|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | from transformers.configuration_utils import PretrainedConfig | 
					
						
						|  | from transformers import AutoConfig | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class InternS1VisionConfig(PretrainedConfig): | 
					
						
						|  | r""" | 
					
						
						|  | This is the configuration class to store the configuration of a [`InternS1VisionModel`]. It is used to instantiate an InternS1VisionModel | 
					
						
						|  | model according to the specified arguments, defining the model architecture. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | hidden_size (`int`, *optional*, defaults to 1024): | 
					
						
						|  | Dimensionality of the encoder layers and the pooler layer. | 
					
						
						|  | num_hidden_layers (`int`, *optional*, defaults to 24): | 
					
						
						|  | Number of hidden layers in the Transformer encoder. | 
					
						
						|  | num_attention_heads (`int`, *optional*, defaults to 16): | 
					
						
						|  | Number of attention heads for each attention layer in the Transformer encoder. | 
					
						
						|  | attention_bias (`bool`, *optional*, defaults to `False`): | 
					
						
						|  | Whether to add a bias to the queries, keys and values. | 
					
						
						|  | use_qk_norm (`bool`, *optional*, defaults to `False`): | 
					
						
						|  | Whether to apply normalization to the queries and keys before the attention operation. | 
					
						
						|  | intermediate_size (`int`, *optional*, defaults to 4096): | 
					
						
						|  | Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | 
					
						
						|  | hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): | 
					
						
						|  | The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | 
					
						
						|  | `"relu"`, `"selu"` and `"gelu_new"` are supported. | 
					
						
						|  | hidden_dropout_prob (`float`, *optional*, defaults to 0.0): | 
					
						
						|  | The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. | 
					
						
						|  | attention_dropout (`float`, *optional*, defaults to 0.0): | 
					
						
						|  | Dropout probability for attention weights. | 
					
						
						|  | projection_dropout (`float`, *optional*, defaults to 0.0): | 
					
						
						|  | Dropout probability for the projection layer. | 
					
						
						|  | initializer_range (`float`, *optional*, defaults to 0.02): | 
					
						
						|  | The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | 
					
						
						|  | norm_type (`str`, *optional*, defaults to `"layer_norm"`): | 
					
						
						|  | The type of normalization to use in the encoder. Can be `"layer_norm"` or `"rms_norm"`. | 
					
						
						|  | layer_norm_eps (`float`, *optional*, defaults to 1e-06): | 
					
						
						|  | The epsilon used by the layer normalization layers. | 
					
						
						|  | image_size (`int` or `list[int]`, *optional*, defaults to `[448, 448]`): | 
					
						
						|  | The size (resolution) of each image. | 
					
						
						|  | patch_size (`int` or `list[int]`, *optional*, defaults to `[14, 14]`): | 
					
						
						|  | The size (resolution) of each patch. | 
					
						
						|  | num_channels (`int`, *optional*, defaults to 3): | 
					
						
						|  | The number of input channels. | 
					
						
						|  | use_mask_token (`bool`, *optional*, defaults to `False`): | 
					
						
						|  | Whether to use a mask token for masked image modeling. | 
					
						
						|  | use_absolute_position_embeddings (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether to use BERT-style absolute position embeddings. | 
					
						
						|  | layer_scale_init_value (`float`, *optional*, defaults to 0.1): | 
					
						
						|  | Scale to use in the self-attention layers. 0.1 for base, 1e-5 for large. Set 0 to disable layer scale. | 
					
						
						|  | use_mean_pooling (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether to mean pool the final hidden states of the patches instead of using the final hidden state of the | 
					
						
						|  | CLS token, before applying the classification head. | 
					
						
						|  |  | 
					
						
						|  | Example: | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | >>> from transformers import InternS1VisionConfig, InternS1VisionModel | 
					
						
						|  |  | 
					
						
						|  | >>> # Initializing a InternS1VisionModel | 
					
						
						|  | >>> configuration = InternS1VisionConfig() | 
					
						
						|  |  | 
					
						
						|  | >>> # Initializing a model (with random weights) from configuration | 
					
						
						|  | >>> model = InternS1VisionModel(configuration) | 
					
						
						|  |  | 
					
						
						|  | >>> # Accessing the model configuration | 
					
						
						|  | >>> configuration = model.config | 
					
						
						|  | ```""" | 
					
						
						|  |  | 
					
						
						|  | model_type = "interns1_vision" | 
					
						
						|  | base_config_key = "vision_config" | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | hidden_size=1024, | 
					
						
						|  | num_hidden_layers=24, | 
					
						
						|  | num_attention_heads=16, | 
					
						
						|  | attention_bias=False, | 
					
						
						|  | use_qk_norm=False, | 
					
						
						|  | intermediate_size=4096, | 
					
						
						|  | hidden_act="gelu", | 
					
						
						|  | hidden_dropout_prob=0.0, | 
					
						
						|  | attention_dropout=0.0, | 
					
						
						|  | projection_dropout=0.0, | 
					
						
						|  | drop_path_rate=0.0, | 
					
						
						|  | initializer_range=0.02, | 
					
						
						|  | norm_type="layer_norm", | 
					
						
						|  | layer_norm_eps=1e-06, | 
					
						
						|  | image_size=[448, 448], | 
					
						
						|  | patch_size=[14, 14], | 
					
						
						|  | num_channels=3, | 
					
						
						|  | use_mask_token=False, | 
					
						
						|  | use_absolute_position_embeddings=True, | 
					
						
						|  | layer_scale_init_value=0.1, | 
					
						
						|  | use_mean_pooling=True, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__(**kwargs) | 
					
						
						|  |  | 
					
						
						|  | self.hidden_size = hidden_size | 
					
						
						|  | self.num_hidden_layers = num_hidden_layers | 
					
						
						|  | self.num_attention_heads = num_attention_heads | 
					
						
						|  | self.attention_bias = attention_bias | 
					
						
						|  | self.use_qk_norm = use_qk_norm | 
					
						
						|  | self.intermediate_size = intermediate_size | 
					
						
						|  | self.hidden_act = hidden_act | 
					
						
						|  | self.hidden_dropout_prob = hidden_dropout_prob | 
					
						
						|  | self.attention_dropout = attention_dropout | 
					
						
						|  | self.projection_dropout = projection_dropout | 
					
						
						|  | self.initializer_range = initializer_range | 
					
						
						|  | self.norm_type = norm_type | 
					
						
						|  | self.layer_norm_eps = layer_norm_eps | 
					
						
						|  | self.drop_path_rate = drop_path_rate | 
					
						
						|  |  | 
					
						
						|  | image_size = image_size if isinstance(image_size, (list, tuple)) else (image_size, image_size) | 
					
						
						|  | patch_size = patch_size if isinstance(patch_size, (list, tuple)) else (patch_size, patch_size) | 
					
						
						|  | self.image_size = image_size | 
					
						
						|  | self.patch_size = patch_size | 
					
						
						|  |  | 
					
						
						|  | self.num_channels = num_channels | 
					
						
						|  | self.use_mask_token = use_mask_token | 
					
						
						|  | self.use_absolute_position_embeddings = use_absolute_position_embeddings | 
					
						
						|  | self.layer_scale_init_value = layer_scale_init_value | 
					
						
						|  | self.use_mean_pooling = use_mean_pooling | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class InternS1Config(PretrainedConfig): | 
					
						
						|  | r""" | 
					
						
						|  | This is the configuration class to store the configuration of a [`InternS1ForConditionalGeneration`]. It is used to instantiate a | 
					
						
						|  | InternS1 model according to the specified arguments, defining the model architecture. | 
					
						
						|  |  | 
					
						
						|  | Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | 
					
						
						|  | documentation from [`PretrainedConfig`] for more information. | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | vision_config (`Union[AutoConfig, dict]`,  *optional*, defaults to `InternVisonConfig`): | 
					
						
						|  | The config object or dictionary of the vision backbone. | 
					
						
						|  | text_config (`Union[AutoConfig, dict]`, *optional*, defaults to `Qwen2Config`): | 
					
						
						|  | The config object or dictionary of the text backbone. | 
					
						
						|  | image_token_id (`int`, *optional*, defaults to 151667): | 
					
						
						|  | The image token index to encode the image prompt. | 
					
						
						|  | image_seq_length (`int`, *optional*, defaults to 256): | 
					
						
						|  | Number of image tokens to use per image patch. | 
					
						
						|  | downsample_ratio (`float`, *optional*, defaults to 0.5): | 
					
						
						|  | Factor by which to downsample the image. | 
					
						
						|  | projector_hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): | 
					
						
						|  | The non-linear activation function (function or string) in the projector. | 
					
						
						|  | vision_feature_layer (`int`, *optional*, defaults to -1): | 
					
						
						|  | The index of the layer to use as the image features. | 
					
						
						|  | vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`): | 
					
						
						|  | The feature selection strategy used to select the vision feature from the vision backbone. | 
					
						
						|  | Can be one of `"default"` or `"full"`. | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | >>> from transformers import InternS1ForConditionalGeneration, InternS1Config | 
					
						
						|  |  | 
					
						
						|  | >>> # Initializing a InternS1 style configuration | 
					
						
						|  | >>> configuration = InternS1Config() | 
					
						
						|  |  | 
					
						
						|  | >>> # Initializing a model (with random weights) from configuration | 
					
						
						|  | >>> model = InternS1ForConditionalGeneration(configuration) | 
					
						
						|  |  | 
					
						
						|  | >>> # Accessing the model configuration | 
					
						
						|  | >>> configuration = model.config | 
					
						
						|  | ```""" | 
					
						
						|  |  | 
					
						
						|  | model_type = "interns1" | 
					
						
						|  | sub_configs = {"text_config": AutoConfig, "vision_config": InternS1VisionConfig} | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | vision_config=None, | 
					
						
						|  | text_config=None, | 
					
						
						|  | image_token_id=151667, | 
					
						
						|  | image_seq_length=256, | 
					
						
						|  | downsample_ratio=0.5, | 
					
						
						|  | projector_hidden_act="gelu", | 
					
						
						|  | vision_feature_layer=-1, | 
					
						
						|  | vision_feature_select_strategy="default", | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | from transformers import CONFIG_MAPPING | 
					
						
						|  |  | 
					
						
						|  | self.image_token_id = image_token_id | 
					
						
						|  | self.image_seq_length = image_seq_length | 
					
						
						|  | self.downsample_ratio = downsample_ratio | 
					
						
						|  | self.projector_hidden_act = projector_hidden_act | 
					
						
						|  | self.vision_feature_layer = vision_feature_layer | 
					
						
						|  | self.vision_feature_select_strategy = vision_feature_select_strategy | 
					
						
						|  |  | 
					
						
						|  | if isinstance(vision_config, dict): | 
					
						
						|  | self.vision_config = InternS1VisionConfig(**vision_config) | 
					
						
						|  | elif isinstance(vision_config, InternS1VisionConfig): | 
					
						
						|  | self.vision_config = vision_config | 
					
						
						|  | elif vision_config is None: | 
					
						
						|  | self.vision_config = InternS1VisionConfig() | 
					
						
						|  |  | 
					
						
						|  | if isinstance(text_config, dict): | 
					
						
						|  | text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "qwen3" | 
					
						
						|  | text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config) | 
					
						
						|  | elif text_config is None: | 
					
						
						|  | text_config = CONFIG_MAPPING["qwen3"]() | 
					
						
						|  |  | 
					
						
						|  | self.text_config = text_config | 
					
						
						|  |  | 
					
						
						|  | super().__init__(**kwargs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | __all__ = ["InternS1VisionConfig", "InternS1Config"] | 
					
						
						|  |  |