip_by_value(x, 0, 255), tf.uint8)\n",
|
| 365 |
+
"\n",
|
| 366 |
+
"def save_sample_images(model, val_ds, epoch):\n",
|
| 367 |
+
" os.makedirs(OUTPUT_DIR, exist_ok=True)\n",
|
| 368 |
+
" rows = []\n",
|
| 369 |
+
" for i, (v_inp, v_tar) in enumerate(val_ds.take(5)):\n",
|
| 370 |
+
" pred = model(v_inp, training=False)\n",
|
| 371 |
+
" vis = to_uint8(v_inp[0])\n",
|
| 372 |
+
" targ = to_uint8(v_tar[0])\n",
|
| 373 |
+
" gen = to_uint8(pred[0])\n",
|
| 374 |
+
" row = tf.concat([vis, targ, gen], axis=1)\n",
|
| 375 |
+
" rows.append(row)\n",
|
| 376 |
+
" grid = tf.concat(rows, axis=0)\n",
|
| 377 |
+
" out_path = os.path.join(OUTPUT_DIR, f\"epoch_{epoch:03d}.png\")\n",
|
| 378 |
+
" tf.keras.preprocessing.image.save_img(out_path, grid.numpy())\n",
|
| 379 |
+
" print(f\"πΌ Saved sample images to {out_path}\")"
|
| 380 |
+
]
|
| 381 |
+
},
|
| 382 |
+
{
|
| 383 |
+
"cell_type": "code",
|
| 384 |
+
"execution_count": 7,
|
| 385 |
+
"id": "c09e0933",
|
| 386 |
+
"metadata": {
|
| 387 |
+
"execution": {
|
| 388 |
+
"iopub.execute_input": "2025-10-20T07:03:38.447653Z",
|
| 389 |
+
"iopub.status.busy": "2025-10-20T07:03:38.447428Z",
|
| 390 |
+
"iopub.status.idle": "2025-10-20T07:03:38.451198Z",
|
| 391 |
+
"shell.execute_reply": "2025-10-20T07:03:38.450576Z"
|
| 392 |
+
},
|
| 393 |
+
"papermill": {
|
| 394 |
+
"duration": 0.008507,
|
| 395 |
+
"end_time": "2025-10-20T07:03:38.452143",
|
| 396 |
+
"exception": false,
|
| 397 |
+
"start_time": "2025-10-20T07:03:38.443636",
|
| 398 |
+
"status": "completed"
|
| 399 |
+
},
|
| 400 |
+
"tags": []
|
| 401 |
+
},
|
| 402 |
+
"outputs": [],
|
| 403 |
+
"source": [
|
| 404 |
+
"import os\n",
|
| 405 |
+
"import tensorflow as tf\n",
|
| 406 |
+
"\n",
|
| 407 |
+
"# Paths\n",
|
| 408 |
+
"WORKING_CKPT_DIR = \"new/ckpt\"\n",
|
| 409 |
+
"os.makedirs(WORKING_CKPT_DIR, exist_ok=True)\n"
|
| 410 |
+
]
|
| 411 |
+
},
|
| 412 |
+
{
|
| 413 |
+
"cell_type": "code",
|
| 414 |
+
"execution_count": 8,
|
| 415 |
+
"id": "de535ce2",
|
| 416 |
+
"metadata": {},
|
| 417 |
+
"outputs": [],
|
| 418 |
+
"source": [
|
| 419 |
+
"ckpt = tf.train.Checkpoint(generator=generator, discriminator=discriminator, gen_opt=gen_opt, disc_opt=disc_opt)\n",
|
| 420 |
+
"manager = tf.train.CheckpointManager(ckpt, CKPT_DIR, max_to_keep=5)"
|
| 421 |
+
]
|
| 422 |
+
},
|
| 423 |
+
{
|
| 424 |
+
"cell_type": "code",
|
| 425 |
+
"execution_count": 9,
|
| 426 |
+
"id": "90b6be9b",
|
| 427 |
+
"metadata": {
|
| 428 |
+
"execution": {
|
| 429 |
+
"iopub.execute_input": "2025-10-20T07:03:38.472856Z",
|
| 430 |
+
"iopub.status.busy": "2025-10-20T07:03:38.472285Z",
|
| 431 |
+
"iopub.status.idle": "2025-10-20T07:03:39.135324Z",
|
| 432 |
+
"shell.execute_reply": "2025-10-20T07:03:39.134544Z"
|
| 433 |
+
},
|
| 434 |
+
"papermill": {
|
| 435 |
+
"duration": 0.668272,
|
| 436 |
+
"end_time": "2025-10-20T07:03:39.136644",
|
| 437 |
+
"exception": false,
|
| 438 |
+
"start_time": "2025-10-20T07:03:38.468372",
|
| 439 |
+
"status": "completed"
|
| 440 |
+
},
|
| 441 |
+
"tags": []
|
| 442 |
+
},
|
| 443 |
+
"outputs": [
|
| 444 |
+
{
|
| 445 |
+
"name": "stdout",
|
| 446 |
+
"output_type": "stream",
|
| 447 |
+
"text": [
|
| 448 |
+
"β
Loaded checkpoint from new/ckpt\\best_val.ckpt-42\n"
|
| 449 |
+
]
|
| 450 |
+
}
|
| 451 |
+
],
|
| 452 |
+
"source": [
|
| 453 |
+
"input_ckpt = tf.train.latest_checkpoint(WORKING_CKPT_DIR)\n",
|
| 454 |
+
"if input_ckpt:\n",
|
| 455 |
+
" ckpt.restore(input_ckpt).expect_partial()\n",
|
| 456 |
+
" print(f\"β
Loaded checkpoint from {input_ckpt}\")\n",
|
| 457 |
+
"else:\n",
|
| 458 |
+
" print(\"β οΈ No checkpoint found in /kaggle/input, starting fresh.\")"
|
| 459 |
+
]
|
| 460 |
+
},
|
| 461 |
+
{
|
| 462 |
+
"cell_type": "code",
|
| 463 |
+
"execution_count": 10,
|
| 464 |
+
"id": "9df742f2",
|
| 465 |
+
"metadata": {
|
| 466 |
+
"execution": {
|
| 467 |
+
"iopub.execute_input": "2025-10-20T07:03:39.144718Z",
|
| 468 |
+
"iopub.status.busy": "2025-10-20T07:03:39.144465Z",
|
| 469 |
+
"iopub.status.idle": "2025-10-20T07:03:39.151276Z",
|
| 470 |
+
"shell.execute_reply": "2025-10-20T07:03:39.150570Z"
|
| 471 |
+
},
|
| 472 |
+
"papermill": {
|
| 473 |
+
"duration": 0.01204,
|
| 474 |
+
"end_time": "2025-10-20T07:03:39.152328",
|
| 475 |
+
"exception": false,
|
| 476 |
+
"start_time": "2025-10-20T07:03:39.140288",
|
| 477 |
+
"status": "completed"
|
| 478 |
+
},
|
| 479 |
+
"tags": []
|
| 480 |
+
},
|
| 481 |
+
"outputs": [],
|
| 482 |
+
"source": [
|
| 483 |
+
"# -------------------- TRAIN LOOP --------------------\n",
|
| 484 |
+
"\n",
|
| 485 |
+
"from time import time \n",
|
| 486 |
+
"def train(train_ds, val_ds, epochs=EPOCHS):\n",
|
| 487 |
+
" best_val_loss = 50.0\n",
|
| 488 |
+
" step = 0\n",
|
| 489 |
+
" ckpt = tf.train.Checkpoint(generator=generator, discriminator=discriminator, gen_opt=gen_opt, disc_opt=disc_opt)\n",
|
| 490 |
+
" manager = tf.train.CheckpointManager(ckpt, CKPT_DIR, max_to_keep=5)\n",
|
| 491 |
+
"\n",
|
| 492 |
+
" for epoch in range(1, epochs + 1):\n",
|
| 493 |
+
" start = time()\n",
|
| 494 |
+
" g_losses, d_losses = [], []\n",
|
| 495 |
+
" for vis, ir in train_ds:\n",
|
| 496 |
+
" g_loss, d_loss = train_step(vis, ir)\n",
|
| 497 |
+
" g_losses.append(g_loss)\n",
|
| 498 |
+
" d_losses.append(d_loss)\n",
|
| 499 |
+
" step += 1\n",
|
| 500 |
+
" print(f\"time {time()-start} | G={tf.reduce_mean(g_losses):.4f} | D={tf.reduce_mean(d_losses):.4f}\")\n",
|
| 501 |
+
" \n",
|
| 502 |
+
" # Validation\n",
|
| 503 |
+
" val_losses = [val_step(v, i) for v, i in val_ds]\n",
|
| 504 |
+
" val_mean = tf.reduce_mean(val_losses)\n",
|
| 505 |
+
" print(f\"Epoch {epoch}/{epochs} | Val_loss={val_mean:.4f}\")\n",
|
| 506 |
+
"\n",
|
| 507 |
+
" # Save samples and checkpoints\n",
|
| 508 |
+
" save_sample_images(generator, val_ds, epoch)\n",
|
| 509 |
+
" if val_mean < best_val_loss:\n",
|
| 510 |
+
" best_val_loss = val_mean\n",
|
| 511 |
+
" ckpt_save_path = os.path.join(WORKING_CKPT_DIR, \"best_val.ckpt\")\n",
|
| 512 |
+
" ckpt.save(ckpt_save_path)\n",
|
| 513 |
+
" print(f\"π Best checkpoint updated at {ckpt_save_path} | val_loss={val_mean:.4f}\")\n",
|
| 514 |
+
" if epoch % SAVE_INTERVAL_EPOCHS == 0:\n",
|
| 515 |
+
" manager.save()\n",
|
| 516 |
+
" print(f\"πΎ Checkpoint saved at epoch {epoch}\")\n",
|
| 517 |
+
"\n",
|
| 518 |
+
" generator.save(os.path.join(OUTPUT_DIR, \"generator_final.h5\"))\n",
|
| 519 |
+
" discriminator.save(os.path.join(OUTPUT_DIR, \"discriminator_final.h5\"))\n",
|
| 520 |
+
" print(\"β
Training complete and models saved!\")"
|
| 521 |
+
]
|
| 522 |
+
},
|
| 523 |
+
{
|
| 524 |
+
"cell_type": "code",
|
| 525 |
+
"execution_count": 11,
|
| 526 |
+
"id": "a331caff",
|
| 527 |
+
"metadata": {
|
| 528 |
+
"execution": {
|
| 529 |
+
"iopub.execute_input": "2025-10-20T07:03:39.160218Z",
|
| 530 |
+
"iopub.status.busy": "2025-10-20T07:03:39.159814Z",
|
| 531 |
+
"iopub.status.idle": "2025-10-20T07:03:39.287611Z",
|
| 532 |
+
"shell.execute_reply": "2025-10-20T07:03:39.286778Z"
|
| 533 |
+
},
|
| 534 |
+
"papermill": {
|
| 535 |
+
"duration": 0.133149,
|
| 536 |
+
"end_time": "2025-10-20T07:03:39.289009",
|
| 537 |
+
"exception": false,
|
| 538 |
+
"start_time": "2025-10-20T07:03:39.155860",
|
| 539 |
+
"status": "completed"
|
| 540 |
+
},
|
| 541 |
+
"tags": []
|
| 542 |
+
},
|
| 543 |
+
"outputs": [],
|
| 544 |
+
"source": [
|
| 545 |
+
"#test_ds = make_dataset(f\"{BASE_DIR}/train/visible\", f\"{BASE_DIR}/train/infrared\")"
|
| 546 |
+
]
|
| 547 |
+
},
|
| 548 |
+
{
|
| 549 |
+
"cell_type": "code",
|
| 550 |
+
"execution_count": 12,
|
| 551 |
+
"id": "8c10ff7d",
|
| 552 |
+
"metadata": {
|
| 553 |
+
"execution": {
|
| 554 |
+
"iopub.execute_input": "2025-10-20T07:03:39.297249Z",
|
| 555 |
+
"iopub.status.busy": "2025-10-20T07:03:39.296775Z",
|
| 556 |
+
"iopub.status.idle": "2025-10-20T07:03:39.301287Z",
|
| 557 |
+
"shell.execute_reply": "2025-10-20T07:03:39.300656Z"
|
| 558 |
+
},
|
| 559 |
+
"papermill": {
|
| 560 |
+
"duration": 0.009607,
|
| 561 |
+
"end_time": "2025-10-20T07:03:39.302268",
|
| 562 |
+
"exception": false,
|
| 563 |
+
"start_time": "2025-10-20T07:03:39.292661",
|
| 564 |
+
"status": "completed"
|
| 565 |
+
},
|
| 566 |
+
"tags": []
|
| 567 |
+
},
|
| 568 |
+
"outputs": [],
|
| 569 |
+
"source": [
|
| 570 |
+
"# import tensorflow as tf\n",
|
| 571 |
+
"\n",
|
| 572 |
+
"# num_elements = tf.data.experimental.cardinality(train_ds).numpy()\n",
|
| 573 |
+
"# print(num_elements)"
|
| 574 |
+
]
|
| 575 |
+
},
|
| 576 |
+
{
|
| 577 |
+
"cell_type": "code",
|
| 578 |
+
"execution_count": 13,
|
| 579 |
+
"id": "9690af89",
|
| 580 |
+
"metadata": {
|
| 581 |
+
"execution": {
|
| 582 |
+
"iopub.execute_input": "2025-10-20T07:03:39.310045Z",
|
| 583 |
+
"iopub.status.busy": "2025-10-20T07:03:39.309644Z",
|
| 584 |
+
"iopub.status.idle": "2025-10-20T07:03:39.319137Z",
|
| 585 |
+
"shell.execute_reply": "2025-10-20T07:03:39.318632Z"
|
| 586 |
+
},
|
| 587 |
+
"papermill": {
|
| 588 |
+
"duration": 0.014508,
|
| 589 |
+
"end_time": "2025-10-20T07:03:39.320245",
|
| 590 |
+
"exception": false,
|
| 591 |
+
"start_time": "2025-10-20T07:03:39.305737",
|
| 592 |
+
"status": "completed"
|
| 593 |
+
},
|
| 594 |
+
"tags": []
|
| 595 |
+
},
|
| 596 |
+
"outputs": [],
|
| 597 |
+
"source": [
|
| 598 |
+
"# val_ds = train_ds.take(num_elements * 0.1)\n",
|
| 599 |
+
"# train_ds = train_ds.skip(num_elements * 0.1)"
|
| 600 |
+
]
|
| 601 |
+
},
|
| 602 |
+
{
|
| 603 |
+
"cell_type": "code",
|
| 604 |
+
"execution_count": null,
|
| 605 |
+
"id": "6a74164a",
|
| 606 |
+
"metadata": {
|
| 607 |
+
"papermill": {
|
| 608 |
+
"duration": 0.003313,
|
| 609 |
+
"end_time": "2025-10-20T07:03:39.327070",
|
| 610 |
+
"exception": false,
|
| 611 |
+
"start_time": "2025-10-20T07:03:39.323757",
|
| 612 |
+
"status": "completed"
|
| 613 |
+
},
|
| 614 |
+
"tags": []
|
| 615 |
+
},
|
| 616 |
+
"outputs": [],
|
| 617 |
+
"source": []
|
| 618 |
+
},
|
| 619 |
+
{
|
| 620 |
+
"cell_type": "code",
|
| 621 |
+
"execution_count": 14,
|
| 622 |
+
"id": "ddf341ff",
|
| 623 |
+
"metadata": {
|
| 624 |
+
"execution": {
|
| 625 |
+
"iopub.execute_input": "2025-10-20T07:03:39.334784Z",
|
| 626 |
+
"iopub.status.busy": "2025-10-20T07:03:39.334320Z",
|
| 627 |
+
"iopub.status.idle": "2025-10-20T07:05:21.060089Z",
|
| 628 |
+
"shell.execute_reply": "2025-10-20T07:05:21.059479Z"
|
| 629 |
+
},
|
| 630 |
+
"papermill": {
|
| 631 |
+
"duration": 101.734509,
|
| 632 |
+
"end_time": "2025-10-20T07:05:21.064884",
|
| 633 |
+
"exception": false,
|
| 634 |
+
"start_time": "2025-10-20T07:03:39.330375",
|
| 635 |
+
"status": "completed"
|
| 636 |
+
},
|
| 637 |
+
"tags": []
|
| 638 |
+
},
|
| 639 |
+
"outputs": [],
|
| 640 |
+
"source": [
|
| 641 |
+
"# import matplotlib.pyplot as plt\n",
|
| 642 |
+
"# import tensorflow as tf\n",
|
| 643 |
+
"# import numpy as np\n",
|
| 644 |
+
"\n",
|
| 645 |
+
"# def to_uint8(x):\n",
|
| 646 |
+
"# \"\"\"Convert tensor from [-1,1] β uint8 [0,255].\"\"\"\n",
|
| 647 |
+
"# x = (x + 1.0) * 127.5\n",
|
| 648 |
+
"# x = tf.clip_by_value(x, 0, 255)\n",
|
| 649 |
+
"# return tf.cast(x, tf.uint8)\n",
|
| 650 |
+
"\n",
|
| 651 |
+
"# # Shuffle the dataset to take random samples\n",
|
| 652 |
+
"# train_ds_shuffled = train_ds.shuffle(buffer_size=1000, reshuffle_each_iteration=True)\n",
|
| 653 |
+
"\n",
|
| 654 |
+
"# # Take 10 images\n",
|
| 655 |
+
"# sample_ds = train_ds_shuffled.take(10)\n",
|
| 656 |
+
"\n",
|
| 657 |
+
"# # Plot RGB and IR pairs side by side\n",
|
| 658 |
+
"# fig, axes = plt.subplots(10, 2, figsize=(6, 30))\n",
|
| 659 |
+
"\n",
|
| 660 |
+
"# for i, (vis, ir) in enumerate(sample_ds):\n",
|
| 661 |
+
"# # If batch size > 1, take the first image in the batch\n",
|
| 662 |
+
"# vis_img = vis[0].numpy() if vis.shape[0] > 1 else vis.numpy()[0]\n",
|
| 663 |
+
"# ir_img = ir[0].numpy() if ir.shape[0] > 1 else ir.numpy()[0]\n",
|
| 664 |
+
"\n",
|
| 665 |
+
"# # Denormalize\n",
|
| 666 |
+
"# vis_img = to_uint8(vis_img)\n",
|
| 667 |
+
"# ir_img = to_uint8(ir_img)\n",
|
| 668 |
+
"# # print(vis_img)\n",
|
| 669 |
+
"# # print(ir_img)\n",
|
| 670 |
+
"\n",
|
| 671 |
+
"# # Plot RGB input\n",
|
| 672 |
+
"# axes[i, 0].imshow(vis_img.numpy())\n",
|
| 673 |
+
"# axes[i, 0].set_title('RGB Input')\n",
|
| 674 |
+
"# axes[i, 0].axis('off')\n",
|
| 675 |
+
"\n",
|
| 676 |
+
"# # Plot IR output\n",
|
| 677 |
+
"# if ir_img.shape[-1] == 1: # single-channel IR\n",
|
| 678 |
+
"# axes[i, 1].imshow(ir_img.numpy().squeeze(), cmap='gray')\n",
|
| 679 |
+
"# else:\n",
|
| 680 |
+
"# axes[i, 1].imshow(ir_img.numpy())\n",
|
| 681 |
+
"# axes[i, 1].set_title('IR Output')\n",
|
| 682 |
+
"# axes[i, 1].axis('off')\n",
|
| 683 |
+
"# os.makedirs(OUTPUT_DIR, exist_ok=True)\n",
|
| 684 |
+
"# save_path = os.path.join(OUTPUT_DIR, 'rgb_ir_pairs.png')\n",
|
| 685 |
+
"# plt.savefig(save_path)\n",
|
| 686 |
+
"# plt.close() \n",
|
| 687 |
+
"# print(f\"Saved visualization to {save_path}\")"
|
| 688 |
+
]
|
| 689 |
+
},
|
| 690 |
+
{
|
| 691 |
+
"cell_type": "code",
|
| 692 |
+
"execution_count": 15,
|
| 693 |
+
"id": "ba0c423b",
|
| 694 |
+
"metadata": {
|
| 695 |
+
"execution": {
|
| 696 |
+
"iopub.execute_input": "2025-10-20T07:05:21.073518Z",
|
| 697 |
+
"iopub.status.busy": "2025-10-20T07:05:21.072865Z",
|
| 698 |
+
"iopub.status.idle": "2025-10-20T13:26:23.243918Z",
|
| 699 |
+
"shell.execute_reply": "2025-10-20T13:26:23.243151Z"
|
| 700 |
+
},
|
| 701 |
+
"papermill": {
|
| 702 |
+
"duration": 22862.17716,
|
| 703 |
+
"end_time": "2025-10-20T13:26:23.245759",
|
| 704 |
+
"exception": false,
|
| 705 |
+
"start_time": "2025-10-20T07:05:21.068599",
|
| 706 |
+
"status": "completed"
|
| 707 |
+
},
|
| 708 |
+
"tags": []
|
| 709 |
+
},
|
| 710 |
+
"outputs": [],
|
| 711 |
+
"source": [
|
| 712 |
+
"#train(train_ds, val_ds, epochs=EPOCHS)"
|
| 713 |
+
]
|
| 714 |
+
},
|
| 715 |
+
{
|
| 716 |
+
"cell_type": "code",
|
| 717 |
+
"execution_count": 16,
|
| 718 |
+
"id": "7a020d03",
|
| 719 |
+
"metadata": {
|
| 720 |
+
"execution": {
|
| 721 |
+
"iopub.execute_input": "2025-10-20T13:26:23.281045Z",
|
| 722 |
+
"iopub.status.busy": "2025-10-20T13:26:23.280518Z",
|
| 723 |
+
"iopub.status.idle": "2025-10-20T13:26:55.305284Z",
|
| 724 |
+
"shell.execute_reply": "2025-10-20T13:26:55.304379Z"
|
| 725 |
+
},
|
| 726 |
+
"papermill": {
|
| 727 |
+
"duration": 32.043319,
|
| 728 |
+
"end_time": "2025-10-20T13:26:55.306642",
|
| 729 |
+
"exception": false,
|
| 730 |
+
"start_time": "2025-10-20T13:26:23.263323",
|
| 731 |
+
"status": "completed"
|
| 732 |
+
},
|
| 733 |
+
"tags": []
|
| 734 |
+
},
|
| 735 |
+
"outputs": [],
|
| 736 |
+
"source": [
|
| 737 |
+
"import tensorflow as tf\n",
|
| 738 |
+
"from tqdm import tqdm\n",
|
| 739 |
+
"import numpy as np\n",
|
| 740 |
+
"\n",
|
| 741 |
+
"model = tf.keras.models.load_model(\"generator_final.h5\",compile=False)\n",
|
| 742 |
+
"\n",
|
| 743 |
+
"# Load test dataset\n",
|
| 744 |
+
"test_ds = make_dataset(f\"{BASE_DIR}/train/visible\", f\"{BASE_DIR}/train/infrared\",train=False)\n",
|
| 745 |
+
"def l1_loss(y_true, y_pred):\n",
|
| 746 |
+
" return tf.reduce_mean(tf.abs(y_true - y_pred))\n",
|
| 747 |
+
"def evaluate(test_ds):\n",
|
| 748 |
+
" l1_list, psnr_list, ssim_list = [], [], []\n",
|
| 749 |
+
" for vis, ir in tqdm(test_ds):\n",
|
| 750 |
+
" pred = generator(vis, training=False)\n",
|
| 751 |
+
" l1 = l1_loss(ir, pred).numpy()\n",
|
| 752 |
+
" psnr = tf.image.psnr(ir, pred, max_val=2.0).numpy()\n",
|
| 753 |
+
" ssim = tf.image.ssim(ir, pred, max_val=2.0).numpy()\n",
|
| 754 |
+
"\n",
|
| 755 |
+
" l1_list.append(l1)\n",
|
| 756 |
+
" psnr_list.append(np.mean(psnr))\n",
|
| 757 |
+
" ssim_list.append(np.mean(ssim))\n",
|
| 758 |
+
"\n",
|
| 759 |
+
" print(\"==== Test Dataset Metrics ====\")\n",
|
| 760 |
+
" print(f\"L1 Loss : {np.mean(l1_list):.4f}\")\n",
|
| 761 |
+
" print(f\"PSNR : {np.mean(psnr_list):.4f}\")\n",
|
| 762 |
+
" print(f\"SSIM : {np.mean(ssim_list):.4f}\")\n",
|
| 763 |
+
"\n",
|
| 764 |
+
"\n",
|
| 765 |
+
"# -------------------- TEST INFERENCE SIDE BY SIDE --------------------\n",
|
| 766 |
+
"def test_and_save_predictions(test_ds, save_dir=\"output/test_results\"):\n",
|
| 767 |
+
" os.makedirs(save_dir, exist_ok=True)\n",
|
| 768 |
+
" l1_list, psnr_list, ssim_list = [], [], []\n",
|
| 769 |
+
"\n",
|
| 770 |
+
" for idx, (vis, ir) in enumerate(tqdm(test_ds)):\n",
|
| 771 |
+
" pred = generator(vis, training=False)\n",
|
| 772 |
+
"\n",
|
| 773 |
+
" # Metrics\n",
|
| 774 |
+
" l1 = tf.reduce_mean(tf.abs(ir - pred)).numpy()\n",
|
| 775 |
+
" psnr = tf.reduce_mean(tf.image.psnr(ir, pred, max_val=2.0)).numpy()\n",
|
| 776 |
+
" ssim = tf.reduce_mean(tf.image.ssim(ir, pred, max_val=2.0)).numpy()\n",
|
| 777 |
+
" l1_list.append(l1)\n",
|
| 778 |
+
" psnr_list.append(psnr)\n",
|
| 779 |
+
" ssim_list.append(ssim)\n",
|
| 780 |
+
"\n",
|
| 781 |
+
" # Side-by-side image saving\n",
|
| 782 |
+
" for i in range(vis.shape[0]):\n",
|
| 783 |
+
" vis_img = to_uint8(vis[i])\n",
|
| 784 |
+
" ir_img = to_uint8(ir[i])\n",
|
| 785 |
+
" gen_img = to_uint8(pred[i])\n",
|
| 786 |
+
" row = tf.concat([vis_img, ir_img, gen_img], axis=1)\n",
|
| 787 |
+
" save_path = os.path.join(save_dir, f\"test_{idx*vis.shape[0]+i:03d}.png\")\n",
|
| 788 |
+
" tf.keras.preprocessing.image.save_img(save_path, row.numpy())\n",
|
| 789 |
+
"\n",
|
| 790 |
+
" print(\"==== Test Dataset Metrics ====\")\n",
|
| 791 |
+
" print(f\"L1 Loss : {np.mean(l1_list):.4f}\")\n",
|
| 792 |
+
" print(f\"PSNR : {np.mean(psnr_list):.4f}\")\n",
|
| 793 |
+
" print(f\"SSIM : {np.mean(ssim_list):.4f}\")\n",
|
| 794 |
+
" print(f\"All predictions saved to {save_dir}\")\n",
|
| 795 |
+
"\n",
|
| 796 |
+
"#evaluate(test_ds)\n"
|
| 797 |
+
]
|
| 798 |
+
},
|
| 799 |
+
{
|
| 800 |
+
"cell_type": "code",
|
| 801 |
+
"execution_count": 17,
|
| 802 |
+
"id": "b0a9832b",
|
| 803 |
+
"metadata": {
|
| 804 |
+
"execution": {
|
| 805 |
+
"iopub.execute_input": "2025-10-20T13:26:55.355553Z",
|
| 806 |
+
"iopub.status.busy": "2025-10-20T13:26:55.354912Z",
|
| 807 |
+
"iopub.status.idle": "2025-10-20T13:31:04.873369Z",
|
| 808 |
+
"shell.execute_reply": "2025-10-20T13:31:04.872355Z"
|
| 809 |
+
},
|
| 810 |
+
"papermill": {
|
| 811 |
+
"duration": 249.544369,
|
| 812 |
+
"end_time": "2025-10-20T13:31:04.874842",
|
| 813 |
+
"exception": false,
|
| 814 |
+
"start_time": "2025-10-20T13:26:55.330473",
|
| 815 |
+
"status": "completed"
|
| 816 |
+
},
|
| 817 |
+
"tags": []
|
| 818 |
+
},
|
| 819 |
+
"outputs": [],
|
| 820 |
+
"source": [
|
| 821 |
+
"#test_and_save_predictions(test_ds)"
|
| 822 |
+
]
|
| 823 |
+
},
|
| 824 |
+
{
|
| 825 |
+
"cell_type": "code",
|
| 826 |
+
"execution_count": 18,
|
| 827 |
+
"id": "b3b09c3c",
|
| 828 |
+
"metadata": {
|
| 829 |
+
"execution": {
|
| 830 |
+
"iopub.execute_input": "2025-10-20T13:31:04.941670Z",
|
| 831 |
+
"iopub.status.busy": "2025-10-20T13:31:04.941353Z",
|
| 832 |
+
"iopub.status.idle": "2025-10-20T13:44:19.143047Z",
|
| 833 |
+
"shell.execute_reply": "2025-10-20T13:44:19.142083Z"
|
| 834 |
+
},
|
| 835 |
+
"papermill": {
|
| 836 |
+
"duration": 794.236367,
|
| 837 |
+
"end_time": "2025-10-20T13:44:19.144324",
|
| 838 |
+
"exception": false,
|
| 839 |
+
"start_time": "2025-10-20T13:31:04.907957",
|
| 840 |
+
"status": "completed"
|
| 841 |
+
},
|
| 842 |
+
"tags": []
|
| 843 |
+
},
|
| 844 |
+
"outputs": [],
|
| 845 |
+
"source": [
|
| 846 |
+
"#test_and_save_predictions(train_ds,save_dir=\"output/train_results\")"
|
| 847 |
+
]
|
| 848 |
+
},
|
| 849 |
+
{
|
| 850 |
+
"cell_type": "code",
|
| 851 |
+
"execution_count": null,
|
| 852 |
+
"id": "e627ddf6",
|
| 853 |
+
"metadata": {},
|
| 854 |
+
"outputs": [
|
| 855 |
+
{
|
| 856 |
+
"name": "stdout",
|
| 857 |
+
"output_type": "stream",
|
| 858 |
+
"text": [
|
| 859 |
+
"\n",
|
| 860 |
+
"=== Evaluating checkpoint: new/ckpt\\ckpt-45 ===\n"
|
| 861 |
+
]
|
| 862 |
+
},
|
| 863 |
+
{
|
| 864 |
+
"name": "stderr",
|
| 865 |
+
"output_type": "stream",
|
| 866 |
+
"text": [
|
| 867 |
+
"100%|ββββββββββ| 752/752 [21:46<00:00, 1.74s/it]\n"
|
| 868 |
+
]
|
| 869 |
+
},
|
| 870 |
+
{
|
| 871 |
+
"name": "stdout",
|
| 872 |
+
"output_type": "stream",
|
| 873 |
+
"text": [
|
| 874 |
+
"==== Test Dataset Metrics ====\n",
|
| 875 |
+
"L1 Loss : 0.0611\n",
|
| 876 |
+
"PSNR : 24.3096\n",
|
| 877 |
+
"SSIM : 0.8386\n",
|
| 878 |
+
"All predictions saved to op/ckpt-45\n"
|
| 879 |
+
]
|
| 880 |
+
},
|
| 881 |
+
{
|
| 882 |
+
"ename": "TypeError",
|
| 883 |
+
"evalue": "cannot unpack non-iterable NoneType object",
|
| 884 |
+
"output_type": "error",
|
| 885 |
+
"traceback": [
|
| 886 |
+
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
| 887 |
+
"\u001b[1;31mTypeError\u001b[0m Traceback (most recent call last)",
|
| 888 |
+
"Cell \u001b[1;32mIn[19], line 68\u001b[0m\n\u001b[0;32m 66\u001b[0m ckpt\u001b[38;5;241m.\u001b[39mrestore(ckpt_path)\u001b[38;5;241m.\u001b[39mexpect_partial()\n\u001b[0;32m 67\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m=== Evaluating checkpoint: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mckpt_path\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m ===\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m---> 68\u001b[0m l1, psnr, ssim \u001b[38;5;241m=\u001b[39m test_and_save_predictions(test_ds,save_dir\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mop/\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;241m+\u001b[39mckpt_file\u001b[38;5;241m.\u001b[39mreplace(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m.index\u001b[39m\u001b[38;5;124m\"\u001b[39m,\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m))\n\u001b[0;32m 69\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mL1 Loss : \u001b[39m\u001b[38;5;132;01m{\u001b[39;00ml1\u001b[38;5;132;01m:\u001b[39;00m\u001b[38;5;124m.4f\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m | PSNR : \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mpsnr\u001b[38;5;132;01m:\u001b[39;00m\u001b[38;5;124m.4f\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m | SSIM : \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mssim\u001b[38;5;132;01m:\u001b[39;00m\u001b[38;5;124m.4f\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m 70\u001b[0m results\u001b[38;5;241m.\u001b[39mappend((ckpt_path, l1, psnr, ssim))\n",
|
| 889 |
+
"\u001b[1;31mTypeError\u001b[0m: cannot unpack non-iterable NoneType object"
|
| 890 |
+
]
|
| 891 |
+
}
|
| 892 |
+
],
|
| 893 |
+
"source": [
|
| 894 |
+
"import tensorflow as tf\n",
|
| 895 |
+
"from tqdm import tqdm\n",
|
| 896 |
+
"import numpy as np\n",
|
| 897 |
+
"import os\n",
|
| 898 |
+
"\n",
|
| 899 |
+
"# Assuming generator, discriminator, gen_opt, disc_opt are defined\n",
|
| 900 |
+
"ckpt = tf.train.Checkpoint(generator=generator,\n",
|
| 901 |
+
" discriminator=discriminator,\n",
|
| 902 |
+
" gen_opt=gen_opt,\n",
|
| 903 |
+
" disc_opt=disc_opt)\n",
|
| 904 |
+
"manager = tf.train.CheckpointManager(ckpt, CKPT_DIR, max_to_keep=5)\n",
|
| 905 |
+
"\n",
|
| 906 |
+
"\n",
|
| 907 |
+
"def l1_loss(y_true, y_pred):\n",
|
| 908 |
+
" return tf.reduce_mean(tf.abs(y_true - y_pred))\n",
|
| 909 |
+
"\n",
|
| 910 |
+
"def evaluate(test_ds):\n",
|
| 911 |
+
" l1_list, psnr_list, ssim_list = [], [], []\n",
|
| 912 |
+
" for vis, ir in tqdm(test_ds):\n",
|
| 913 |
+
" pred = generator(vis, training=False)\n",
|
| 914 |
+
" l1 = l1_loss(ir, pred).numpy()\n",
|
| 915 |
+
" psnr = tf.image.psnr(ir, pred, max_val=2.0).numpy()\n",
|
| 916 |
+
" ssim = tf.image.ssim(ir, pred, max_val=2.0).numpy()\n",
|
| 917 |
+
"\n",
|
| 918 |
+
" l1_list.append(l1)\n",
|
| 919 |
+
" psnr_list.append(np.mean(psnr))\n",
|
| 920 |
+
" ssim_list.append(np.mean(ssim))\n",
|
| 921 |
+
"\n",
|
| 922 |
+
" return np.mean(l1_list), np.mean(psnr_list), np.mean(ssim_list)\n",
|
| 923 |
+
"\n",
|
| 924 |
+
"# -------------------- TEST INFERENCE SIDE BY SIDE --------------------\n",
|
| 925 |
+
"def test_and_save_predictions(test_ds, save_dir=\"output/test_results\"):\n",
|
| 926 |
+
" os.makedirs(save_dir, exist_ok=True)\n",
|
| 927 |
+
" l1_list, psnr_list, ssim_list = [], [], []\n",
|
| 928 |
+
"\n",
|
| 929 |
+
" for idx, (vis, ir) in enumerate(tqdm(test_ds)):\n",
|
| 930 |
+
" pred = generator(vis, training=False)\n",
|
| 931 |
+
"\n",
|
| 932 |
+
" # Metrics\n",
|
| 933 |
+
" l1 = tf.reduce_mean(tf.abs(ir - pred)).numpy()\n",
|
| 934 |
+
" psnr = tf.reduce_mean(tf.image.psnr(ir, pred, max_val=2.0)).numpy()\n",
|
| 935 |
+
" ssim = tf.reduce_mean(tf.image.ssim(ir, pred, max_val=2.0)).numpy()\n",
|
| 936 |
+
" l1_list.append(l1)\n",
|
| 937 |
+
" psnr_list.append(psnr)\n",
|
| 938 |
+
" ssim_list.append(ssim)\n",
|
| 939 |
+
"\n",
|
| 940 |
+
" # Side-by-side image saving\n",
|
| 941 |
+
" for i in range(vis.shape[0]):\n",
|
| 942 |
+
" vis_img = to_uint8(vis[i])\n",
|
| 943 |
+
" ir_img = to_uint8(ir[i])\n",
|
| 944 |
+
" gen_img = to_uint8(pred[i])\n",
|
| 945 |
+
" row = tf.concat([vis_img, ir_img, gen_img], axis=1)\n",
|
| 946 |
+
" save_path = os.path.join(save_dir, f\"test_{idx*vis.shape[0]+i:03d}.png\")\n",
|
| 947 |
+
" tf.keras.preprocessing.image.save_img(save_path, row.numpy())\n",
|
| 948 |
+
"\n",
|
| 949 |
+
" print(\"==== Test Dataset Metrics ====\")\n",
|
| 950 |
+
" print(f\"L1 Loss : {np.mean(l1_list):.4f}\")\n",
|
| 951 |
+
" print(f\"PSNR : {np.mean(psnr_list):.4f}\")\n",
|
| 952 |
+
" print(f\"SSIM : {np.mean(ssim_list):.4f}\")\n",
|
| 953 |
+
" print(f\"All predictions saved to {save_dir}\")"
|
| 954 |
+
]
|
| 955 |
+
},
|
| 956 |
+
{
|
| 957 |
+
"cell_type": "code",
|
| 958 |
+
"execution_count": null,
|
| 959 |
+
"id": "e363024c",
|
| 960 |
+
"metadata": {},
|
| 961 |
+
"outputs": [],
|
| 962 |
+
"source": [
|
| 963 |
+
"# === Evaluating checkpoint: new/ckpt\\best_val.ckpt-42 ===\n",
|
| 964 |
+
"# 100%|ββββββββββ| 752/752 [21:29<00:00, 1.71s/it]\n",
|
| 965 |
+
"# ==== Test Dataset Metrics ====\n",
|
| 966 |
+
"# L1 Loss : 0.0613\n",
|
| 967 |
+
"# PSNR : 24.3060\n",
|
| 968 |
+
"# SSIM : 0.8382\n",
|
| 969 |
+
"# All predictions saved to op/best_val.ckpt-42"
|
| 970 |
+
]
|
| 971 |
+
},
|
| 972 |
+
{
|
| 973 |
+
"cell_type": "code",
|
| 974 |
+
"execution_count": null,
|
| 975 |
+
"id": "220843eb",
|
| 976 |
+
"metadata": {},
|
| 977 |
+
"outputs": [],
|
| 978 |
+
"source": [
|
| 979 |
+
"# === Evaluating checkpoint: new/ckpt\\ckpt-45 ===\n",
|
| 980 |
+
"# 100%|ββββββββββ| 752/752 [21:46<00:00, 1.74s/it]\n",
|
| 981 |
+
"# ==== Test Dataset Metrics ====\n",
|
| 982 |
+
"# L1 Loss : 0.0611\n",
|
| 983 |
+
"# PSNR : 24.3096\n",
|
| 984 |
+
"# SSIM : 0.8386\n",
|
| 985 |
+
"# All predictions saved to op/ckpt-45"
|
| 986 |
+
]
|
| 987 |
+
}
|
| 988 |
+
],
|
| 989 |
+
"metadata": {
|
| 990 |
+
"kaggle": {
|
| 991 |
+
"accelerator": "gpu",
|
| 992 |
+
"dataSources": [
|
| 993 |
+
{
|
| 994 |
+
"datasetId": 8436032,
|
| 995 |
+
"sourceId": 13308561,
|
| 996 |
+
"sourceType": "datasetVersion"
|
| 997 |
+
},
|
| 998 |
+
{
|
| 999 |
+
"modelId": 472226,
|
| 1000 |
+
"modelInstanceId": 456192,
|
| 1001 |
+
"sourceId": 607810,
|
| 1002 |
+
"sourceType": "modelInstanceVersion"
|
| 1003 |
+
},
|
| 1004 |
+
{
|
| 1005 |
+
"isSourceIdPinned": true,
|
| 1006 |
+
"modelId": 477033,
|
| 1007 |
+
"modelInstanceId": 461278,
|
| 1008 |
+
"sourceId": 613905,
|
| 1009 |
+
"sourceType": "modelInstanceVersion"
|
| 1010 |
+
}
|
| 1011 |
+
],
|
| 1012 |
+
"dockerImageVersionId": 31154,
|
| 1013 |
+
"isGpuEnabled": true,
|
| 1014 |
+
"isInternetEnabled": false,
|
| 1015 |
+
"language": "python",
|
| 1016 |
+
"sourceType": "notebook"
|
| 1017 |
+
},
|
| 1018 |
+
"kernelspec": {
|
| 1019 |
+
"display_name": "base",
|
| 1020 |
+
"language": "python",
|
| 1021 |
+
"name": "python3"
|
| 1022 |
+
},
|
| 1023 |
+
"language_info": {
|
| 1024 |
+
"codemirror_mode": {
|
| 1025 |
+
"name": "ipython",
|
| 1026 |
+
"version": 3
|
| 1027 |
+
},
|
| 1028 |
+
"file_extension": ".py",
|
| 1029 |
+
"mimetype": "text/x-python",
|
| 1030 |
+
"name": "python",
|
| 1031 |
+
"nbconvert_exporter": "python",
|
| 1032 |
+
"pygments_lexer": "ipython3",
|
| 1033 |
+
"version": "3.12.11"
|
| 1034 |
+
},
|
| 1035 |
+
"papermill": {
|
| 1036 |
+
"default_parameters": {},
|
| 1037 |
+
"duration": 24066.997657,
|
| 1038 |
+
"end_time": "2025-10-20T13:44:23.261563",
|
| 1039 |
+
"environment_variables": {},
|
| 1040 |
+
"exception": null,
|
| 1041 |
+
"input_path": "__notebook__.ipynb",
|
| 1042 |
+
"output_path": "__notebook__.ipynb",
|
| 1043 |
+
"parameters": {},
|
| 1044 |
+
"start_time": "2025-10-20T07:03:16.263906",
|
| 1045 |
+
"version": "2.6.0"
|
| 1046 |
+
}
|
| 1047 |
+
},
|
| 1048 |
+
"nbformat": 4,
|
| 1049 |
+
"nbformat_minor": 5
|
| 1050 |
+
}
|