Sentence Similarity
	
	
	
	
	sentence-transformers
	
	
	
	
	PyTorch
	
	
	
	
	Transformers
	
	
	
		
	
	English
	
	
	
	
	t5
	
	
	
	
	text-embedding
	
	
	
	
	embeddings
	
	
	
	
	information-retrieval
	
	
	
	
	beir
	
	
	
	
	text-classification
	
	
	
	
	language-model
	
	
	
	
	text-clustering
	
	
	
	
	text-semantic-similarity
	
	
	
	
	text-evaluation
	
	
	
	
	prompt-retrieval
	
	
	
	
	text-reranking
	
	
	
	
	feature-extraction
	
	
	
	
	English
	
	
	
	
	Sentence Similarity
	
	
	
	
	natural_questions
	
	
	
	
	ms_marco
	
	
	
	
	fever
	
	
	
	
	hotpot_qa
	
	
	
	
	mteb
	
	
	
		
	
	
		Eval Results
	
	
	
		
	
	text-generation-inference
	
	
	Commit 
							
							·
						
						48e04e4
	
1
								Parent(s):
							
							bf36312
								
Update README.md
Browse files
    	
        README.md
    CHANGED
    
    | @@ -60,4 +60,20 @@ corpus_embeddings = model.encode(corpus) | |
| 60 | 
             
            similarities = cosine_similarity(query_embeddings,corpus_embeddings)
         | 
| 61 | 
             
            retrieved_doc_id = np.argmax(similarities)
         | 
| 62 | 
             
            print(retrieved_doc_id)
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 63 | 
             
            ```
         | 
|  | |
| 60 | 
             
            similarities = cosine_similarity(query_embeddings,corpus_embeddings)
         | 
| 61 | 
             
            retrieved_doc_id = np.argmax(similarities)
         | 
| 62 | 
             
            print(retrieved_doc_id)
         | 
| 63 | 
            +
            ```
         | 
| 64 | 
            +
             | 
| 65 | 
            +
            ## Clustering
         | 
| 66 | 
            +
            Use **customized embeddings** for clustering texts in groups.
         | 
| 67 | 
            +
            ```python
         | 
| 68 | 
            +
            import sklearn
         | 
| 69 | 
            +
            sentences = [['Represent the Medicine sentence for clustering; Input: ','Dynamical Scalar Degree of Freedom in Horava-Lifshitz Gravity', 0],
         | 
| 70 | 
            +
                         ['Represent the Medicine sentence for clustering; Input: ','Comparison of Atmospheric Neutrino Flux Calculations at Low Energies', 0],
         | 
| 71 | 
            +
                         ['Represent the Medicine sentence for clustering; Input: ','Fermion Bags in the Massive Gross-Neveu Model', 0],
         | 
| 72 | 
            +
                         ['Represent the Medicine sentence for clustering; Input: ',"QCD corrections to Associated t-tbar-H production at the Tevatron",0],
         | 
| 73 | 
            +
                         ['Represent the Medicine sentence for clustering; Input: ','A New Analysis of the R Measurements: Resonance Parameters of the Higher,  Vector States of Charmonium',0]]
         | 
| 74 | 
            +
            embeddings = model.encode(sentences)
         | 
| 75 | 
            +
            clustering_model = sklearn.cluster.MiniBatchKMeans(n_clusters=2)
         | 
| 76 | 
            +
            clustering_model.fit(embeddings)
         | 
| 77 | 
            +
            cluster_assignment = clustering_model.labels_
         | 
| 78 | 
            +
            print(cluster_assignment)
         | 
| 79 | 
             
            ```
         | 
