| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						""" PyTorch DeepSeek model.""" | 
					
					
						
						| 
							 | 
						import math | 
					
					
						
						| 
							 | 
						import warnings | 
					
					
						
						| 
							 | 
						from typing import List, Optional, Tuple, Union | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import torch | 
					
					
						
						| 
							 | 
						import torch.nn.functional as F | 
					
					
						
						| 
							 | 
						import torch.utils.checkpoint | 
					
					
						
						| 
							 | 
						from torch import nn | 
					
					
						
						| 
							 | 
						from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						from transformers.activations import ACT2FN | 
					
					
						
						| 
							 | 
						from transformers.cache_utils import Cache, DynamicCache | 
					
					
						
						| 
							 | 
						from transformers.modeling_attn_mask_utils import ( | 
					
					
						
						| 
							 | 
						    AttentionMaskConverter, | 
					
					
						
						| 
							 | 
						    _prepare_4d_attention_mask, | 
					
					
						
						| 
							 | 
						    _prepare_4d_causal_attention_mask, | 
					
					
						
						| 
							 | 
						    _prepare_4d_causal_attention_mask_for_sdpa, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						from transformers.modeling_outputs import ( | 
					
					
						
						| 
							 | 
						    BaseModelOutputWithPast, | 
					
					
						
						| 
							 | 
						    CausalLMOutputWithPast, | 
					
					
						
						| 
							 | 
						    SequenceClassifierOutputWithPast, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						from transformers.modeling_utils import PreTrainedModel | 
					
					
						
						| 
							 | 
						from transformers.pytorch_utils import ( | 
					
					
						
						| 
							 | 
						    ALL_LAYERNORM_LAYERS, | 
					
					
						
						| 
							 | 
						    is_torch_greater_or_equal_than_1_13, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						from transformers.utils import ( | 
					
					
						
						| 
							 | 
						    add_start_docstrings, | 
					
					
						
						| 
							 | 
						    add_start_docstrings_to_model_forward, | 
					
					
						
						| 
							 | 
						    is_flash_attn_2_available, | 
					
					
						
						| 
							 | 
						    is_flash_attn_greater_or_equal_2_10, | 
					
					
						
						| 
							 | 
						    logging, | 
					
					
						
						| 
							 | 
						    replace_return_docstrings, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						from transformers.utils.import_utils import is_torch_fx_available | 
					
					
						
						| 
							 | 
						from .configuration_deepseek import DeepseekConfig | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						if is_flash_attn_2_available(): | 
					
					
						
						| 
							 | 
						    from flash_attn import flash_attn_func, flash_attn_varlen_func | 
					
					
						
						| 
							 | 
						    from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input   | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						if is_torch_fx_available(): | 
					
					
						
						| 
							 | 
						    if not is_torch_greater_or_equal_than_1_13: | 
					
					
						
						| 
							 | 
						        import torch.fx | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						logger = logging.get_logger(__name__) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						_CONFIG_FOR_DOC = "DeepseekConfig" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def _get_unpad_data(attention_mask): | 
					
					
						
						| 
							 | 
						    seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) | 
					
					
						
						| 
							 | 
						    indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() | 
					
					
						
						| 
							 | 
						    max_seqlen_in_batch = seqlens_in_batch.max().item() | 
					
					
						
						| 
							 | 
						    cu_seqlens = F.pad( | 
					
					
						
						| 
							 | 
						        torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0) | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    return ( | 
					
					
						
						| 
							 | 
						        indices, | 
					
					
						
						| 
							 | 
						        cu_seqlens, | 
					
					
						
						| 
							 | 
						        max_seqlen_in_batch, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): | 
					
					
						
						| 
							 | 
						    warnings.warn( | 
					
					
						
						| 
							 | 
						        "Calling `transformers.models.Deepseek.modeling_Deepseek._prepare_4d_attention_mask` is deprecated and will be removed in v4.37. Use `transformers.modeling_attn_mask_utils._prepare_4d_attention_mask" | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    return _prepare_4d_attention_mask(mask=mask, dtype=dtype, tgt_len=tgt_len) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def _make_causal_mask( | 
					
					
						
						| 
							 | 
						    input_ids_shape: torch.Size, | 
					
					
						
						| 
							 | 
						    dtype: torch.dtype, | 
					
					
						
						| 
							 | 
						    device: torch.device, | 
					
					
						
						| 
							 | 
						    past_key_values_length: int = 0, | 
					
					
						
						| 
							 | 
						): | 
					
					
						
						| 
							 | 
						    warnings.warn( | 
					
					
						
						| 
							 | 
						        "Calling `transformers.models.Deepseek.modeling_Deepseek._make_causal_mask` is deprecated and will be removed in v4.37. Use `transformers.models.Deepseek.modeling_Deepseek.AttentionMaskConverter._make_causal_mask" | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    return AttentionMaskConverter._make_causal_mask( | 
					
					
						
						| 
							 | 
						        input_ids_shape=input_ids_shape, | 
					
					
						
						| 
							 | 
						        dtype=dtype, | 
					
					
						
						| 
							 | 
						        device=device, | 
					
					
						
						| 
							 | 
						        past_key_values_length=past_key_values_length, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class DeepseekRMSNorm(nn.Module): | 
					
					
						
						| 
							 | 
						    def __init__(self, hidden_size, eps=1e-6): | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        DeepseekRMSNorm is equivalent to T5LayerNorm | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						        self.weight = nn.Parameter(torch.ones(hidden_size)) | 
					
					
						
						| 
							 | 
						        self.variance_epsilon = eps | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward(self, hidden_states): | 
					
					
						
						| 
							 | 
						        input_dtype = hidden_states.dtype | 
					
					
						
						| 
							 | 
						        hidden_states = hidden_states.to(torch.float32) | 
					
					
						
						| 
							 | 
						        variance = hidden_states.pow(2).mean(-1, keepdim=True) | 
					
					
						
						| 
							 | 
						        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | 
					
					
						
						| 
							 | 
						        return self.weight * hidden_states.to(input_dtype) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						ALL_LAYERNORM_LAYERS.append(DeepseekRMSNorm) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class DeepseekRotaryEmbedding(nn.Module): | 
					
					
						
						| 
							 | 
						    def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.dim = dim | 
					
					
						
						| 
							 | 
						        self.max_position_embeddings = max_position_embeddings | 
					
					
						
						| 
							 | 
						        self.base = base | 
					
					
						
						| 
							 | 
						        inv_freq = 1.0 / ( | 
					
					
						
						| 
							 | 
						            self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim) | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        self.register_buffer("inv_freq", inv_freq, persistent=False) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self._set_cos_sin_cache( | 
					
					
						
						| 
							 | 
						            seq_len=max_position_embeddings, | 
					
					
						
						| 
							 | 
						            device=self.inv_freq.device, | 
					
					
						
						| 
							 | 
						            dtype=torch.get_default_dtype(), | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        self.max_seq_len_cached = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _set_cos_sin_cache(self, seq_len, device, dtype): | 
					
					
						
						| 
							 | 
						        self.max_seq_len_cached = seq_len | 
					
					
						
						| 
							 | 
						        t = torch.arange( | 
					
					
						
						| 
							 | 
						            self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        freqs = torch.outer(t, self.inv_freq.to(t.device)) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        emb = torch.cat((freqs, freqs), dim=-1) | 
					
					
						
						| 
							 | 
						        self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) | 
					
					
						
						| 
							 | 
						        self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward(self, x, seq_len=None): | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if self.max_seq_len_cached is None or seq_len > self.max_seq_len_cached: | 
					
					
						
						| 
							 | 
						            self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return ( | 
					
					
						
						| 
							 | 
						            self.cos_cached[:seq_len].to(dtype=x.dtype), | 
					
					
						
						| 
							 | 
						            self.sin_cached[:seq_len].to(dtype=x.dtype), | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						class DeepseekLinearScalingRotaryEmbedding(DeepseekRotaryEmbedding): | 
					
					
						
						| 
							 | 
						    """DeepseekRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        dim, | 
					
					
						
						| 
							 | 
						        max_position_embeddings=2048, | 
					
					
						
						| 
							 | 
						        base=10000, | 
					
					
						
						| 
							 | 
						        device=None, | 
					
					
						
						| 
							 | 
						        scaling_factor=1.0, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        self.scaling_factor = scaling_factor | 
					
					
						
						| 
							 | 
						        super().__init__(dim, max_position_embeddings, base, device) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _set_cos_sin_cache(self, seq_len, device, dtype): | 
					
					
						
						| 
							 | 
						        self.max_seq_len_cached = seq_len | 
					
					
						
						| 
							 | 
						        t = torch.arange( | 
					
					
						
						| 
							 | 
						            self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        t = t / self.scaling_factor | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        freqs = torch.outer(t, self.inv_freq) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        emb = torch.cat((freqs, freqs), dim=-1) | 
					
					
						
						| 
							 | 
						        self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) | 
					
					
						
						| 
							 | 
						        self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						class DeepseekDynamicNTKScalingRotaryEmbedding(DeepseekRotaryEmbedding): | 
					
					
						
						| 
							 | 
						    """DeepseekRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        dim, | 
					
					
						
						| 
							 | 
						        max_position_embeddings=2048, | 
					
					
						
						| 
							 | 
						        base=10000, | 
					
					
						
						| 
							 | 
						        device=None, | 
					
					
						
						| 
							 | 
						        scaling_factor=1.0, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        self.scaling_factor = scaling_factor | 
					
					
						
						| 
							 | 
						        super().__init__(dim, max_position_embeddings, base, device) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _set_cos_sin_cache(self, seq_len, device, dtype): | 
					
					
						
						| 
							 | 
						        self.max_seq_len_cached = seq_len | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if seq_len > self.max_position_embeddings: | 
					
					
						
						| 
							 | 
						            base = self.base * ( | 
					
					
						
						| 
							 | 
						                (self.scaling_factor * seq_len / self.max_position_embeddings) | 
					
					
						
						| 
							 | 
						                - (self.scaling_factor - 1) | 
					
					
						
						| 
							 | 
						            ) ** (self.dim / (self.dim - 2)) | 
					
					
						
						| 
							 | 
						            inv_freq = 1.0 / ( | 
					
					
						
						| 
							 | 
						                base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim) | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            self.register_buffer("inv_freq", inv_freq, persistent=False) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        t = torch.arange( | 
					
					
						
						| 
							 | 
						            self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        freqs = torch.outer(t, self.inv_freq) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        emb = torch.cat((freqs, freqs), dim=-1) | 
					
					
						
						| 
							 | 
						        self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) | 
					
					
						
						| 
							 | 
						        self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						def rotate_half(x): | 
					
					
						
						| 
							 | 
						    """Rotates half the hidden dims of the input.""" | 
					
					
						
						| 
							 | 
						    x1 = x[..., : x.shape[-1] // 2] | 
					
					
						
						| 
							 | 
						    x2 = x[..., x.shape[-1] // 2 :] | 
					
					
						
						| 
							 | 
						    return torch.cat((-x2, x1), dim=-1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): | 
					
					
						
						| 
							 | 
						    """Applies Rotary Position Embedding to the query and key tensors. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Args: | 
					
					
						
						| 
							 | 
						        q (`torch.Tensor`): The query tensor. | 
					
					
						
						| 
							 | 
						        k (`torch.Tensor`): The key tensor. | 
					
					
						
						| 
							 | 
						        cos (`torch.Tensor`): The cosine part of the rotary embedding. | 
					
					
						
						| 
							 | 
						        sin (`torch.Tensor`): The sine part of the rotary embedding. | 
					
					
						
						| 
							 | 
						        position_ids (`torch.Tensor`): | 
					
					
						
						| 
							 | 
						            The position indices of the tokens corresponding to the query and key tensors. For example, this can be | 
					
					
						
						| 
							 | 
						            used to pass offsetted position ids when working with a KV-cache. | 
					
					
						
						| 
							 | 
						        unsqueeze_dim (`int`, *optional*, defaults to 1): | 
					
					
						
						| 
							 | 
						            The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and | 
					
					
						
						| 
							 | 
						            sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note | 
					
					
						
						| 
							 | 
						            that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and | 
					
					
						
						| 
							 | 
						            k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes | 
					
					
						
						| 
							 | 
						            cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have | 
					
					
						
						| 
							 | 
						            the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. | 
					
					
						
						| 
							 | 
						    Returns: | 
					
					
						
						| 
							 | 
						        `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    cos = cos[position_ids].unsqueeze(unsqueeze_dim) | 
					
					
						
						| 
							 | 
						    sin = sin[position_ids].unsqueeze(unsqueeze_dim) | 
					
					
						
						| 
							 | 
						    q_embed = (q * cos) + (rotate_half(q) * sin) | 
					
					
						
						| 
							 | 
						    k_embed = (k * cos) + (rotate_half(k) * sin) | 
					
					
						
						| 
							 | 
						    return q_embed, k_embed | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class DeepseekMLP(nn.Module): | 
					
					
						
						| 
							 | 
						    def __init__(self, config, hidden_size=None, intermediate_size=None): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						        self.config = config | 
					
					
						
						| 
							 | 
						        self.hidden_size = config.hidden_size if hidden_size is None else hidden_size | 
					
					
						
						| 
							 | 
						        self.intermediate_size = ( | 
					
					
						
						| 
							 | 
						            config.intermediate_size if intermediate_size is None else intermediate_size | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | 
					
					
						
						| 
							 | 
						        self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | 
					
					
						
						| 
							 | 
						        self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) | 
					
					
						
						| 
							 | 
						        self.act_fn = ACT2FN[config.hidden_act] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward(self, x): | 
					
					
						
						| 
							 | 
						        if self.config.pretraining_tp > 1: | 
					
					
						
						| 
							 | 
						            slice = self.intermediate_size // self.config.pretraining_tp | 
					
					
						
						| 
							 | 
						            gate_proj_slices = self.gate_proj.weight.split(slice, dim=0) | 
					
					
						
						| 
							 | 
						            up_proj_slices = self.up_proj.weight.split(slice, dim=0) | 
					
					
						
						| 
							 | 
						            down_proj_slices = self.down_proj.weight.split(slice, dim=1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            gate_proj = torch.cat( | 
					
					
						
						| 
							 | 
						                [ | 
					
					
						
						| 
							 | 
						                    F.linear(x, gate_proj_slices[i]) | 
					
					
						
						| 
							 | 
						                    for i in range(self.config.pretraining_tp) | 
					
					
						
						| 
							 | 
						                ], | 
					
					
						
						| 
							 | 
						                dim=-1, | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            up_proj = torch.cat( | 
					
					
						
						| 
							 | 
						                [ | 
					
					
						
						| 
							 | 
						                    F.linear(x, up_proj_slices[i]) | 
					
					
						
						| 
							 | 
						                    for i in range(self.config.pretraining_tp) | 
					
					
						
						| 
							 | 
						                ], | 
					
					
						
						| 
							 | 
						                dim=-1, | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2) | 
					
					
						
						| 
							 | 
						            down_proj = [ | 
					
					
						
						| 
							 | 
						                F.linear(intermediate_states[i], down_proj_slices[i]) | 
					
					
						
						| 
							 | 
						                for i in range(self.config.pretraining_tp) | 
					
					
						
						| 
							 | 
						            ] | 
					
					
						
						| 
							 | 
						            down_proj = sum(down_proj) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return down_proj | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class MoEGate(nn.Module): | 
					
					
						
						| 
							 | 
						    def __init__(self, config): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						        self.config = config | 
					
					
						
						| 
							 | 
						        self.top_k = config.num_experts_per_tok | 
					
					
						
						| 
							 | 
						        self.n_routed_experts = config.n_routed_experts | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.scoring_func = config.scoring_func | 
					
					
						
						| 
							 | 
						        self.alpha = config.aux_loss_alpha | 
					
					
						
						| 
							 | 
						        self.seq_aux = config.seq_aux | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.norm_topk_prob = config.norm_topk_prob | 
					
					
						
						| 
							 | 
						        self.gating_dim = config.hidden_size | 
					
					
						
						| 
							 | 
						        self.weight = nn.Parameter( | 
					
					
						
						| 
							 | 
						            torch.empty((self.n_routed_experts, self.gating_dim)) | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        self.reset_parameters() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def reset_parameters(self) -> None: | 
					
					
						
						| 
							 | 
						        import torch.nn.init as init | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        init.kaiming_uniform_(self.weight, a=math.sqrt(5)) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward(self, hidden_states): | 
					
					
						
						| 
							 | 
						        bsz, seq_len, h = hidden_states.shape | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        hidden_states = hidden_states.view(-1, h) | 
					
					
						
						| 
							 | 
						        logits = F.linear(hidden_states, self.weight, None) | 
					
					
						
						| 
							 | 
						        if self.scoring_func == "softmax": | 
					
					
						
						| 
							 | 
						            scores = logits.softmax(dim=-1) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            raise NotImplementedError( | 
					
					
						
						| 
							 | 
						                f"insupportable scoring function for MoE gating: {self.scoring_func}" | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        topk_weight, topk_idx = torch.topk(scores, k=self.top_k, dim=-1, sorted=False) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if self.top_k > 1 and self.norm_topk_prob: | 
					
					
						
						| 
							 | 
						            denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20 | 
					
					
						
						| 
							 | 
						            topk_weight = topk_weight / denominator | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if self.training and self.alpha > 0.0: | 
					
					
						
						| 
							 | 
						            scores_for_aux = scores | 
					
					
						
						| 
							 | 
						            aux_topk = self.top_k | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            topk_idx_for_aux_loss = topk_idx.view(bsz, -1) | 
					
					
						
						| 
							 | 
						            if self.seq_aux: | 
					
					
						
						| 
							 | 
						                scores_for_seq_aux = scores_for_aux.view(bsz, seq_len, -1) | 
					
					
						
						| 
							 | 
						                ce = torch.zeros( | 
					
					
						
						| 
							 | 
						                    bsz, self.n_routed_experts, device=hidden_states.device | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                ce.scatter_add_( | 
					
					
						
						| 
							 | 
						                    1, | 
					
					
						
						| 
							 | 
						                    topk_idx_for_aux_loss, | 
					
					
						
						| 
							 | 
						                    torch.ones(bsz, seq_len * aux_topk, device=hidden_states.device), | 
					
					
						
						| 
							 | 
						                ).div_(seq_len * aux_topk / self.n_routed_experts) | 
					
					
						
						| 
							 | 
						                aux_loss = (ce * scores_for_seq_aux.mean(dim=1)).sum( | 
					
					
						
						| 
							 | 
						                    dim=1 | 
					
					
						
						| 
							 | 
						                ).mean() * self.alpha | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                mask_ce = F.one_hot( | 
					
					
						
						| 
							 | 
						                    topk_idx_for_aux_loss.view(-1), num_classes=self.n_routed_experts | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                ce = mask_ce.float().mean(0) | 
					
					
						
						| 
							 | 
						                Pi = scores_for_aux.mean(0) | 
					
					
						
						| 
							 | 
						                fi = ce * self.n_routed_experts | 
					
					
						
						| 
							 | 
						                aux_loss = (Pi * fi).sum() * self.alpha | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            aux_loss = None | 
					
					
						
						| 
							 | 
						        return topk_idx, topk_weight, aux_loss | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class AddAuxiliaryLoss(torch.autograd.Function): | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    The trick function of adding auxiliary (aux) loss, | 
					
					
						
						| 
							 | 
						    which includes the gradient of the aux loss during backpropagation. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @staticmethod | 
					
					
						
						| 
							 | 
						    def forward(ctx, x, loss): | 
					
					
						
						| 
							 | 
						        assert loss.numel() == 1 | 
					
					
						
						| 
							 | 
						        ctx.dtype = loss.dtype | 
					
					
						
						| 
							 | 
						        ctx.required_aux_loss = loss.requires_grad | 
					
					
						
						| 
							 | 
						        return x | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @staticmethod | 
					
					
						
						| 
							 | 
						    def backward(ctx, grad_output): | 
					
					
						
						| 
							 | 
						        grad_loss = None | 
					
					
						
						| 
							 | 
						        if ctx.required_aux_loss: | 
					
					
						
						| 
							 | 
						            grad_loss = torch.ones(1, dtype=ctx.dtype, device=grad_output.device) | 
					
					
						
						| 
							 | 
						        return grad_output, grad_loss | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class DeepseekMoE(nn.Module): | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    A mixed expert module containing shared experts. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__(self, config): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						        self.config = config | 
					
					
						
						| 
							 | 
						        self.num_experts_per_tok = config.num_experts_per_tok | 
					
					
						
						| 
							 | 
						        self.experts = nn.ModuleList( | 
					
					
						
						| 
							 | 
						            [ | 
					
					
						
						| 
							 | 
						                DeepseekMLP(config, intermediate_size=config.moe_intermediate_size) | 
					
					
						
						| 
							 | 
						                for i in range(config.n_routed_experts) | 
					
					
						
						| 
							 | 
						            ] | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        self.gate = MoEGate(config) | 
					
					
						
						| 
							 | 
						        if config.n_shared_experts is not None: | 
					
					
						
						| 
							 | 
						            intermediate_size = config.moe_intermediate_size * config.n_shared_experts | 
					
					
						
						| 
							 | 
						            self.shared_experts = DeepseekMLP( | 
					
					
						
						| 
							 | 
						                config=config, intermediate_size=intermediate_size | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward(self, hidden_states): | 
					
					
						
						| 
							 | 
						        identity = hidden_states | 
					
					
						
						| 
							 | 
						        orig_shape = hidden_states.shape | 
					
					
						
						| 
							 | 
						        topk_idx, topk_weight, aux_loss = self.gate(hidden_states) | 
					
					
						
						| 
							 | 
						        hidden_states = hidden_states.view(-1, hidden_states.shape[-1]) | 
					
					
						
						| 
							 | 
						        flat_topk_idx = topk_idx.view(-1) | 
					
					
						
						| 
							 | 
						        if self.training: | 
					
					
						
						| 
							 | 
						            hidden_states = hidden_states.repeat_interleave( | 
					
					
						
						| 
							 | 
						                self.num_experts_per_tok, dim=0 | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            y = torch.empty_like(hidden_states) | 
					
					
						
						| 
							 | 
						            for i, expert in enumerate(self.experts): | 
					
					
						
						| 
							 | 
						                y[flat_topk_idx == i] = expert(hidden_states[flat_topk_idx == i]) | 
					
					
						
						| 
							 | 
						            y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1) | 
					
					
						
						| 
							 | 
						            y = y.view(*orig_shape) | 
					
					
						
						| 
							 | 
						            y = AddAuxiliaryLoss.apply(y, aux_loss) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            y = self.moe_infer( | 
					
					
						
						| 
							 | 
						                hidden_states, flat_topk_idx, topk_weight.view(-1, 1) | 
					
					
						
						| 
							 | 
						            ).view(*orig_shape) | 
					
					
						
						| 
							 | 
						        if self.config.n_shared_experts is not None: | 
					
					
						
						| 
							 | 
						            y = y + self.shared_experts(identity) | 
					
					
						
						| 
							 | 
						        return y | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @torch.no_grad() | 
					
					
						
						| 
							 | 
						    def moe_infer(self, x, flat_expert_indices, flat_expert_weights): | 
					
					
						
						| 
							 | 
						        expert_cache = torch.zeros_like(x) | 
					
					
						
						| 
							 | 
						        idxs = flat_expert_indices.argsort() | 
					
					
						
						| 
							 | 
						        tokens_per_expert = flat_expert_indices.bincount().cpu().numpy().cumsum(0) | 
					
					
						
						| 
							 | 
						        token_idxs = idxs // self.num_experts_per_tok | 
					
					
						
						| 
							 | 
						        for i, end_idx in enumerate(tokens_per_expert): | 
					
					
						
						| 
							 | 
						            start_idx = 0 if i == 0 else tokens_per_expert[i - 1] | 
					
					
						
						| 
							 | 
						            if start_idx == end_idx: | 
					
					
						
						| 
							 | 
						                continue | 
					
					
						
						| 
							 | 
						            expert = self.experts[i] | 
					
					
						
						| 
							 | 
						            exp_token_idx = token_idxs[start_idx:end_idx] | 
					
					
						
						| 
							 | 
						            expert_tokens = x[exp_token_idx] | 
					
					
						
						| 
							 | 
						            expert_out = expert(expert_tokens) | 
					
					
						
						| 
							 | 
						            expert_out.mul_(flat_expert_weights[idxs[start_idx:end_idx]]) | 
					
					
						
						| 
							 | 
						            expert_cache.scatter_reduce_( | 
					
					
						
						| 
							 | 
						                0, | 
					
					
						
						| 
							 | 
						                exp_token_idx.view(-1, 1).repeat(1, x.shape[-1]), | 
					
					
						
						| 
							 | 
						                expert_out, | 
					
					
						
						| 
							 | 
						                reduce="sum", | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        return expert_cache | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, | 
					
					
						
						| 
							 | 
						    num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    batch, num_key_value_heads, slen, head_dim = hidden_states.shape | 
					
					
						
						| 
							 | 
						    if n_rep == 1: | 
					
					
						
						| 
							 | 
						        return hidden_states | 
					
					
						
						| 
							 | 
						    hidden_states = hidden_states[:, :, None, :, :].expand( | 
					
					
						
						| 
							 | 
						        batch, num_key_value_heads, n_rep, slen, head_dim | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						class DeepseekAttention(nn.Module): | 
					
					
						
						| 
							 | 
						    """Multi-headed attention from 'Attention Is All You Need' paper""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__(self, config: DeepseekConfig, layer_idx: Optional[int] = None): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						        self.config = config | 
					
					
						
						| 
							 | 
						        self.layer_idx = layer_idx | 
					
					
						
						| 
							 | 
						        if layer_idx is None: | 
					
					
						
						| 
							 | 
						            logger.warning_once( | 
					
					
						
						| 
							 | 
						                f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will " | 
					
					
						
						| 
							 | 
						                "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " | 
					
					
						
						| 
							 | 
						                "when creating this class." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.attention_dropout = config.attention_dropout | 
					
					
						
						| 
							 | 
						        self.hidden_size = config.hidden_size | 
					
					
						
						| 
							 | 
						        self.num_heads = config.num_attention_heads | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.head_dim = 128 | 
					
					
						
						| 
							 | 
						        self.num_key_value_heads = config.num_key_value_heads | 
					
					
						
						| 
							 | 
						        self.num_key_value_groups = ( | 
					
					
						
						| 
							 | 
						            self.num_heads // self.num_key_value_heads | 
					
					
						
						| 
							 | 
						        )   | 
					
					
						
						| 
							 | 
						        self.max_position_embeddings = config.max_position_embeddings | 
					
					
						
						| 
							 | 
						        self.rope_theta = config.rope_theta | 
					
					
						
						| 
							 | 
						        self.is_causal = True | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.q_proj = nn.Linear( | 
					
					
						
						| 
							 | 
						            self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        self.k_proj = nn.Linear( | 
					
					
						
						| 
							 | 
						            self.hidden_size, | 
					
					
						
						| 
							 | 
						            self.num_key_value_heads * self.head_dim, | 
					
					
						
						| 
							 | 
						            bias=config.attention_bias, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        self.v_proj = nn.Linear( | 
					
					
						
						| 
							 | 
						            self.hidden_size, | 
					
					
						
						| 
							 | 
						            self.num_key_value_heads * self.head_dim, | 
					
					
						
						| 
							 | 
						            bias=config.attention_bias, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        self.o_proj = nn.Linear( | 
					
					
						
						| 
							 | 
						            self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        self._init_rope() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _init_rope(self): | 
					
					
						
						| 
							 | 
						        if self.config.rope_scaling is None: | 
					
					
						
						| 
							 | 
						            self.rotary_emb = DeepseekRotaryEmbedding( | 
					
					
						
						| 
							 | 
						                self.head_dim, | 
					
					
						
						| 
							 | 
						                max_position_embeddings=self.max_position_embeddings, | 
					
					
						
						| 
							 | 
						                base=self.rope_theta, | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            scaling_type = self.config.rope_scaling["type"] | 
					
					
						
						| 
							 | 
						            scaling_factor = self.config.rope_scaling["factor"] | 
					
					
						
						| 
							 | 
						            if scaling_type == "linear": | 
					
					
						
						| 
							 | 
						                self.rotary_emb = DeepseekLinearScalingRotaryEmbedding( | 
					
					
						
						| 
							 | 
						                    self.head_dim, | 
					
					
						
						| 
							 | 
						                    max_position_embeddings=self.max_position_embeddings, | 
					
					
						
						| 
							 | 
						                    scaling_factor=scaling_factor, | 
					
					
						
						| 
							 | 
						                    base=self.rope_theta, | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						            elif scaling_type == "dynamic": | 
					
					
						
						| 
							 | 
						                self.rotary_emb = DeepseekDynamicNTKScalingRotaryEmbedding( | 
					
					
						
						| 
							 | 
						                    self.head_dim, | 
					
					
						
						| 
							 | 
						                    max_position_embeddings=self.max_position_embeddings, | 
					
					
						
						| 
							 | 
						                    scaling_factor=scaling_factor, | 
					
					
						
						| 
							 | 
						                    base=self.rope_theta, | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                raise ValueError(f"Unknown RoPE scaling type {scaling_type}") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | 
					
					
						
						| 
							 | 
						        return ( | 
					
					
						
						| 
							 | 
						            tensor.view(bsz, seq_len, self.num_heads, self.head_dim) | 
					
					
						
						| 
							 | 
						            .transpose(1, 2) | 
					
					
						
						| 
							 | 
						            .contiguous() | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        hidden_states: torch.Tensor, | 
					
					
						
						| 
							 | 
						        attention_mask: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        position_ids: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        past_key_value: Optional[Cache] = None, | 
					
					
						
						| 
							 | 
						        output_attentions: bool = False, | 
					
					
						
						| 
							 | 
						        use_cache: bool = False, | 
					
					
						
						| 
							 | 
						        **kwargs, | 
					
					
						
						| 
							 | 
						    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | 
					
					
						
						| 
							 | 
						        if "padding_mask" in kwargs: | 
					
					
						
						| 
							 | 
						            warnings.warn( | 
					
					
						
						| 
							 | 
						                "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        bsz, q_len, _ = hidden_states.size() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self.config.pretraining_tp > 1: | 
					
					
						
						| 
							 | 
						            key_value_slicing = ( | 
					
					
						
						| 
							 | 
						                self.num_key_value_heads * self.head_dim | 
					
					
						
						| 
							 | 
						            ) // self.config.pretraining_tp | 
					
					
						
						| 
							 | 
						            query_slices = self.q_proj.weight.split( | 
					
					
						
						| 
							 | 
						                (self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0 | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            key_slices = self.k_proj.weight.split(key_value_slicing, dim=0) | 
					
					
						
						| 
							 | 
						            value_slices = self.v_proj.weight.split(key_value_slicing, dim=0) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            query_states = [ | 
					
					
						
						| 
							 | 
						                F.linear(hidden_states, query_slices[i]) | 
					
					
						
						| 
							 | 
						                for i in range(self.config.pretraining_tp) | 
					
					
						
						| 
							 | 
						            ] | 
					
					
						
						| 
							 | 
						            query_states = torch.cat(query_states, dim=-1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            key_states = [ | 
					
					
						
						| 
							 | 
						                F.linear(hidden_states, key_slices[i]) | 
					
					
						
						| 
							 | 
						                for i in range(self.config.pretraining_tp) | 
					
					
						
						| 
							 | 
						            ] | 
					
					
						
						| 
							 | 
						            key_states = torch.cat(key_states, dim=-1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            value_states = [ | 
					
					
						
						| 
							 | 
						                F.linear(hidden_states, value_slices[i]) | 
					
					
						
						| 
							 | 
						                for i in range(self.config.pretraining_tp) | 
					
					
						
						| 
							 | 
						            ] | 
					
					
						
						| 
							 | 
						            value_states = torch.cat(value_states, dim=-1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            query_states = self.q_proj(hidden_states) | 
					
					
						
						| 
							 | 
						            key_states = self.k_proj(hidden_states) | 
					
					
						
						| 
							 | 
						            value_states = self.v_proj(hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        query_states = query_states.view( | 
					
					
						
						| 
							 | 
						            bsz, q_len, self.num_heads, self.head_dim | 
					
					
						
						| 
							 | 
						        ).transpose(1, 2) | 
					
					
						
						| 
							 | 
						        key_states = key_states.view( | 
					
					
						
						| 
							 | 
						            bsz, q_len, self.num_key_value_heads, self.head_dim | 
					
					
						
						| 
							 | 
						        ).transpose(1, 2) | 
					
					
						
						| 
							 | 
						        value_states = value_states.view( | 
					
					
						
						| 
							 | 
						            bsz, q_len, self.num_key_value_heads, self.head_dim | 
					
					
						
						| 
							 | 
						        ).transpose(1, 2) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        kv_seq_len = key_states.shape[-2] | 
					
					
						
						| 
							 | 
						        if past_key_value is not None: | 
					
					
						
						| 
							 | 
						            if self.layer_idx is None: | 
					
					
						
						| 
							 | 
						                raise ValueError( | 
					
					
						
						| 
							 | 
						                    f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " | 
					
					
						
						| 
							 | 
						                    "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " | 
					
					
						
						| 
							 | 
						                    "with a layer index." | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						            kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) | 
					
					
						
						| 
							 | 
						        cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) | 
					
					
						
						| 
							 | 
						        query_states, key_states = apply_rotary_pos_emb( | 
					
					
						
						| 
							 | 
						            query_states, key_states, cos, sin, position_ids | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if past_key_value is not None: | 
					
					
						
						| 
							 | 
						            cache_kwargs = {"sin": sin, "cos": cos}   | 
					
					
						
						| 
							 | 
						            key_states, value_states = past_key_value.update( | 
					
					
						
						| 
							 | 
						                key_states, value_states, self.layer_idx, cache_kwargs | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        key_states = repeat_kv(key_states, self.num_key_value_groups) | 
					
					
						
						| 
							 | 
						        value_states = repeat_kv(value_states, self.num_key_value_groups) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        attn_weights = torch.matmul( | 
					
					
						
						| 
							 | 
						            query_states, key_states.transpose(2, 3) | 
					
					
						
						| 
							 | 
						        ) / math.sqrt(self.head_dim) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" | 
					
					
						
						| 
							 | 
						                f" {attn_weights.size()}" | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if attention_mask is not None: | 
					
					
						
						| 
							 | 
						            if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): | 
					
					
						
						| 
							 | 
						                raise ValueError( | 
					
					
						
						| 
							 | 
						                    f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						            attn_weights = attn_weights + attention_mask | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        attn_weights = nn.functional.softmax( | 
					
					
						
						| 
							 | 
						            attn_weights, dim=-1, dtype=torch.float32 | 
					
					
						
						| 
							 | 
						        ).to(query_states.dtype) | 
					
					
						
						| 
							 | 
						        attn_weights = nn.functional.dropout( | 
					
					
						
						| 
							 | 
						            attn_weights, p=self.attention_dropout, training=self.training | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        attn_output = torch.matmul(attn_weights, value_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" | 
					
					
						
						| 
							 | 
						                f" {attn_output.size()}" | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        attn_output = attn_output.transpose(1, 2).contiguous() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self.config.pretraining_tp > 1: | 
					
					
						
						| 
							 | 
						            attn_output = attn_output.split( | 
					
					
						
						| 
							 | 
						                self.hidden_size // self.config.pretraining_tp, dim=2 | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            o_proj_slices = self.o_proj.weight.split( | 
					
					
						
						| 
							 | 
						                self.hidden_size // self.config.pretraining_tp, dim=1 | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            attn_output = sum( | 
					
					
						
						| 
							 | 
						                [ | 
					
					
						
						| 
							 | 
						                    F.linear(attn_output[i], o_proj_slices[i]) | 
					
					
						
						| 
							 | 
						                    for i in range(self.config.pretraining_tp) | 
					
					
						
						| 
							 | 
						                ] | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            attn_output = self.o_proj(attn_output) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if not output_attentions: | 
					
					
						
						| 
							 | 
						            attn_weights = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return attn_output, attn_weights, past_key_value | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						class DeepseekFlashAttention2(DeepseekAttention): | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    Deepseek flash attention module. This module inherits from `DeepseekAttention` as the weights of the module stays | 
					
					
						
						| 
							 | 
						    untouched. The only required change would be on the forward pass where it needs to correctly call the public API of | 
					
					
						
						| 
							 | 
						    flash attention and deal with padding tokens in case the input contains any of them. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__(self, *args, **kwargs): | 
					
					
						
						| 
							 | 
						        super().__init__(*args, **kwargs) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        hidden_states: torch.Tensor, | 
					
					
						
						| 
							 | 
						        attention_mask: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        position_ids: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        past_key_value: Optional[Cache] = None, | 
					
					
						
						| 
							 | 
						        output_attentions: bool = False, | 
					
					
						
						| 
							 | 
						        use_cache: bool = False, | 
					
					
						
						| 
							 | 
						        **kwargs, | 
					
					
						
						| 
							 | 
						    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if "padding_mask" in kwargs: | 
					
					
						
						| 
							 | 
						            warnings.warn( | 
					
					
						
						| 
							 | 
						                "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            attention_mask = kwargs.pop("padding_mask") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        output_attentions = False | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        bsz, q_len, _ = hidden_states.size() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        query_states = self.q_proj(hidden_states) | 
					
					
						
						| 
							 | 
						        key_states = self.k_proj(hidden_states) | 
					
					
						
						| 
							 | 
						        value_states = self.v_proj(hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        query_states = query_states.view( | 
					
					
						
						| 
							 | 
						            bsz, q_len, self.num_heads, self.head_dim | 
					
					
						
						| 
							 | 
						        ).transpose(1, 2) | 
					
					
						
						| 
							 | 
						        key_states = key_states.view( | 
					
					
						
						| 
							 | 
						            bsz, q_len, self.num_key_value_heads, self.head_dim | 
					
					
						
						| 
							 | 
						        ).transpose(1, 2) | 
					
					
						
						| 
							 | 
						        value_states = value_states.view( | 
					
					
						
						| 
							 | 
						            bsz, q_len, self.num_key_value_heads, self.head_dim | 
					
					
						
						| 
							 | 
						        ).transpose(1, 2) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        kv_seq_len = key_states.shape[-2] | 
					
					
						
						| 
							 | 
						        if past_key_value is not None: | 
					
					
						
						| 
							 | 
						            kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) | 
					
					
						
						| 
							 | 
						        cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) | 
					
					
						
						| 
							 | 
						        query_states, key_states = apply_rotary_pos_emb( | 
					
					
						
						| 
							 | 
						            query_states, key_states, cos, sin, position_ids | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if past_key_value is not None: | 
					
					
						
						| 
							 | 
						            cache_kwargs = {"sin": sin, "cos": cos}   | 
					
					
						
						| 
							 | 
						            key_states, value_states = past_key_value.update( | 
					
					
						
						| 
							 | 
						                key_states, value_states, self.layer_idx, cache_kwargs | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        query_states = query_states.transpose(1, 2) | 
					
					
						
						| 
							 | 
						        key_states = key_states.transpose(1, 2) | 
					
					
						
						| 
							 | 
						        value_states = value_states.transpose(1, 2) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        dropout_rate = self.attention_dropout if self.training else 0.0 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        input_dtype = query_states.dtype | 
					
					
						
						| 
							 | 
						        if input_dtype == torch.float32: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            if hasattr(self.config, "_pre_quantization_dtype"): | 
					
					
						
						| 
							 | 
						                target_dtype = self.config._pre_quantization_dtype | 
					
					
						
						| 
							 | 
						            elif torch.is_autocast_enabled(): | 
					
					
						
						| 
							 | 
						                target_dtype = torch.get_autocast_gpu_dtype() | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                target_dtype = self.q_proj.weight.dtype | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            logger.warning_once( | 
					
					
						
						| 
							 | 
						                f"The input hidden states seems to be silently casted in float32, this might be related to" | 
					
					
						
						| 
							 | 
						                f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" | 
					
					
						
						| 
							 | 
						                f" {target_dtype}." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            query_states = query_states.to(target_dtype) | 
					
					
						
						| 
							 | 
						            key_states = key_states.to(target_dtype) | 
					
					
						
						| 
							 | 
						            value_states = value_states.to(target_dtype) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        attn_output = self._flash_attention_forward( | 
					
					
						
						| 
							 | 
						            query_states, | 
					
					
						
						| 
							 | 
						            key_states, | 
					
					
						
						| 
							 | 
						            value_states, | 
					
					
						
						| 
							 | 
						            attention_mask, | 
					
					
						
						| 
							 | 
						            q_len, | 
					
					
						
						| 
							 | 
						            dropout=dropout_rate, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        attn_output = attn_output.reshape(bsz, q_len, -1).contiguous() | 
					
					
						
						| 
							 | 
						        attn_output = self.o_proj(attn_output) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if not output_attentions: | 
					
					
						
						| 
							 | 
						            attn_weights = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return attn_output, attn_weights, past_key_value | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _flash_attention_forward( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        query_states, | 
					
					
						
						| 
							 | 
						        key_states, | 
					
					
						
						| 
							 | 
						        value_states, | 
					
					
						
						| 
							 | 
						        attention_mask, | 
					
					
						
						| 
							 | 
						        query_length, | 
					
					
						
						| 
							 | 
						        dropout=0.0, | 
					
					
						
						| 
							 | 
						        softmax_scale=None, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token | 
					
					
						
						| 
							 | 
						        first unpad the input, then computes the attention scores and pad the final attention scores. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Args: | 
					
					
						
						| 
							 | 
						            query_states (`torch.Tensor`): | 
					
					
						
						| 
							 | 
						                Input query states to be passed to Flash Attention API | 
					
					
						
						| 
							 | 
						            key_states (`torch.Tensor`): | 
					
					
						
						| 
							 | 
						                Input key states to be passed to Flash Attention API | 
					
					
						
						| 
							 | 
						            value_states (`torch.Tensor`): | 
					
					
						
						| 
							 | 
						                Input value states to be passed to Flash Attention API | 
					
					
						
						| 
							 | 
						            attention_mask (`torch.Tensor`): | 
					
					
						
						| 
							 | 
						                The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the | 
					
					
						
						| 
							 | 
						                position of padding tokens and 1 for the position of non-padding tokens. | 
					
					
						
						| 
							 | 
						            dropout (`int`, *optional*): | 
					
					
						
						| 
							 | 
						                Attention dropout | 
					
					
						
						| 
							 | 
						            softmax_scale (`float`, *optional*): | 
					
					
						
						| 
							 | 
						                The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        if not self._flash_attn_uses_top_left_mask: | 
					
					
						
						| 
							 | 
						            causal = self.is_causal | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            causal = self.is_causal and query_length != 1 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if attention_mask is not None: | 
					
					
						
						| 
							 | 
						            batch_size = query_states.shape[0] | 
					
					
						
						| 
							 | 
						            ( | 
					
					
						
						| 
							 | 
						                query_states, | 
					
					
						
						| 
							 | 
						                key_states, | 
					
					
						
						| 
							 | 
						                value_states, | 
					
					
						
						| 
							 | 
						                indices_q, | 
					
					
						
						| 
							 | 
						                cu_seq_lens, | 
					
					
						
						| 
							 | 
						                max_seq_lens, | 
					
					
						
						| 
							 | 
						            ) = self._upad_input( | 
					
					
						
						| 
							 | 
						                query_states, key_states, value_states, attention_mask, query_length | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            cu_seqlens_q, cu_seqlens_k = cu_seq_lens | 
					
					
						
						| 
							 | 
						            max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            attn_output_unpad = flash_attn_varlen_func( | 
					
					
						
						| 
							 | 
						                query_states, | 
					
					
						
						| 
							 | 
						                key_states, | 
					
					
						
						| 
							 | 
						                value_states, | 
					
					
						
						| 
							 | 
						                cu_seqlens_q=cu_seqlens_q, | 
					
					
						
						| 
							 | 
						                cu_seqlens_k=cu_seqlens_k, | 
					
					
						
						| 
							 | 
						                max_seqlen_q=max_seqlen_in_batch_q, | 
					
					
						
						| 
							 | 
						                max_seqlen_k=max_seqlen_in_batch_k, | 
					
					
						
						| 
							 | 
						                dropout_p=dropout, | 
					
					
						
						| 
							 | 
						                softmax_scale=softmax_scale, | 
					
					
						
						| 
							 | 
						                causal=causal, | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            attn_output = pad_input( | 
					
					
						
						| 
							 | 
						                attn_output_unpad, indices_q, batch_size, query_length | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            attn_output = flash_attn_func( | 
					
					
						
						| 
							 | 
						                query_states, | 
					
					
						
						| 
							 | 
						                key_states, | 
					
					
						
						| 
							 | 
						                value_states, | 
					
					
						
						| 
							 | 
						                dropout, | 
					
					
						
						| 
							 | 
						                softmax_scale=softmax_scale, | 
					
					
						
						| 
							 | 
						                causal=causal, | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return attn_output | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _upad_input( | 
					
					
						
						| 
							 | 
						        self, query_layer, key_layer, value_layer, attention_mask, query_length | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) | 
					
					
						
						| 
							 | 
						        batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        key_layer = index_first_axis( | 
					
					
						
						| 
							 | 
						            key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), | 
					
					
						
						| 
							 | 
						            indices_k, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        value_layer = index_first_axis( | 
					
					
						
						| 
							 | 
						            value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), | 
					
					
						
						| 
							 | 
						            indices_k, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        if query_length == kv_seq_len: | 
					
					
						
						| 
							 | 
						            query_layer = index_first_axis( | 
					
					
						
						| 
							 | 
						                query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), | 
					
					
						
						| 
							 | 
						                indices_k, | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            cu_seqlens_q = cu_seqlens_k | 
					
					
						
						| 
							 | 
						            max_seqlen_in_batch_q = max_seqlen_in_batch_k | 
					
					
						
						| 
							 | 
						            indices_q = indices_k | 
					
					
						
						| 
							 | 
						        elif query_length == 1: | 
					
					
						
						| 
							 | 
						            max_seqlen_in_batch_q = 1 | 
					
					
						
						| 
							 | 
						            cu_seqlens_q = torch.arange( | 
					
					
						
						| 
							 | 
						                batch_size + 1, dtype=torch.int32, device=query_layer.device | 
					
					
						
						| 
							 | 
						            )   | 
					
					
						
						| 
							 | 
						            indices_q = cu_seqlens_q[:-1] | 
					
					
						
						| 
							 | 
						            query_layer = query_layer.squeeze(1) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            attention_mask = attention_mask[:, -query_length:] | 
					
					
						
						| 
							 | 
						            query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input( | 
					
					
						
						| 
							 | 
						                query_layer, attention_mask | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return ( | 
					
					
						
						| 
							 | 
						            query_layer, | 
					
					
						
						| 
							 | 
						            key_layer, | 
					
					
						
						| 
							 | 
						            value_layer, | 
					
					
						
						| 
							 | 
						            indices_q, | 
					
					
						
						| 
							 | 
						            (cu_seqlens_q, cu_seqlens_k), | 
					
					
						
						| 
							 | 
						            (max_seqlen_in_batch_q, max_seqlen_in_batch_k), | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						class DeepseekSdpaAttention(DeepseekAttention): | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    Deepseek attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from | 
					
					
						
						| 
							 | 
						    `DeepseekAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to | 
					
					
						
						| 
							 | 
						    SDPA API. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    def forward( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        hidden_states: torch.Tensor, | 
					
					
						
						| 
							 | 
						        attention_mask: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        position_ids: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        past_key_value: Optional[Cache] = None, | 
					
					
						
						| 
							 | 
						        output_attentions: bool = False, | 
					
					
						
						| 
							 | 
						        use_cache: bool = False, | 
					
					
						
						| 
							 | 
						    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | 
					
					
						
						| 
							 | 
						        if output_attentions: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            logger.warning_once( | 
					
					
						
						| 
							 | 
						                "DeepseekModel is using DeepseekSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " | 
					
					
						
						| 
							 | 
						                'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            return super().forward( | 
					
					
						
						| 
							 | 
						                hidden_states=hidden_states, | 
					
					
						
						| 
							 | 
						                attention_mask=attention_mask, | 
					
					
						
						| 
							 | 
						                position_ids=position_ids, | 
					
					
						
						| 
							 | 
						                past_key_value=past_key_value, | 
					
					
						
						| 
							 | 
						                output_attentions=output_attentions, | 
					
					
						
						| 
							 | 
						                use_cache=use_cache, | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        bsz, q_len, _ = hidden_states.size() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        query_states = self.q_proj(hidden_states) | 
					
					
						
						| 
							 | 
						        key_states = self.k_proj(hidden_states) | 
					
					
						
						| 
							 | 
						        value_states = self.v_proj(hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        query_states = query_states.view( | 
					
					
						
						| 
							 | 
						            bsz, q_len, self.num_heads, self.head_dim | 
					
					
						
						| 
							 | 
						        ).transpose(1, 2) | 
					
					
						
						| 
							 | 
						        key_states = key_states.view( | 
					
					
						
						| 
							 | 
						            bsz, q_len, self.num_key_value_heads, self.head_dim | 
					
					
						
						| 
							 | 
						        ).transpose(1, 2) | 
					
					
						
						| 
							 | 
						        value_states = value_states.view( | 
					
					
						
						| 
							 | 
						            bsz, q_len, self.num_key_value_heads, self.head_dim | 
					
					
						
						| 
							 | 
						        ).transpose(1, 2) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        kv_seq_len = key_states.shape[-2] | 
					
					
						
						| 
							 | 
						        if past_key_value is not None: | 
					
					
						
						| 
							 | 
						            kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) | 
					
					
						
						| 
							 | 
						        cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        query_states, key_states = apply_rotary_pos_emb( | 
					
					
						
						| 
							 | 
						            query_states, key_states, cos, sin, position_ids | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if past_key_value is not None: | 
					
					
						
						| 
							 | 
						            cache_kwargs = {"sin": sin, "cos": cos}   | 
					
					
						
						| 
							 | 
						            key_states, value_states = past_key_value.update( | 
					
					
						
						| 
							 | 
						                key_states, value_states, self.layer_idx, cache_kwargs | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        key_states = repeat_kv(key_states, self.num_key_value_groups) | 
					
					
						
						| 
							 | 
						        value_states = repeat_kv(value_states, self.num_key_value_groups) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if attention_mask is not None: | 
					
					
						
						| 
							 | 
						            if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): | 
					
					
						
						| 
							 | 
						                raise ValueError( | 
					
					
						
						| 
							 | 
						                    f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if query_states.device.type == "cuda" and attention_mask is not None: | 
					
					
						
						| 
							 | 
						            query_states = query_states.contiguous() | 
					
					
						
						| 
							 | 
						            key_states = key_states.contiguous() | 
					
					
						
						| 
							 | 
						            value_states = value_states.contiguous() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        attn_output = torch.nn.functional.scaled_dot_product_attention( | 
					
					
						
						| 
							 | 
						            query_states, | 
					
					
						
						| 
							 | 
						            key_states, | 
					
					
						
						| 
							 | 
						            value_states, | 
					
					
						
						| 
							 | 
						            attn_mask=attention_mask, | 
					
					
						
						| 
							 | 
						            dropout_p=self.attention_dropout if self.training else 0.0, | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            is_causal=self.is_causal and attention_mask is None and q_len > 1, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        attn_output = attn_output.transpose(1, 2).contiguous() | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        attn_output = attn_output.reshape(bsz, q_len, -1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        attn_output = self.o_proj(attn_output) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return attn_output, None, past_key_value | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						Deepseek_ATTENTION_CLASSES = { | 
					
					
						
						| 
							 | 
						    "eager": DeepseekAttention, | 
					
					
						
						| 
							 | 
						    "flash_attention_2": DeepseekFlashAttention2, | 
					
					
						
						| 
							 | 
						    "sdpa": DeepseekSdpaAttention, | 
					
					
						
						| 
							 | 
						} | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class DeepseekDecoderLayer(nn.Module): | 
					
					
						
						| 
							 | 
						    def __init__(self, config: DeepseekConfig, layer_idx: int): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						        self.hidden_size = config.hidden_size | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.self_attn = Deepseek_ATTENTION_CLASSES[config._attn_implementation]( | 
					
					
						
						| 
							 | 
						            config=config, layer_idx=layer_idx | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.mlp = ( | 
					
					
						
						| 
							 | 
						            DeepseekMoE(config) | 
					
					
						
						| 
							 | 
						            if ( | 
					
					
						
						| 
							 | 
						                config.n_routed_experts is not None | 
					
					
						
						| 
							 | 
						                and layer_idx >= config.first_k_dense_replace | 
					
					
						
						| 
							 | 
						                and layer_idx % config.moe_layer_freq == 0 | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            else DeepseekMLP(config) | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        self.input_layernorm = DeepseekRMSNorm( | 
					
					
						
						| 
							 | 
						            config.hidden_size, eps=config.rms_norm_eps | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        self.post_attention_layernorm = DeepseekRMSNorm( | 
					
					
						
						| 
							 | 
						            config.hidden_size, eps=config.rms_norm_eps | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        hidden_states: torch.Tensor, | 
					
					
						
						| 
							 | 
						        attention_mask: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        position_ids: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        past_key_value: Optional[Tuple[torch.Tensor]] = None, | 
					
					
						
						| 
							 | 
						        output_attentions: Optional[bool] = False, | 
					
					
						
						| 
							 | 
						        use_cache: Optional[bool] = False, | 
					
					
						
						| 
							 | 
						        **kwargs, | 
					
					
						
						| 
							 | 
						    ) -> Tuple[ | 
					
					
						
						| 
							 | 
						        torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] | 
					
					
						
						| 
							 | 
						    ]: | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        Args: | 
					
					
						
						| 
							 | 
						            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | 
					
					
						
						| 
							 | 
						            attention_mask (`torch.FloatTensor`, *optional*): | 
					
					
						
						| 
							 | 
						                attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1, | 
					
					
						
						| 
							 | 
						                query_sequence_length, key_sequence_length)` if default attention is used. | 
					
					
						
						| 
							 | 
						            output_attentions (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						                Whether or not to return the attentions tensors of all attention layers. See `attentions` under | 
					
					
						
						| 
							 | 
						                returned tensors for more detail. | 
					
					
						
						| 
							 | 
						            use_cache (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding | 
					
					
						
						| 
							 | 
						                (see `past_key_values`). | 
					
					
						
						| 
							 | 
						            past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        if "padding_mask" in kwargs: | 
					
					
						
						| 
							 | 
						            warnings.warn( | 
					
					
						
						| 
							 | 
						                "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        residual = hidden_states | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        hidden_states = self.input_layernorm(hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        hidden_states, self_attn_weights, present_key_value = self.self_attn( | 
					
					
						
						| 
							 | 
						            hidden_states=hidden_states, | 
					
					
						
						| 
							 | 
						            attention_mask=attention_mask, | 
					
					
						
						| 
							 | 
						            position_ids=position_ids, | 
					
					
						
						| 
							 | 
						            past_key_value=past_key_value, | 
					
					
						
						| 
							 | 
						            output_attentions=output_attentions, | 
					
					
						
						| 
							 | 
						            use_cache=use_cache, | 
					
					
						
						| 
							 | 
						            **kwargs, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        hidden_states = residual + hidden_states | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        residual = hidden_states | 
					
					
						
						| 
							 | 
						        hidden_states = self.post_attention_layernorm(hidden_states) | 
					
					
						
						| 
							 | 
						        hidden_states = self.mlp(hidden_states) | 
					
					
						
						| 
							 | 
						        hidden_states = residual + hidden_states | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        outputs = (hidden_states,) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if output_attentions: | 
					
					
						
						| 
							 | 
						            outputs += (self_attn_weights,) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if use_cache: | 
					
					
						
						| 
							 | 
						            outputs += (present_key_value,) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return outputs | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						Deepseek_START_DOCSTRING = r""" | 
					
					
						
						| 
							 | 
						    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | 
					
					
						
						| 
							 | 
						    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | 
					
					
						
						| 
							 | 
						    etc.) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | 
					
					
						
						| 
							 | 
						    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | 
					
					
						
						| 
							 | 
						    and behavior. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Parameters: | 
					
					
						
						| 
							 | 
						        config ([`DeepseekConfig`]): | 
					
					
						
						| 
							 | 
						            Model configuration class with all the parameters of the model. Initializing with a config file does not | 
					
					
						
						| 
							 | 
						            load the weights associated with the model, only the configuration. Check out the | 
					
					
						
						| 
							 | 
						            [`~PreTrainedModel.from_pretrained`] method to load the model weights. | 
					
					
						
						| 
							 | 
						""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						@add_start_docstrings( | 
					
					
						
						| 
							 | 
						    "The bare Deepseek Model outputting raw hidden-states without any specific head on top.", | 
					
					
						
						| 
							 | 
						    Deepseek_START_DOCSTRING, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						class DeepseekPreTrainedModel(PreTrainedModel): | 
					
					
						
						| 
							 | 
						    config_class = DeepseekConfig | 
					
					
						
						| 
							 | 
						    base_model_prefix = "model" | 
					
					
						
						| 
							 | 
						    supports_gradient_checkpointing = True | 
					
					
						
						| 
							 | 
						    _no_split_modules = ["DeepseekDecoderLayer"] | 
					
					
						
						| 
							 | 
						    _skip_keys_device_placement = "past_key_values" | 
					
					
						
						| 
							 | 
						    _supports_flash_attn_2 = True | 
					
					
						
						| 
							 | 
						    _supports_sdpa = True | 
					
					
						
						| 
							 | 
						    _supports_cache_class = True | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _init_weights(self, module): | 
					
					
						
						| 
							 | 
						        std = self.config.initializer_range | 
					
					
						
						| 
							 | 
						        if isinstance(module, nn.Linear): | 
					
					
						
						| 
							 | 
						            module.weight.data.normal_(mean=0.0, std=std) | 
					
					
						
						| 
							 | 
						            if module.bias is not None: | 
					
					
						
						| 
							 | 
						                module.bias.data.zero_() | 
					
					
						
						| 
							 | 
						        elif isinstance(module, nn.Embedding): | 
					
					
						
						| 
							 | 
						            module.weight.data.normal_(mean=0.0, std=std) | 
					
					
						
						| 
							 | 
						            if module.padding_idx is not None: | 
					
					
						
						| 
							 | 
						                module.weight.data[module.padding_idx].zero_() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						Deepseek_INPUTS_DOCSTRING = r""" | 
					
					
						
						| 
							 | 
						    Args: | 
					
					
						
						| 
							 | 
						        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | 
					
					
						
						| 
							 | 
						            Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | 
					
					
						
						| 
							 | 
						            it. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | 
					
					
						
						| 
							 | 
						            [`PreTrainedTokenizer.__call__`] for details. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            [What are input IDs?](../glossary#input-ids) | 
					
					
						
						| 
							 | 
						        attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
					
						
						| 
							 | 
						            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            - 1 for tokens that are **not masked**, | 
					
					
						
						| 
							 | 
						            - 0 for tokens that are **masked**. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            [What are attention masks?](../glossary#attention-mask) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | 
					
					
						
						| 
							 | 
						            [`PreTrainedTokenizer.__call__`] for details. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            If `past_key_values` is used, optionally only the last `input_ids` have to be input (see | 
					
					
						
						| 
							 | 
						            `past_key_values`). | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] | 
					
					
						
						| 
							 | 
						            and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more | 
					
					
						
						| 
							 | 
						            information on the default strategy. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            - 1 indicates the head is **not masked**, | 
					
					
						
						| 
							 | 
						            - 0 indicates the head is **masked**. | 
					
					
						
						| 
							 | 
						        position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
					
						
						| 
							 | 
						            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | 
					
					
						
						| 
							 | 
						            config.n_positions - 1]`. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            [What are position IDs?](../glossary#position-ids) | 
					
					
						
						| 
							 | 
						        past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): | 
					
					
						
						| 
							 | 
						            Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention | 
					
					
						
						| 
							 | 
						            blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` | 
					
					
						
						| 
							 | 
						            returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            Two formats are allowed: | 
					
					
						
						| 
							 | 
						            - a [`~cache_utils.Cache`] instance; | 
					
					
						
						| 
							 | 
						            - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of | 
					
					
						
						| 
							 | 
						            shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy | 
					
					
						
						| 
							 | 
						            cache format. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the | 
					
					
						
						| 
							 | 
						            legacy cache format will be returned. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't | 
					
					
						
						| 
							 | 
						            have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` | 
					
					
						
						| 
							 | 
						            of shape `(batch_size, sequence_length)`. | 
					
					
						
						| 
							 | 
						        inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | 
					
					
						
						| 
							 | 
						            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | 
					
					
						
						| 
							 | 
						            is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | 
					
					
						
						| 
							 | 
						            model's internal embedding lookup matrix. | 
					
					
						
						| 
							 | 
						        use_cache (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | 
					
					
						
						| 
							 | 
						            `past_key_values`). | 
					
					
						
						| 
							 | 
						        output_attentions (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | 
					
					
						
						| 
							 | 
						            tensors for more detail. | 
					
					
						
						| 
							 | 
						        output_hidden_states (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | 
					
					
						
						| 
							 | 
						            more detail. | 
					
					
						
						| 
							 | 
						        return_dict (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | 
					
					
						
						| 
							 | 
						""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						@add_start_docstrings( | 
					
					
						
						| 
							 | 
						    "The bare Deepseek Model outputting raw hidden-states without any specific head on top.", | 
					
					
						
						| 
							 | 
						    Deepseek_START_DOCSTRING, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						class DeepseekModel(DeepseekPreTrainedModel): | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DeepseekDecoderLayer`] | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Args: | 
					
					
						
						| 
							 | 
						        config: DeepseekConfig | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__(self, config: DeepseekConfig): | 
					
					
						
						| 
							 | 
						        super().__init__(config) | 
					
					
						
						| 
							 | 
						        self.padding_idx = config.pad_token_id | 
					
					
						
						| 
							 | 
						        self.vocab_size = config.vocab_size | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.embed_tokens = nn.Embedding( | 
					
					
						
						| 
							 | 
						            config.vocab_size, config.hidden_size, self.padding_idx | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        self.layers = nn.ModuleList( | 
					
					
						
						| 
							 | 
						            [ | 
					
					
						
						| 
							 | 
						                DeepseekDecoderLayer(config, layer_idx) | 
					
					
						
						| 
							 | 
						                for layer_idx in range(config.num_hidden_layers) | 
					
					
						
						| 
							 | 
						            ] | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        self._use_sdpa = config._attn_implementation == "sdpa" | 
					
					
						
						| 
							 | 
						        self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" | 
					
					
						
						| 
							 | 
						        self.norm = DeepseekRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.gradient_checkpointing = False | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.post_init() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def get_input_embeddings(self): | 
					
					
						
						| 
							 | 
						        return self.embed_tokens | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def set_input_embeddings(self, value): | 
					
					
						
						| 
							 | 
						        self.embed_tokens = value | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @add_start_docstrings_to_model_forward(Deepseek_INPUTS_DOCSTRING) | 
					
					
						
						| 
							 | 
						    def forward( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        input_ids: torch.LongTensor = None, | 
					
					
						
						| 
							 | 
						        attention_mask: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        position_ids: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        past_key_values: Optional[List[torch.FloatTensor]] = None, | 
					
					
						
						| 
							 | 
						        inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
					
						
						| 
							 | 
						        use_cache: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        output_attentions: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        output_hidden_states: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        return_dict: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						    ) -> Union[Tuple, BaseModelOutputWithPast]: | 
					
					
						
						| 
							 | 
						        output_attentions = ( | 
					
					
						
						| 
							 | 
						            output_attentions | 
					
					
						
						| 
							 | 
						            if output_attentions is not None | 
					
					
						
						| 
							 | 
						            else self.config.output_attentions | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        output_hidden_states = ( | 
					
					
						
						| 
							 | 
						            output_hidden_states | 
					
					
						
						| 
							 | 
						            if output_hidden_states is not None | 
					
					
						
						| 
							 | 
						            else self.config.output_hidden_states | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        use_cache = use_cache if use_cache is not None else self.config.use_cache | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return_dict = ( | 
					
					
						
						| 
							 | 
						            return_dict if return_dict is not None else self.config.use_return_dict | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if input_ids is not None and inputs_embeds is not None: | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                "You cannot specify both input_ids and inputs_embeds at the same time" | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        elif input_ids is not None: | 
					
					
						
						| 
							 | 
						            batch_size, seq_length = input_ids.shape[:2] | 
					
					
						
						| 
							 | 
						        elif inputs_embeds is not None: | 
					
					
						
						| 
							 | 
						            batch_size, seq_length = inputs_embeds.shape[:2] | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            raise ValueError("You have to specify either input_ids or inputs_embeds") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self.gradient_checkpointing and self.training: | 
					
					
						
						| 
							 | 
						            if use_cache: | 
					
					
						
						| 
							 | 
						                logger.warning_once( | 
					
					
						
						| 
							 | 
						                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`transformers." | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                use_cache = False | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        past_key_values_length = 0 | 
					
					
						
						| 
							 | 
						        if use_cache: | 
					
					
						
						| 
							 | 
						            use_legacy_cache = not isinstance(past_key_values, Cache) | 
					
					
						
						| 
							 | 
						            if use_legacy_cache: | 
					
					
						
						| 
							 | 
						                past_key_values = DynamicCache.from_legacy_cache(past_key_values) | 
					
					
						
						| 
							 | 
						            past_key_values_length = past_key_values.get_usable_length(seq_length) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if position_ids is None: | 
					
					
						
						| 
							 | 
						            device = input_ids.device if input_ids is not None else inputs_embeds.device | 
					
					
						
						| 
							 | 
						            position_ids = torch.arange( | 
					
					
						
						| 
							 | 
						                past_key_values_length, | 
					
					
						
						| 
							 | 
						                seq_length + past_key_values_length, | 
					
					
						
						| 
							 | 
						                dtype=torch.long, | 
					
					
						
						| 
							 | 
						                device=device, | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            position_ids = position_ids.unsqueeze(0) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if inputs_embeds is None: | 
					
					
						
						| 
							 | 
						            inputs_embeds = self.embed_tokens(input_ids) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self._use_flash_attention_2: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            attention_mask = ( | 
					
					
						
						| 
							 | 
						                attention_mask | 
					
					
						
						| 
							 | 
						                if (attention_mask is not None and 0 in attention_mask) | 
					
					
						
						| 
							 | 
						                else None | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        elif self._use_sdpa and not output_attentions: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( | 
					
					
						
						| 
							 | 
						                attention_mask, | 
					
					
						
						| 
							 | 
						                (batch_size, seq_length), | 
					
					
						
						| 
							 | 
						                inputs_embeds, | 
					
					
						
						| 
							 | 
						                past_key_values_length, | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            attention_mask = _prepare_4d_causal_attention_mask( | 
					
					
						
						| 
							 | 
						                attention_mask, | 
					
					
						
						| 
							 | 
						                (batch_size, seq_length), | 
					
					
						
						| 
							 | 
						                inputs_embeds, | 
					
					
						
						| 
							 | 
						                past_key_values_length, | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        hidden_states = inputs_embeds | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        all_hidden_states = () if output_hidden_states else None | 
					
					
						
						| 
							 | 
						        all_self_attns = () if output_attentions else None | 
					
					
						
						| 
							 | 
						        next_decoder_cache = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        for decoder_layer in self.layers: | 
					
					
						
						| 
							 | 
						            if output_hidden_states: | 
					
					
						
						| 
							 | 
						                all_hidden_states += (hidden_states,) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if self.gradient_checkpointing and self.training: | 
					
					
						
						| 
							 | 
						                layer_outputs = self._gradient_checkpointing_func( | 
					
					
						
						| 
							 | 
						                    decoder_layer.__call__, | 
					
					
						
						| 
							 | 
						                    hidden_states, | 
					
					
						
						| 
							 | 
						                    attention_mask, | 
					
					
						
						| 
							 | 
						                    position_ids, | 
					
					
						
						| 
							 | 
						                    past_key_values, | 
					
					
						
						| 
							 | 
						                    output_attentions, | 
					
					
						
						| 
							 | 
						                    use_cache, | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                layer_outputs = decoder_layer( | 
					
					
						
						| 
							 | 
						                    hidden_states, | 
					
					
						
						| 
							 | 
						                    attention_mask=attention_mask, | 
					
					
						
						| 
							 | 
						                    position_ids=position_ids, | 
					
					
						
						| 
							 | 
						                    past_key_value=past_key_values, | 
					
					
						
						| 
							 | 
						                    output_attentions=output_attentions, | 
					
					
						
						| 
							 | 
						                    use_cache=use_cache, | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            hidden_states = layer_outputs[0] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if use_cache: | 
					
					
						
						| 
							 | 
						                next_decoder_cache = layer_outputs[2 if output_attentions else 1] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if output_attentions: | 
					
					
						
						| 
							 | 
						                all_self_attns += (layer_outputs[1],) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        hidden_states = self.norm(hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if output_hidden_states: | 
					
					
						
						| 
							 | 
						            all_hidden_states += (hidden_states,) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        next_cache = None | 
					
					
						
						| 
							 | 
						        if use_cache: | 
					
					
						
						| 
							 | 
						            next_cache = ( | 
					
					
						
						| 
							 | 
						                next_decoder_cache.to_legacy_cache() | 
					
					
						
						| 
							 | 
						                if use_legacy_cache | 
					
					
						
						| 
							 | 
						                else next_decoder_cache | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        if not return_dict: | 
					
					
						
						| 
							 | 
						            return tuple( | 
					
					
						
						| 
							 | 
						                v | 
					
					
						
						| 
							 | 
						                for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] | 
					
					
						
						| 
							 | 
						                if v is not None | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        return BaseModelOutputWithPast( | 
					
					
						
						| 
							 | 
						            last_hidden_state=hidden_states, | 
					
					
						
						| 
							 | 
						            past_key_values=next_cache, | 
					
					
						
						| 
							 | 
						            hidden_states=all_hidden_states, | 
					
					
						
						| 
							 | 
						            attentions=all_self_attns, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class DeepseekForCausalLM(DeepseekPreTrainedModel): | 
					
					
						
						| 
							 | 
						    _tied_weights_keys = ["lm_head.weight"] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__(self, config): | 
					
					
						
						| 
							 | 
						        super().__init__(config) | 
					
					
						
						| 
							 | 
						        self.model = DeepseekModel(config) | 
					
					
						
						| 
							 | 
						        self.vocab_size = config.vocab_size | 
					
					
						
						| 
							 | 
						        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.post_init() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def get_input_embeddings(self): | 
					
					
						
						| 
							 | 
						        return self.model.embed_tokens | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def set_input_embeddings(self, value): | 
					
					
						
						| 
							 | 
						        self.model.embed_tokens = value | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def get_output_embeddings(self): | 
					
					
						
						| 
							 | 
						        return self.lm_head | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def set_output_embeddings(self, new_embeddings): | 
					
					
						
						| 
							 | 
						        self.lm_head = new_embeddings | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def set_decoder(self, decoder): | 
					
					
						
						| 
							 | 
						        self.model = decoder | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def get_decoder(self): | 
					
					
						
						| 
							 | 
						        return self.model | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @add_start_docstrings_to_model_forward(Deepseek_INPUTS_DOCSTRING) | 
					
					
						
						| 
							 | 
						    @replace_return_docstrings( | 
					
					
						
						| 
							 | 
						        output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    def forward( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        input_ids: torch.LongTensor = None, | 
					
					
						
						| 
							 | 
						        attention_mask: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        position_ids: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        past_key_values: Optional[List[torch.FloatTensor]] = None, | 
					
					
						
						| 
							 | 
						        inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
					
						
						| 
							 | 
						        labels: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        use_cache: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        output_attentions: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        output_hidden_states: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        return_dict: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						    ) -> Union[Tuple, CausalLMOutputWithPast]: | 
					
					
						
						| 
							 | 
						        r""" | 
					
					
						
						| 
							 | 
						        Args: | 
					
					
						
						| 
							 | 
						            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
					
						
						| 
							 | 
						                Labels for computing the masked language modeling loss. Indices should either be in `[0, transformers., | 
					
					
						
						| 
							 | 
						                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored | 
					
					
						
						| 
							 | 
						                (masked), the loss is only computed for the tokens with labels in `[0, transformers., config.vocab_size]`. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Returns: | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Example: | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        ```python | 
					
					
						
						| 
							 | 
						        >>> from transformers import AutoTokenizer, DeepseekForCausalLM | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        >>> model = DeepseekForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) | 
					
					
						
						| 
							 | 
						        >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        >>> prompt = "Hey, are you conscious? Can you talk to me?" | 
					
					
						
						| 
							 | 
						        >>> inputs = tokenizer(prompt, return_tensors="pt") | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        >>> # Generate | 
					
					
						
						| 
							 | 
						        >>> generate_ids = model.generate(inputs.input_ids, max_length=30) | 
					
					
						
						| 
							 | 
						        >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | 
					
					
						
						| 
							 | 
						        "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." | 
					
					
						
						| 
							 | 
						        ```""" | 
					
					
						
						| 
							 | 
						        output_attentions = ( | 
					
					
						
						| 
							 | 
						            output_attentions | 
					
					
						
						| 
							 | 
						            if output_attentions is not None | 
					
					
						
						| 
							 | 
						            else self.config.output_attentions | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        output_hidden_states = ( | 
					
					
						
						| 
							 | 
						            output_hidden_states | 
					
					
						
						| 
							 | 
						            if output_hidden_states is not None | 
					
					
						
						| 
							 | 
						            else self.config.output_hidden_states | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        return_dict = ( | 
					
					
						
						| 
							 | 
						            return_dict if return_dict is not None else self.config.use_return_dict | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        outputs = self.model( | 
					
					
						
						| 
							 | 
						            input_ids=input_ids, | 
					
					
						
						| 
							 | 
						            attention_mask=attention_mask, | 
					
					
						
						| 
							 | 
						            position_ids=position_ids, | 
					
					
						
						| 
							 | 
						            past_key_values=past_key_values, | 
					
					
						
						| 
							 | 
						            inputs_embeds=inputs_embeds, | 
					
					
						
						| 
							 | 
						            use_cache=use_cache, | 
					
					
						
						| 
							 | 
						            output_attentions=output_attentions, | 
					
					
						
						| 
							 | 
						            output_hidden_states=output_hidden_states, | 
					
					
						
						| 
							 | 
						            return_dict=return_dict, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        hidden_states = outputs[0] | 
					
					
						
						| 
							 | 
						        if self.config.pretraining_tp > 1: | 
					
					
						
						| 
							 | 
						            lm_head_slices = self.lm_head.weight.split( | 
					
					
						
						| 
							 | 
						                self.vocab_size // self.config.pretraining_tp, dim=0 | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            logits = [ | 
					
					
						
						| 
							 | 
						                F.linear(hidden_states, lm_head_slices[i]) | 
					
					
						
						| 
							 | 
						                for i in range(self.config.pretraining_tp) | 
					
					
						
						| 
							 | 
						            ] | 
					
					
						
						| 
							 | 
						            logits = torch.cat(logits, dim=-1) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            logits = self.lm_head(hidden_states) | 
					
					
						
						| 
							 | 
						        logits = logits.float() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        loss = None | 
					
					
						
						| 
							 | 
						        if labels is not None: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            shift_logits = logits[..., :-1, :].contiguous() | 
					
					
						
						| 
							 | 
						            shift_labels = labels[..., 1:].contiguous() | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            loss_fct = CrossEntropyLoss() | 
					
					
						
						| 
							 | 
						            shift_logits = shift_logits.view(-1, self.config.vocab_size) | 
					
					
						
						| 
							 | 
						            shift_labels = shift_labels.view(-1) | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            shift_labels = shift_labels.to(shift_logits.device) | 
					
					
						
						| 
							 | 
						            loss = loss_fct(shift_logits, shift_labels) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if not return_dict: | 
					
					
						
						| 
							 | 
						            output = (logits,) + outputs[1:] | 
					
					
						
						| 
							 | 
						            return (loss,) + output if loss is not None else output | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return CausalLMOutputWithPast( | 
					
					
						
						| 
							 | 
						            loss=loss, | 
					
					
						
						| 
							 | 
						            logits=logits, | 
					
					
						
						| 
							 | 
						            past_key_values=outputs.past_key_values, | 
					
					
						
						| 
							 | 
						            hidden_states=outputs.hidden_states, | 
					
					
						
						| 
							 | 
						            attentions=outputs.attentions, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def prepare_inputs_for_generation( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        input_ids, | 
					
					
						
						| 
							 | 
						        past_key_values=None, | 
					
					
						
						| 
							 | 
						        attention_mask=None, | 
					
					
						
						| 
							 | 
						        inputs_embeds=None, | 
					
					
						
						| 
							 | 
						        **kwargs, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        if past_key_values is not None: | 
					
					
						
						| 
							 | 
						            if isinstance(past_key_values, Cache): | 
					
					
						
						| 
							 | 
						                cache_length = past_key_values.get_seq_length() | 
					
					
						
						| 
							 | 
						                past_length = past_key_values.seen_tokens | 
					
					
						
						| 
							 | 
						                max_cache_length = past_key_values.get_max_length() | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                cache_length = past_length = past_key_values[0][0].shape[2] | 
					
					
						
						| 
							 | 
						                max_cache_length = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            if ( | 
					
					
						
						| 
							 | 
						                attention_mask is not None | 
					
					
						
						| 
							 | 
						                and attention_mask.shape[1] > input_ids.shape[1] | 
					
					
						
						| 
							 | 
						            ): | 
					
					
						
						| 
							 | 
						                input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            elif past_length < input_ids.shape[1]: | 
					
					
						
						| 
							 | 
						                input_ids = input_ids[:, past_length:] | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            if ( | 
					
					
						
						| 
							 | 
						                max_cache_length is not None | 
					
					
						
						| 
							 | 
						                and attention_mask is not None | 
					
					
						
						| 
							 | 
						                and cache_length + input_ids.shape[1] > max_cache_length | 
					
					
						
						| 
							 | 
						            ): | 
					
					
						
						| 
							 | 
						                attention_mask = attention_mask[:, -max_cache_length:] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        position_ids = kwargs.get("position_ids", None) | 
					
					
						
						| 
							 | 
						        if attention_mask is not None and position_ids is None: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            position_ids = attention_mask.long().cumsum(-1) - 1 | 
					
					
						
						| 
							 | 
						            position_ids.masked_fill_(attention_mask == 0, 1) | 
					
					
						
						| 
							 | 
						            if past_key_values: | 
					
					
						
						| 
							 | 
						                position_ids = position_ids[:, -input_ids.shape[1] :] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if inputs_embeds is not None and past_key_values is None: | 
					
					
						
						| 
							 | 
						            model_inputs = {"inputs_embeds": inputs_embeds} | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            model_inputs = {"input_ids": input_ids} | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        model_inputs.update( | 
					
					
						
						| 
							 | 
						            { | 
					
					
						
						| 
							 | 
						                "position_ids": position_ids, | 
					
					
						
						| 
							 | 
						                "past_key_values": past_key_values, | 
					
					
						
						| 
							 | 
						                "use_cache": kwargs.get("use_cache"), | 
					
					
						
						| 
							 | 
						                "attention_mask": attention_mask, | 
					
					
						
						| 
							 | 
						            } | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        return model_inputs | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @staticmethod | 
					
					
						
						| 
							 | 
						    def _reorder_cache(past_key_values, beam_idx): | 
					
					
						
						| 
							 | 
						        reordered_past = () | 
					
					
						
						| 
							 | 
						        for layer_past in past_key_values: | 
					
					
						
						| 
							 | 
						            reordered_past += ( | 
					
					
						
						| 
							 | 
						                tuple( | 
					
					
						
						| 
							 | 
						                    past_state.index_select(0, beam_idx.to(past_state.device)) | 
					
					
						
						| 
							 | 
						                    for past_state in layer_past | 
					
					
						
						| 
							 | 
						                ), | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        return reordered_past | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						@add_start_docstrings( | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    The Deepseek Model transformer with a sequence classification head on top (linear layer). | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    [`DeepseekForSequenceClassification`] uses the last token in order to do the classification, as other causal models | 
					
					
						
						| 
							 | 
						    (e.g. GPT-2) do. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Since it does classification on the last token, it requires to know the position of the last token. If a | 
					
					
						
						| 
							 | 
						    `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If | 
					
					
						
						| 
							 | 
						    no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the | 
					
					
						
						| 
							 | 
						    padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in | 
					
					
						
						| 
							 | 
						    each row of the batch). | 
					
					
						
						| 
							 | 
						    """, | 
					
					
						
						| 
							 | 
						    Deepseek_START_DOCSTRING, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						class DeepseekForSequenceClassification(DeepseekPreTrainedModel): | 
					
					
						
						| 
							 | 
						    def __init__(self, config): | 
					
					
						
						| 
							 | 
						        super().__init__(config) | 
					
					
						
						| 
							 | 
						        self.num_labels = config.num_labels | 
					
					
						
						| 
							 | 
						        self.model = DeepseekModel(config) | 
					
					
						
						| 
							 | 
						        self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.post_init() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def get_input_embeddings(self): | 
					
					
						
						| 
							 | 
						        return self.model.embed_tokens | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def set_input_embeddings(self, value): | 
					
					
						
						| 
							 | 
						        self.model.embed_tokens = value | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @add_start_docstrings_to_model_forward(Deepseek_INPUTS_DOCSTRING) | 
					
					
						
						| 
							 | 
						    def forward( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        input_ids: torch.LongTensor = None, | 
					
					
						
						| 
							 | 
						        attention_mask: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        position_ids: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        past_key_values: Optional[List[torch.FloatTensor]] = None, | 
					
					
						
						| 
							 | 
						        inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
					
						
						| 
							 | 
						        labels: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        use_cache: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        output_attentions: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        output_hidden_states: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        return_dict: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						    ) -> Union[Tuple, SequenceClassifierOutputWithPast]: | 
					
					
						
						| 
							 | 
						        r""" | 
					
					
						
						| 
							 | 
						        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | 
					
					
						
						| 
							 | 
						            Labels for computing the sequence classification/regression loss. Indices should be in `[0, transformers., | 
					
					
						
						| 
							 | 
						            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | 
					
					
						
						| 
							 | 
						            `config.num_labels > 1` a classification loss is computed (Cross-Entropy). | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        return_dict = ( | 
					
					
						
						| 
							 | 
						            return_dict if return_dict is not None else self.config.use_return_dict | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        transformer_outputs = self.model( | 
					
					
						
						| 
							 | 
						            input_ids, | 
					
					
						
						| 
							 | 
						            attention_mask=attention_mask, | 
					
					
						
						| 
							 | 
						            position_ids=position_ids, | 
					
					
						
						| 
							 | 
						            past_key_values=past_key_values, | 
					
					
						
						| 
							 | 
						            inputs_embeds=inputs_embeds, | 
					
					
						
						| 
							 | 
						            use_cache=use_cache, | 
					
					
						
						| 
							 | 
						            output_attentions=output_attentions, | 
					
					
						
						| 
							 | 
						            output_hidden_states=output_hidden_states, | 
					
					
						
						| 
							 | 
						            return_dict=return_dict, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        hidden_states = transformer_outputs[0] | 
					
					
						
						| 
							 | 
						        logits = self.score(hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if input_ids is not None: | 
					
					
						
						| 
							 | 
						            batch_size = input_ids.shape[0] | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            batch_size = inputs_embeds.shape[0] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self.config.pad_token_id is None and batch_size != 1: | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                "Cannot handle batch sizes > 1 if no padding token is defined." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        if self.config.pad_token_id is None: | 
					
					
						
						| 
							 | 
						            sequence_lengths = -1 | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            if input_ids is not None: | 
					
					
						
						| 
							 | 
						                sequence_lengths = ( | 
					
					
						
						| 
							 | 
						                    torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 | 
					
					
						
						| 
							 | 
						                ).to(logits.device) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                sequence_lengths = -1 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        pooled_logits = logits[ | 
					
					
						
						| 
							 | 
						            torch.arange(batch_size, device=logits.device), sequence_lengths | 
					
					
						
						| 
							 | 
						        ] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        loss = None | 
					
					
						
						| 
							 | 
						        if labels is not None: | 
					
					
						
						| 
							 | 
						            labels = labels.to(logits.device) | 
					
					
						
						| 
							 | 
						            if self.config.problem_type is None: | 
					
					
						
						| 
							 | 
						                if self.num_labels == 1: | 
					
					
						
						| 
							 | 
						                    self.config.problem_type = "regression" | 
					
					
						
						| 
							 | 
						                elif self.num_labels > 1 and ( | 
					
					
						
						| 
							 | 
						                    labels.dtype == torch.long or labels.dtype == torch.int | 
					
					
						
						| 
							 | 
						                ): | 
					
					
						
						| 
							 | 
						                    self.config.problem_type = "single_label_classification" | 
					
					
						
						| 
							 | 
						                else: | 
					
					
						
						| 
							 | 
						                    self.config.problem_type = "multi_label_classification" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if self.config.problem_type == "regression": | 
					
					
						
						| 
							 | 
						                loss_fct = MSELoss() | 
					
					
						
						| 
							 | 
						                if self.num_labels == 1: | 
					
					
						
						| 
							 | 
						                    loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) | 
					
					
						
						| 
							 | 
						                else: | 
					
					
						
						| 
							 | 
						                    loss = loss_fct(pooled_logits, labels) | 
					
					
						
						| 
							 | 
						            elif self.config.problem_type == "single_label_classification": | 
					
					
						
						| 
							 | 
						                loss_fct = CrossEntropyLoss() | 
					
					
						
						| 
							 | 
						                loss = loss_fct( | 
					
					
						
						| 
							 | 
						                    pooled_logits.view(-1, self.num_labels), labels.view(-1) | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						            elif self.config.problem_type == "multi_label_classification": | 
					
					
						
						| 
							 | 
						                loss_fct = BCEWithLogitsLoss() | 
					
					
						
						| 
							 | 
						                loss = loss_fct(pooled_logits, labels) | 
					
					
						
						| 
							 | 
						        if not return_dict: | 
					
					
						
						| 
							 | 
						            output = (pooled_logits,) + transformer_outputs[1:] | 
					
					
						
						| 
							 | 
						            return ((loss,) + output) if loss is not None else output | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return SequenceClassifierOutputWithPast( | 
					
					
						
						| 
							 | 
						            loss=loss, | 
					
					
						
						| 
							 | 
						            logits=pooled_logits, | 
					
					
						
						| 
							 | 
						            past_key_values=transformer_outputs.past_key_values, | 
					
					
						
						| 
							 | 
						            hidden_states=transformer_outputs.hidden_states, | 
					
					
						
						| 
							 | 
						            attentions=transformer_outputs.attentions, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 |