|  | import torch | 
					
						
						|  | import torch.nn as nn | 
					
						
						|  | import re | 
					
						
						|  | import math | 
					
						
						|  | from transformers import CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def build_vision_tower(): | 
					
						
						|  | vision_tower = 'openai/clip-vit-large-patch14-336' | 
					
						
						|  | return CLIPVisionTower(vision_tower) | 
					
						
						|  |  | 
					
						
						|  | class CLIPVisionTowerHD(nn.Module): | 
					
						
						|  | def __init__(self, config, vision_select_layer=-2): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | self.is_loaded = False | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.vis_config = config | 
					
						
						|  | self.select_layer = vision_select_layer | 
					
						
						|  | self.select_feature = 'patch' | 
					
						
						|  | self.load_model() | 
					
						
						|  |  | 
					
						
						|  | def load_model(self): | 
					
						
						|  |  | 
					
						
						|  | self.vision_tower = CLIPVisionModel(CLIPVisionConfig(**self.vis_config)) | 
					
						
						|  | self.vision_tower.requires_grad_(False) | 
					
						
						|  |  | 
					
						
						|  | self.is_loaded = True | 
					
						
						|  |  | 
					
						
						|  | def resize_pos(self): | 
					
						
						|  | print ('Dummy Resized') | 
					
						
						|  |  | 
					
						
						|  | def feature_select(self, image_forward_outs): | 
					
						
						|  | image_features = image_forward_outs.hidden_states[self.select_layer] | 
					
						
						|  | if self.select_feature == 'patch': | 
					
						
						|  | image_features = image_features[:, 1:] | 
					
						
						|  | elif self.select_feature == 'cls_patch': | 
					
						
						|  | image_features = image_features | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f'Unexpected select feature: {self.select_feature}') | 
					
						
						|  | return image_features | 
					
						
						|  |  | 
					
						
						|  | def forward(self, images, glb_GN, sub_GN): | 
					
						
						|  | if not self.is_loaded: | 
					
						
						|  | self.load_model() | 
					
						
						|  | assert type(images) is list | 
					
						
						|  | shapes = [] | 
					
						
						|  | input_imgs = [] | 
					
						
						|  | for img in images: | 
					
						
						|  | _, C, H, W = img.shape | 
					
						
						|  | shapes.append([H//336, W//336]) | 
					
						
						|  | sub_img = img.reshape(1,3,H//336,336,W//336,336).permute(0,2,4,1,3,5).reshape(-1,3,336,336).contiguous() | 
					
						
						|  | glb_img = torch.nn.functional.interpolate(img.float(), size=(336,336), mode='bicubic',).to(sub_img.dtype) | 
					
						
						|  | input_imgs.append(glb_img) | 
					
						
						|  | input_imgs.append(sub_img) | 
					
						
						|  | input_imgs = torch.cat(input_imgs, dim=0) | 
					
						
						|  |  | 
					
						
						|  | image_forward_outs = self.vision_tower(input_imgs.to(device=self.device, dtype=self.dtype), output_hidden_states=True) | 
					
						
						|  | image_features = self.feature_select(image_forward_outs).to(input_imgs.dtype) | 
					
						
						|  | _, N, C = image_features.shape | 
					
						
						|  | H = int(math.sqrt(N)) | 
					
						
						|  | assert N == 24 ** 2 | 
					
						
						|  |  | 
					
						
						|  | output_imgs = [] | 
					
						
						|  | output_len = [] | 
					
						
						|  | for [h, w] in shapes: | 
					
						
						|  | B_ = h*w | 
					
						
						|  | glb_img = image_features[:1] | 
					
						
						|  | glb_img = glb_img.reshape(1,H,H,C).reshape(1,H//2,2,H//2,2,C).contiguous().permute(0,1,3,2,4,5).reshape(1,H//2,H//2,4*C).contiguous() | 
					
						
						|  | temp_glb_GN = sub_GN.repeat(1, H//2, 1, 1) | 
					
						
						|  | glb_img = torch.cat([glb_img, temp_glb_GN], dim=2).reshape(1,-1,4*C) | 
					
						
						|  |  | 
					
						
						|  | sub_img = image_features[1:1+B_] | 
					
						
						|  | sub_img = sub_img.reshape(B_,H,H,C).reshape(B_,H//2,2,H//2,2,C).contiguous().permute(0,1,3,2,4,5).reshape(B_,-1,4*C).contiguous() | 
					
						
						|  | sub_img = sub_img.reshape(1, h, w, 12, 12, -1).permute(0,1,3,2,4,5).reshape(1,h*12,w*12,4*C) | 
					
						
						|  | temp_sub_GN = sub_GN.repeat(1, h*12, 1, 1) | 
					
						
						|  | sub_img = torch.cat([sub_img, temp_sub_GN], dim=2).reshape(1,-1,4*C) | 
					
						
						|  |  | 
					
						
						|  | output_imgs.append(torch.cat([glb_img, glb_GN, sub_img], dim=1)) | 
					
						
						|  | temp_len = int((h*w+1)*144 + 1 + (h+1)*12) | 
					
						
						|  | assert temp_len == output_imgs[-1].shape[1] | 
					
						
						|  | output_len.append(temp_len) | 
					
						
						|  |  | 
					
						
						|  | image_features = image_features[1+h*w:] | 
					
						
						|  |  | 
					
						
						|  | new_output_imgs = [] | 
					
						
						|  | max_len = max(output_len) | 
					
						
						|  | for img_feat in output_imgs: | 
					
						
						|  | if img_feat.shape[1] < max_len: | 
					
						
						|  | pad_feat = torch.zeros(1, (max_len-img_feat.shape[1]), img_feat.shape[2]).to(img_feat.device) | 
					
						
						|  | img_feat_padding = torch.cat([img_feat, pad_feat], dim=1) | 
					
						
						|  | new_output_imgs.append(img_feat_padding) | 
					
						
						|  | else: | 
					
						
						|  | new_output_imgs.append(img_feat) | 
					
						
						|  |  | 
					
						
						|  | output_imgs = torch.cat(new_output_imgs, dim=0) | 
					
						
						|  |  | 
					
						
						|  | return output_imgs, output_len | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def dummy_feature(self): | 
					
						
						|  | return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def dtype(self): | 
					
						
						|  | return self.vision_tower.dtype | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def device(self): | 
					
						
						|  | return self.vision_tower.device | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def config(self): | 
					
						
						|  | if self.is_loaded: | 
					
						
						|  | return self.vision_tower.config | 
					
						
						|  | else: | 
					
						
						|  | return self.cfg_only | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def num_features(self): | 
					
						
						|  | return self.config.hidden_size | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def num_patches(self): | 
					
						
						|  | return (self.config.image_size // self.config.patch_size) ** 2 | 
					
						
						|  |  | 
					
						
						|  |  |