jasonyux commited on
Commit
dfc2ad9
·
verified ·
1 Parent(s): 3921a0a

Add files using upload-large-folder tool

Browse files
Files changed (46) hide show
  1. .gitattributes +1 -0
  2. README.md +37 -0
  3. config.json +72 -0
  4. configuration_deepseek.py +210 -0
  5. generation_config.json +7 -0
  6. model-00001-of-00036.safetensors +3 -0
  7. model-00002-of-00036.safetensors +3 -0
  8. model-00003-of-00036.safetensors +3 -0
  9. model-00004-of-00036.safetensors +3 -0
  10. model-00005-of-00036.safetensors +3 -0
  11. model-00006-of-00036.safetensors +3 -0
  12. model-00007-of-00036.safetensors +3 -0
  13. model-00008-of-00036.safetensors +3 -0
  14. model-00009-of-00036.safetensors +3 -0
  15. model-00010-of-00036.safetensors +3 -0
  16. model-00011-of-00036.safetensors +3 -0
  17. model-00012-of-00036.safetensors +3 -0
  18. model-00013-of-00036.safetensors +3 -0
  19. model-00014-of-00036.safetensors +3 -0
  20. model-00015-of-00036.safetensors +3 -0
  21. model-00016-of-00036.safetensors +3 -0
  22. model-00017-of-00036.safetensors +3 -0
  23. model-00018-of-00036.safetensors +3 -0
  24. model-00019-of-00036.safetensors +3 -0
  25. model-00020-of-00036.safetensors +3 -0
  26. model-00021-of-00036.safetensors +3 -0
  27. model-00022-of-00036.safetensors +3 -0
  28. model-00023-of-00036.safetensors +3 -0
  29. model-00024-of-00036.safetensors +3 -0
  30. model-00025-of-00036.safetensors +3 -0
  31. model-00026-of-00036.safetensors +3 -0
  32. model-00027-of-00036.safetensors +3 -0
  33. model-00028-of-00036.safetensors +3 -0
  34. model-00029-of-00036.safetensors +3 -0
  35. model-00030-of-00036.safetensors +3 -0
  36. model-00031-of-00036.safetensors +3 -0
  37. model-00032-of-00036.safetensors +3 -0
  38. model-00033-of-00036.safetensors +3 -0
  39. model-00034-of-00036.safetensors +3 -0
  40. model-00035-of-00036.safetensors +3 -0
  41. model-00036-of-00036.safetensors +3 -0
  42. model.safetensors.index.json +3 -0
  43. modeling_deepseek.py +1853 -0
  44. special_tokens_map.json +23 -0
  45. tokenizer.json +0 -0
  46. tokenizer_config.json +0 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ model.safetensors.index.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ language:
4
+ - en
5
+ - zh
6
+ base_model:
7
+ - deepseek-ai/DeepSeek-V3-0324
8
+ pipeline_tag: text-generation
9
+ library_name: transformers
10
+ ---
11
+ # DeepSeek V3 0324 AWQ
12
+ AWQ of DeepSeek V3 0324.
13
+
14
+ Quantized by [Eric Hartford](https://huggingface.co/ehartford) and [v2ray](https://huggingface.co/v2ray).
15
+
16
+ This quant modified some of the model code to fix an overflow issue when using float16.
17
+
18
+ To serve using vLLM with 8x 80GB GPUs, use the following command:
19
+ ```sh
20
+ VLLM_USE_V1=0 VLLM_WORKER_MULTIPROC_METHOD=spawn VLLM_MARLIN_USE_ATOMIC_ADD=1 python -m vllm.entrypoints.openai.api_server --host 0.0.0.0 --port 12345 --max-model-len 65536 --max-seq-len-to-capture 65536 --enable-chunked-prefill --enable-prefix-caching --trust-remote-code --tensor-parallel-size 8 --gpu-memory-utilization 0.95 --served-model-name deepseek-chat --model cognitivecomputations/DeepSeek-V3-0324-AWQ
21
+ ```
22
+ You can download the wheel I built for PyTorch 2.6, Python 3.12 by clicking [here](https://huggingface.co/x2ray/wheels/resolve/main/vllm-0.8.3.dev250%2Bg10afedcfd.cu128-cp312-cp312-linux_x86_64.whl), the benchmark below was done with this wheel, it contains [2 PR merges](https://github.com/vllm-project/vllm/issues?q=is%3Apr+is%3Aopen+author%3Ajinzhen-lin) and an unoptimized FlashMLA (still faster than Triton) for A100 which boosted performance a lot. The vLLM repo which contained A100 FlashMLA can be found at [LagPixelLOL/vllm@sm80_flashmla](https://github.com/LagPixelLOL/vllm/tree/sm80_flashmla), which is a fork of [vllm-project/vllm](https://github.com/vllm-project/vllm). The A100 FlashMLA it used is based on [LagPixelLOL/FlashMLA@vllm](https://github.com/LagPixelLOL/FlashMLA/tree/vllm), which is a fork of [pzhao-eng/FlashMLA](https://github.com/pzhao-eng/FlashMLA).
23
+
24
+ ## TPS Per Request
25
+ | GPU \ Batch Input Output | B: 1 I: 2 O: 2K | B: 32 I: 4K O: 256 | B: 1 I: 63K O: 2K | Prefill |
26
+ |:-:|:-:|:-:|:-:|:-:|
27
+ | **8x H100/H200** | 61.5 | 30.1 | 54.3 | 4732.2 |
28
+ | **4x H200** | 58.4 | 19.8 | 53.7 | 2653.1 |
29
+ | **8x A100 80GB** | 46.8 | 12.8 | 30.4 | 2442.4 |
30
+ | **8x L40S** | 46.3 | OOM | OOM | 688.5 |
31
+
32
+ Note:
33
+ - The A100 config uses an unoptimized FlashMLA implementation, which is only superior than Triton during high context inference, it would be faster if it's optimized.
34
+ - The L40S config doesn't support FlashMLA, thus the Triton implementation is used, this makes it extremely slow with high context. But the L40S doesn't have much VRAM, so it can't really have that much context anyway, and it also doesn't have the fast GPU to GPU interconnection bandwidth, making it even slower. It is not recommended to serve with this config, as you must limit the context to <= 4096, `--gpu-memory-utilization` to 0.98, and `--max-num-seqs` to 4.
35
+ - All types of GPU used during benchmark are SXM form factor except L40S.
36
+ - Inference speed will be better than FP8 at low batch size but worse than FP8 at high batch size, this is the nature of low bit quantization.
37
+ - vLLM supports MLA for AWQ now, you can run this model with full context length on just 8x 80GB GPUs.
config.json ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "cognitivecomputations/DeepSeek-V3-0324-AWQ",
3
+ "architectures": [
4
+ "DeepseekV3ForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_deepseek.DeepseekV3Config",
10
+ "AutoModel": "modeling_deepseek.DeepseekV3Model",
11
+ "AutoModelForCausalLM": "modeling_deepseek.DeepseekV3ForCausalLM"
12
+ },
13
+ "aux_loss_alpha": 0.001,
14
+ "bos_token_id": 0,
15
+ "eos_token_id": 1,
16
+ "ep_size": 1,
17
+ "first_k_dense_replace": 3,
18
+ "hidden_act": "silu",
19
+ "hidden_size": 7168,
20
+ "initializer_range": 0.02,
21
+ "intermediate_size": 18432,
22
+ "kv_lora_rank": 512,
23
+ "max_position_embeddings": 163840,
24
+ "model_type": "deepseek_v3",
25
+ "moe_intermediate_size": 2048,
26
+ "moe_layer_freq": 1,
27
+ "n_group": 8,
28
+ "n_routed_experts": 256,
29
+ "n_shared_experts": 1,
30
+ "norm_topk_prob": true,
31
+ "num_attention_heads": 128,
32
+ "num_experts_per_tok": 8,
33
+ "num_hidden_layers": 61,
34
+ "num_key_value_heads": 128,
35
+ "num_nextn_predict_layers": 1,
36
+ "pretraining_tp": 1,
37
+ "q_lora_rank": 1536,
38
+ "qk_nope_head_dim": 128,
39
+ "qk_rope_head_dim": 64,
40
+ "quantization_config": {
41
+ "bits": 4,
42
+ "group_size": 128,
43
+ "modules_to_not_convert": [
44
+ "self_attn.kv_a_proj_with_mqa"
45
+ ],
46
+ "quant_method": "awq",
47
+ "version": "gemm",
48
+ "zero_point": true
49
+ },
50
+ "rms_norm_eps": 1e-06,
51
+ "rope_scaling": {
52
+ "beta_fast": 32,
53
+ "beta_slow": 1,
54
+ "factor": 40,
55
+ "mscale": 1.0,
56
+ "mscale_all_dim": 1.0,
57
+ "original_max_position_embeddings": 4096,
58
+ "type": "yarn"
59
+ },
60
+ "rope_theta": 10000,
61
+ "routed_scaling_factor": 2.5,
62
+ "scoring_func": "sigmoid",
63
+ "seq_aux": true,
64
+ "tie_word_embeddings": false,
65
+ "topk_group": 4,
66
+ "topk_method": "noaux_tc",
67
+ "torch_dtype": "bfloat16",
68
+ "transformers_version": "4.48.0",
69
+ "use_cache": false,
70
+ "v_head_dim": 128,
71
+ "vocab_size": 129280
72
+ }
configuration_deepseek.py ADDED
@@ -0,0 +1,210 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers.configuration_utils import PretrainedConfig
2
+ from transformers.utils import logging
3
+
4
+ logger = logging.get_logger(__name__)
5
+
6
+ DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
7
+ class DeepseekV3Config(PretrainedConfig):
8
+ r"""
9
+ This is the configuration class to store the configuration of a [`DeepseekV3Model`]. It is used to instantiate an DeepSeek
10
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
11
+ defaults will yield a similar configuration to that of the DeepSeek-V3.
12
+
13
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
14
+ documentation from [`PretrainedConfig`] for more information.
15
+
16
+
17
+ Args:
18
+ vocab_size (`int`, *optional*, defaults to 129280):
19
+ Vocabulary size of the Deep model. Defines the number of different tokens that can be represented by the
20
+ `inputs_ids` passed when calling [`DeepseekV3Model`]
21
+ hidden_size (`int`, *optional*, defaults to 4096):
22
+ Dimension of the hidden representations.
23
+ intermediate_size (`int`, *optional*, defaults to 11008):
24
+ Dimension of the MLP representations.
25
+ moe_intermediate_size (`int`, *optional*, defaults to 1407):
26
+ Dimension of the MoE representations.
27
+ num_hidden_layers (`int`, *optional*, defaults to 32):
28
+ Number of hidden layers in the Transformer decoder.
29
+ num_nextn_predict_layers (`int`, *optional*, defaults to 1):
30
+ Number of nextn predict layers in the DeepSeekV3 Model.
31
+ num_attention_heads (`int`, *optional*, defaults to 32):
32
+ Number of attention heads for each attention layer in the Transformer decoder.
33
+ n_shared_experts (`int`, *optional*, defaults to None):
34
+ Number of shared experts, None means dense model.
35
+ n_routed_experts (`int`, *optional*, defaults to None):
36
+ Number of routed experts, None means dense model.
37
+ routed_scaling_factor (`float`, *optional*, defaults to 1.0):
38
+ Scaling factor or routed experts.
39
+ topk_method (`str`, *optional*, defaults to `gready`):
40
+ Topk method used in routed gate.
41
+ n_group (`int`, *optional*, defaults to None):
42
+ Number of groups for routed experts.
43
+ topk_group (`int`, *optional*, defaults to None):
44
+ Number of selected groups for each token(for each token, ensuring the selected experts is only within `topk_group` groups).
45
+ num_experts_per_tok (`int`, *optional*, defaults to None):
46
+ Number of selected experts, None means dense model.
47
+ moe_layer_freq (`int`, *optional*, defaults to 1):
48
+ The frequency of the MoE layer: one expert layer for every `moe_layer_freq - 1` dense layers.
49
+ first_k_dense_replace (`int`, *optional*, defaults to 0):
50
+ Number of dense layers in shallow layers(embed->dense->dense->...->dense->moe->moe...->lm_head).
51
+ \--k dense layers--/
52
+ norm_topk_prob (`bool`, *optional*, defaults to False):
53
+ Whether to normalize the weights of the routed experts.
54
+ scoring_func (`str`, *optional*, defaults to 'softmax'):
55
+ Method of computing expert weights.
56
+ aux_loss_alpha (`float`, *optional*, defaults to 0.001):
57
+ Auxiliary loss weight coefficient.
58
+ seq_aux = (`bool`, *optional*, defaults to True):
59
+ Whether to compute the auxiliary loss for each individual sample.
60
+ num_key_value_heads (`int`, *optional*):
61
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
62
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
63
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
64
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
65
+ by meanpooling all the original heads within that group. For more details checkout [this
66
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
67
+ `num_attention_heads`.
68
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
69
+ The non-linear activation function (function or string) in the decoder.
70
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
71
+ The maximum sequence length that this model might ever be used with.
72
+ initializer_range (`float`, *optional*, defaults to 0.02):
73
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
74
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
75
+ The epsilon used by the rms normalization layers.
76
+ use_cache (`bool`, *optional*, defaults to `True`):
77
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
78
+ relevant if `config.is_decoder=True`.
79
+ pad_token_id (`int`, *optional*):
80
+ Padding token id.
81
+ bos_token_id (`int`, *optional*, defaults to 1):
82
+ Beginning of stream token id.
83
+ eos_token_id (`int`, *optional*, defaults to 2):
84
+ End of stream token id.
85
+ pretraining_tp (`int`, *optional*, defaults to 1):
86
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
87
+ document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
88
+ necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
89
+ issue](https://github.com/pytorch/pytorch/issues/76232).
90
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
91
+ Whether to tie weight embeddings
92
+ rope_theta (`float`, *optional*, defaults to 10000.0):
93
+ The base period of the RoPE embeddings.
94
+ rope_scaling (`Dict`, *optional*):
95
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
96
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
97
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
98
+ `max_position_embeddings` to the expected new maximum.
99
+ attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
100
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
101
+ attention_dropout (`float`, *optional*, defaults to 0.0):
102
+ The dropout ratio for the attention probabilities.
103
+
104
+ ```python
105
+ >>> from transformers import DeepseekV3Model, DeepseekV3Config
106
+
107
+ >>> # Initializing a Deepseek-V3 style configuration
108
+ >>> configuration = DeepseekV3Config()
109
+
110
+ >>> # Accessing the model configuration
111
+ >>> configuration = model.config
112
+ ```"""
113
+
114
+ model_type = "deepseek_v3"
115
+ keys_to_ignore_at_inference = ["past_key_values"]
116
+
117
+ def __init__(
118
+ self,
119
+ vocab_size=129280,
120
+ hidden_size=7168,
121
+ intermediate_size=18432,
122
+ moe_intermediate_size = 2048,
123
+ num_hidden_layers=61,
124
+ num_nextn_predict_layers=1,
125
+ num_attention_heads=128,
126
+ num_key_value_heads=128,
127
+ n_shared_experts = 1,
128
+ n_routed_experts = 256,
129
+ ep_size = 1,
130
+ routed_scaling_factor = 2.5,
131
+ kv_lora_rank = 512,
132
+ q_lora_rank = 1536,
133
+ qk_rope_head_dim = 64,
134
+ v_head_dim = 128,
135
+ qk_nope_head_dim = 128,
136
+ topk_method = 'noaux_tc',
137
+ n_group = 8,
138
+ topk_group = 4,
139
+ num_experts_per_tok = 8,
140
+ moe_layer_freq = 1,
141
+ first_k_dense_replace = 3,
142
+ norm_topk_prob = True,
143
+ scoring_func = 'sigmoid',
144
+ aux_loss_alpha = 0.001,
145
+ seq_aux = True,
146
+ hidden_act="silu",
147
+ max_position_embeddings=4096,
148
+ initializer_range=0.02,
149
+ rms_norm_eps=1e-6,
150
+ use_cache=True,
151
+ pad_token_id=None,
152
+ bos_token_id=0,
153
+ eos_token_id=1,
154
+ pretraining_tp=1,
155
+ tie_word_embeddings=False,
156
+ rope_theta=10000.0,
157
+ rope_scaling=None,
158
+ attention_bias=False,
159
+ attention_dropout=0.0,
160
+ **kwargs,
161
+ ):
162
+ self.vocab_size = vocab_size
163
+ self.max_position_embeddings = max_position_embeddings
164
+ self.hidden_size = hidden_size
165
+ self.intermediate_size = intermediate_size
166
+ self.moe_intermediate_size = moe_intermediate_size
167
+ self.num_hidden_layers = num_hidden_layers
168
+ self.num_nextn_predict_layers = num_nextn_predict_layers
169
+ self.num_attention_heads = num_attention_heads
170
+ self.n_shared_experts = n_shared_experts
171
+ self.n_routed_experts = n_routed_experts
172
+ self.ep_size = ep_size
173
+ self.routed_scaling_factor = routed_scaling_factor
174
+ self.kv_lora_rank = kv_lora_rank
175
+ self.q_lora_rank = q_lora_rank
176
+ self.qk_rope_head_dim = qk_rope_head_dim
177
+ self.v_head_dim = v_head_dim
178
+ self.qk_nope_head_dim = qk_nope_head_dim
179
+ self.topk_method = topk_method
180
+ self.n_group = n_group
181
+ self.topk_group = topk_group
182
+ self.num_experts_per_tok = num_experts_per_tok
183
+ self.moe_layer_freq = moe_layer_freq
184
+ self.first_k_dense_replace = first_k_dense_replace
185
+ self.norm_topk_prob = norm_topk_prob
186
+ self.scoring_func = scoring_func
187
+ self.aux_loss_alpha = aux_loss_alpha
188
+ self.seq_aux = seq_aux
189
+ # for backward compatibility
190
+ if num_key_value_heads is None:
191
+ num_key_value_heads = num_attention_heads
192
+
193
+ self.num_key_value_heads = num_key_value_heads
194
+ self.hidden_act = hidden_act
195
+ self.initializer_range = initializer_range
196
+ self.rms_norm_eps = rms_norm_eps
197
+ self.pretraining_tp = pretraining_tp
198
+ self.use_cache = use_cache
199
+ self.rope_theta = rope_theta
200
+ self.rope_scaling = rope_scaling
201
+ self.attention_bias = attention_bias
202
+ self.attention_dropout = attention_dropout
203
+
204
+ super().__init__(
205
+ pad_token_id=pad_token_id,
206
+ bos_token_id=bos_token_id,
207
+ eos_token_id=eos_token_id,
208
+ tie_word_embeddings=tie_word_embeddings,
209
+ **kwargs,
210
+ )
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 0,
4
+ "do_sample": true,
5
+ "eos_token_id": 1,
6
+ "transformers_version": "4.48.0.dev0"
7
+ }
model-00001-of-00036.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:35213a3d0a41ac14731626fdc014db0ef866f76b204e7f0c479263ee8038dad0
3
+ size 9993236096
model-00002-of-00036.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc2350bcfc54ef0a2ea6c3e90b47327c6f8a65605c74ade6f207cb4349454b48
3
+ size 9999397728
model-00003-of-00036.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:decf896ea3b3b7d5e30ddda8f540886084f9aaa014713f69fabeda4f159278ce
3
+ size 9999642616
model-00004-of-00036.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f88d756a28c3becf16b0d9910fd6c0cfa8b977d3b19a1dd6a9bb10dba7b57bee
3
+ size 9999643048
model-00005-of-00036.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0457ea9b15becba7aad818b3993926082ec1921a24418e5f4aa33fee75022db3
3
+ size 9999399816
model-00006-of-00036.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b83db99480d8e80142657516ebbf27c53f3c4662babaa9725190bf63fe0e757
3
+ size 9999646504
model-00007-of-00036.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bfac3b1cb9d23e5e0e64b90044161264ebba483181ed7e2cadfeffe3db13c9c1
3
+ size 9999646920
model-00008-of-00036.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38a9d71893ccc23e9baa1edef7ffa433a470ef0b6b1dfcd7c10fd0f9a5eb760b
3
+ size 9999401680
model-00009-of-00036.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fafa0da4eeef817383c0ea65ddbaa45c860b4441c3de274908630e0a3b67d1cc
3
+ size 9999646504
model-00010-of-00036.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f51e4a6cb9d58141fdd1c727b4d836bdff6d7523160dd3dfc8237517a358397d
3
+ size 9999646888
model-00011-of-00036.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:44859b57a24141c8f343f6263d2b79b5fb9d9c013d5bbb3bc6f5fd872eca5472
3
+ size 9999401712
model-00012-of-00036.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7ee549860928f0a5caaf6cd5d5c300fb57955bd62ca0f130261156758f577466
3
+ size 9999646504
model-00013-of-00036.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4286b7d6619779be891ee460d624fa6dcc9e8692a51dd5c819e416190d51cb12
3
+ size 9999646864
model-00014-of-00036.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c0fcae1605513105c3d4d94aacf00946bff7cb19dd069e0a7ba12e41a3e1cb0
3
+ size 9999401736
model-00015-of-00036.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d32e0a75721cd17297b3132f6123ba22a77f563274ee600e54d2a6527a7216f8
3
+ size 9999646504
model-00016-of-00036.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4c34ec74537a593698977aa845b16334c24aaa8c719f055a10899eccd2d3b55
3
+ size 9999646848
model-00017-of-00036.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b2b2e0ebd082cd73e590fa5f3de15a847a0d7bdd25b1bfe9e2ef5ca7692b588e
3
+ size 9999401752
model-00018-of-00036.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3cea89382aecf0b0174b2d7603e981dc9bbfb7c4205683b43a37623a88b4c69d
3
+ size 9999646504
model-00019-of-00036.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49c4740f1e91cd3cbca9b15a2fc855960ca5674098b759dce5562f5f5b0d4c46
3
+ size 9999646816
model-00020-of-00036.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed1ff730ad8db4464c187cc7cbc01861a2348b9f91058fbeae2859bd95f17b8c
3
+ size 9999401784
model-00021-of-00036.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d61b7b481cb8ef4fd4adad8612ac6668d93e5e918835b6f795bea2ef1e46079
3
+ size 9999646504
model-00022-of-00036.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cecc613a798c1295fafebb6c321ebd38f22b10eddf1c8df040cba3023d4821f7
3
+ size 9999646792
model-00023-of-00036.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:802a82fa233594253d0234681762c5c3d97306fd62fa765ee563b91007551551
3
+ size 9999401808
model-00024-of-00036.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:30430d116b02b761aa2a723b7afbdea103b0a00ec8f65901f6e4436bde27505c
3
+ size 9999646504
model-00025-of-00036.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb06afa0e8160a0956d30d5b6cb8ec468e026643a5bd0e0085143e7f9c302c50
3
+ size 9999646776
model-00026-of-00036.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d116d57d7bc0858f669b5aa81015e85b5bf6c2f360962d2461e9c1f57e06cb83
3
+ size 9999401824
model-00027-of-00036.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:245cecd584b7c87df27cab5ff7b71491bd3ca694c515843c09f3b9dc69300ec2
3
+ size 9999646504
model-00028-of-00036.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6b125fb7169edd7ae33b8703708a8d6798a7fc76112f53db244241008686ed7
3
+ size 9999646744
model-00029-of-00036.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c0a1fc95dac244894a4393dffbe2d8547c44dd57300750134061c37fa763682
3
+ size 9999401856
model-00030-of-00036.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b04bbaa8a569e71a2d48b95ce82c17ad914dbda94907c6c1ff9a5b331569bc7f
3
+ size 9999646504
model-00031-of-00036.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b7a7f690f8d3b10034854842498d08874ecd987cac48816a30e365ff817c0b0
3
+ size 9999646720
model-00032-of-00036.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ef230d6efbe6387df15a45123bde9dd6f07d09e3026bfa3a45b254aa25eebfd
3
+ size 9999401880
model-00033-of-00036.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:127a20b8274e13654524dd2ba33e205767a013f4f422eda0480dd4eba7c1ee2c
3
+ size 9999646504
model-00034-of-00036.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f6f2cccdc09431bdd961ebf68e7bd5b2a3822726fc01f0653cf7b803c58fdd8
3
+ size 9999646704
model-00035-of-00036.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19964321974ccb8072d6a7163b0b3fbdf17d4f29a12e8b7823a935601c0ef5fe
3
+ size 9999401896
model-00036-of-00036.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bbc5fa105dadf2c37578c321c53cb385f64e1332e48d34d0fe0d1bccd5677a05
3
+ size 1933343472
model.safetensors.index.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:acc405720d78b6a846270f94ec3f1b08ad38351e559f4a5a793ab9a75ea0bc1b
3
+ size 12326965
modeling_deepseek.py ADDED
@@ -0,0 +1,1853 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 DeepSeek-AI and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ PyTorch DeepSeek model."""
21
+ import math
22
+ import warnings
23
+ from typing import List, Optional, Tuple, Union
24
+
25
+ import torch
26
+ import torch.nn.functional as F
27
+ import torch.utils.checkpoint
28
+ from torch import nn
29
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
30
+
31
+ from transformers.activations import ACT2FN
32
+ from transformers.cache_utils import Cache, DynamicCache
33
+ from transformers.modeling_attn_mask_utils import (
34
+ AttentionMaskConverter,
35
+ _prepare_4d_attention_mask,
36
+ _prepare_4d_causal_attention_mask,
37
+ )
38
+ from transformers.modeling_outputs import (
39
+ BaseModelOutputWithPast,
40
+ CausalLMOutputWithPast,
41
+ SequenceClassifierOutputWithPast,
42
+ )
43
+ from transformers.modeling_utils import PreTrainedModel
44
+ from transformers.pytorch_utils import (
45
+ ALL_LAYERNORM_LAYERS,
46
+ )
47
+ from transformers.utils import (
48
+ add_start_docstrings,
49
+ add_start_docstrings_to_model_forward,
50
+ is_flash_attn_2_available,
51
+ is_flash_attn_greater_or_equal_2_10,
52
+ logging,
53
+ replace_return_docstrings,
54
+ )
55
+ from transformers.utils.import_utils import is_torch_fx_available
56
+ from .configuration_deepseek import DeepseekV3Config
57
+ import torch.distributed as dist
58
+ import numpy as np
59
+
60
+ if is_flash_attn_2_available():
61
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
62
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
63
+
64
+ # This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
65
+ # It means that the function will not be traced through and simply appear as a node in the graph.
66
+ if is_torch_fx_available():
67
+ _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
68
+
69
+
70
+ logger = logging.get_logger(__name__)
71
+
72
+ _CONFIG_FOR_DOC = "DeepseekV3Config"
73
+
74
+
75
+ def _get_unpad_data(attention_mask):
76
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
77
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
78
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
79
+ cu_seqlens = F.pad(
80
+ torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)
81
+ )
82
+ return (
83
+ indices,
84
+ cu_seqlens,
85
+ max_seqlen_in_batch,
86
+ )
87
+
88
+
89
+ class DeepseekV3RMSNorm(nn.Module):
90
+ def __init__(self, hidden_size, eps=1e-6):
91
+ """
92
+ DeepseekV3RMSNorm is equivalent to T5LayerNorm
93
+ """
94
+ super().__init__()
95
+ self.weight = nn.Parameter(torch.ones(hidden_size))
96
+ self.variance_epsilon = eps
97
+
98
+ def forward(self, hidden_states):
99
+ input_dtype = hidden_states.dtype
100
+ hidden_states = hidden_states.to(torch.float32)
101
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
102
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
103
+ return self.weight * hidden_states.to(input_dtype)
104
+
105
+
106
+ ALL_LAYERNORM_LAYERS.append(DeepseekV3RMSNorm)
107
+
108
+
109
+ class DeepseekV3RotaryEmbedding(nn.Module):
110
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
111
+ super().__init__()
112
+
113
+ self.dim = dim
114
+ self.max_position_embeddings = max_position_embeddings
115
+ self.base = base
116
+ inv_freq = 1.0 / (
117
+ self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
118
+ )
119
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
120
+
121
+ # Build here to make `torch.jit.trace` work.
122
+ self._set_cos_sin_cache(
123
+ seq_len=max_position_embeddings,
124
+ device=self.inv_freq.device,
125
+ dtype=torch.get_default_dtype(),
126
+ )
127
+ self.max_seq_len_cached = None
128
+
129
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
130
+ self.max_seq_len_cached = seq_len
131
+ t = torch.arange(
132
+ self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
133
+ )
134
+
135
+ freqs = torch.outer(t, self.inv_freq.to(t.device))
136
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
137
+ emb = torch.cat((freqs, freqs), dim=-1)
138
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
139
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
140
+
141
+ def forward(self, x, seq_len=None):
142
+ # x: [bs, num_attention_heads, seq_len, head_size]
143
+ if self.max_seq_len_cached is None or seq_len > self.max_seq_len_cached:
144
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
145
+
146
+ return (
147
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
148
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
149
+ )
150
+
151
+
152
+ # Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->DeepseekV3
153
+ class DeepseekV3LinearScalingRotaryEmbedding(DeepseekV3RotaryEmbedding):
154
+ """DeepseekV3RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
155
+
156
+ def __init__(
157
+ self,
158
+ dim,
159
+ max_position_embeddings=2048,
160
+ base=10000,
161
+ device=None,
162
+ scaling_factor=1.0,
163
+ ):
164
+ self.scaling_factor = scaling_factor
165
+ super().__init__(dim, max_position_embeddings, base, device)
166
+
167
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
168
+ self.max_seq_len_cached = seq_len
169
+ t = torch.arange(
170
+ self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
171
+ )
172
+ t = t / self.scaling_factor
173
+
174
+ freqs = torch.outer(t, self.inv_freq)
175
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
176
+ emb = torch.cat((freqs, freqs), dim=-1)
177
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
178
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
179
+
180
+
181
+ # Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->DeepseekV3
182
+ class DeepseekV3DynamicNTKScalingRotaryEmbedding(DeepseekV3RotaryEmbedding):
183
+ """DeepseekV3RotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
184
+
185
+ def __init__(
186
+ self,
187
+ dim,
188
+ max_position_embeddings=2048,
189
+ base=10000,
190
+ device=None,
191
+ scaling_factor=1.0,
192
+ ):
193
+ self.scaling_factor = scaling_factor
194
+ super().__init__(dim, max_position_embeddings, base, device)
195
+
196
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
197
+ self.max_seq_len_cached = seq_len
198
+
199
+ if seq_len > self.max_position_embeddings:
200
+ base = self.base * (
201
+ (self.scaling_factor * seq_len / self.max_position_embeddings)
202
+ - (self.scaling_factor - 1)
203
+ ) ** (self.dim / (self.dim - 2))
204
+ inv_freq = 1.0 / (
205
+ base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
206
+ )
207
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
208
+
209
+ t = torch.arange(
210
+ self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
211
+ )
212
+
213
+ freqs = torch.outer(t, self.inv_freq)
214
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
215
+ emb = torch.cat((freqs, freqs), dim=-1)
216
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
217
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
218
+
219
+
220
+ # Inverse dim formula to find dim based on number of rotations
221
+ def yarn_find_correction_dim(
222
+ num_rotations, dim, base=10000, max_position_embeddings=2048
223
+ ):
224
+ return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (
225
+ 2 * math.log(base)
226
+ )
227
+
228
+
229
+ # Find dim range bounds based on rotations
230
+ def yarn_find_correction_range(
231
+ low_rot, high_rot, dim, base=10000, max_position_embeddings=2048
232
+ ):
233
+ low = math.floor(
234
+ yarn_find_correction_dim(low_rot, dim, base, max_position_embeddings)
235
+ )
236
+ high = math.ceil(
237
+ yarn_find_correction_dim(high_rot, dim, base, max_position_embeddings)
238
+ )
239
+ return max(low, 0), min(high, dim - 1) # Clamp values just in case
240
+
241
+
242
+ def yarn_get_mscale(scale=1, mscale=1):
243
+ if scale <= 1:
244
+ return 1.0
245
+ return 0.1 * mscale * math.log(scale) + 1.0
246
+
247
+
248
+ def yarn_linear_ramp_mask(min, max, dim):
249
+ if min == max:
250
+ max += 0.001 # Prevent singularity
251
+
252
+ linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
253
+ ramp_func = torch.clamp(linear_func, 0, 1)
254
+ return ramp_func
255
+
256
+
257
+ class DeepseekV3YarnRotaryEmbedding(DeepseekV3RotaryEmbedding):
258
+
259
+ def __init__(
260
+ self,
261
+ dim,
262
+ max_position_embeddings=2048,
263
+ base=10000,
264
+ device=None,
265
+ scaling_factor=1.0,
266
+ original_max_position_embeddings=4096,
267
+ beta_fast=32,
268
+ beta_slow=1,
269
+ mscale=1,
270
+ mscale_all_dim=0,
271
+ ):
272
+ self.scaling_factor = scaling_factor
273
+ self.original_max_position_embeddings = original_max_position_embeddings
274
+ self.beta_fast = beta_fast
275
+ self.beta_slow = beta_slow
276
+ self.mscale = mscale
277
+ self.mscale_all_dim = mscale_all_dim
278
+ super().__init__(dim, max_position_embeddings, base, device)
279
+
280
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
281
+ self.max_seq_len_cached = seq_len
282
+ dim = self.dim
283
+
284
+ freq_extra = 1.0 / (
285
+ self.base
286
+ ** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)
287
+ )
288
+ freq_inter = 1.0 / (
289
+ self.scaling_factor
290
+ * self.base
291
+ ** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)
292
+ )
293
+
294
+ low, high = yarn_find_correction_range(
295
+ self.beta_fast,
296
+ self.beta_slow,
297
+ dim,
298
+ self.base,
299
+ self.original_max_position_embeddings,
300
+ )
301
+ inv_freq_mask = 1.0 - yarn_linear_ramp_mask(low, high, dim // 2).to(
302
+ device=device, dtype=torch.float32
303
+ )
304
+ inv_freq = freq_inter * (1 - inv_freq_mask) + freq_extra * inv_freq_mask
305
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
306
+
307
+ t = torch.arange(seq_len, device=device, dtype=torch.float32)
308
+
309
+ freqs = torch.outer(t, inv_freq)
310
+
311
+ _mscale = float(
312
+ yarn_get_mscale(self.scaling_factor, self.mscale)
313
+ / yarn_get_mscale(self.scaling_factor, self.mscale_all_dim)
314
+ )
315
+
316
+ emb = torch.cat((freqs, freqs), dim=-1)
317
+ self.register_buffer(
318
+ "cos_cached", (emb.cos() * _mscale).to(dtype), persistent=False
319
+ )
320
+ self.register_buffer(
321
+ "sin_cached", (emb.sin() * _mscale).to(dtype), persistent=False
322
+ )
323
+
324
+
325
+ # Copied from transformers.models.llama.modeling_llama.rotate_half
326
+ def rotate_half(x):
327
+ """Rotates half the hidden dims of the input."""
328
+ x1 = x[..., : x.shape[-1] // 2]
329
+ x2 = x[..., x.shape[-1] // 2 :]
330
+ return torch.cat((-x2, x1), dim=-1)
331
+
332
+
333
+ # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
334
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
335
+ """Applies Rotary Position Embedding to the query and key tensors.
336
+
337
+ Args:
338
+ q (`torch.Tensor`): The query tensor.
339
+ k (`torch.Tensor`): The key tensor.
340
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
341
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
342
+ position_ids (`torch.Tensor`):
343
+ The position indices of the tokens corresponding to the query and key tensors. For example, this can be
344
+ used to pass offsetted position ids when working with a KV-cache.
345
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
346
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
347
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
348
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
349
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
350
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
351
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
352
+ Returns:
353
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
354
+ """
355
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
356
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
357
+
358
+ b, h, s, d = q.shape
359
+ q = q.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)
360
+
361
+ b, h, s, d = k.shape
362
+ k = k.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)
363
+
364
+ q_embed = (q * cos) + (rotate_half(q) * sin)
365
+ k_embed = (k * cos) + (rotate_half(k) * sin)
366
+ return q_embed, k_embed
367
+
368
+
369
+ class DeepseekV3MLP(nn.Module):
370
+ def __init__(self, config, hidden_size=None, intermediate_size=None):
371
+ super().__init__()
372
+ self.config = config
373
+ self.hidden_size = config.hidden_size if hidden_size is None else hidden_size
374
+ self.intermediate_size = (
375
+ config.intermediate_size if intermediate_size is None else intermediate_size
376
+ )
377
+
378
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
379
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
380
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
381
+ self.act_fn = ACT2FN[config.hidden_act]
382
+
383
+ def forward(self, x):
384
+ x_dtype = x.dtype
385
+ x_dtype_min = torch.finfo(x_dtype).min
386
+ x_dtype_max = torch.finfo(x_dtype).max
387
+ intermetiate = self.act_fn(self.gate_proj(x)) * self.up_proj(x)
388
+ intermetiate = intermetiate.clip(x_dtype_min, x_dtype_max)
389
+ down_proj = self.down_proj(intermetiate)
390
+ down_proj = down_proj.clip(x_dtype_min, x_dtype_max)
391
+ return down_proj
392
+
393
+
394
+ class MoEGate(nn.Module):
395
+ def __init__(self, config):
396
+ super().__init__()
397
+ self.config = config
398
+ self.top_k = config.num_experts_per_tok
399
+ self.n_routed_experts = config.n_routed_experts
400
+ self.routed_scaling_factor = config.routed_scaling_factor
401
+ self.scoring_func = config.scoring_func
402
+ self.seq_aux = config.seq_aux
403
+ self.topk_method = config.topk_method
404
+ self.n_group = config.n_group
405
+ self.topk_group = config.topk_group
406
+
407
+ # topk selection algorithm
408
+ self.norm_topk_prob = config.norm_topk_prob
409
+ self.gating_dim = config.hidden_size
410
+ self.weight = nn.Parameter(
411
+ torch.empty((self.n_routed_experts, self.gating_dim))
412
+ )
413
+ if self.topk_method == "noaux_tc":
414
+ self.e_score_correction_bias = nn.Parameter(
415
+ torch.empty((self.n_routed_experts))
416
+ )
417
+ self.reset_parameters()
418
+
419
+ def reset_parameters(self) -> None:
420
+ import torch.nn.init as init
421
+
422
+ init.kaiming_uniform_(self.weight, a=math.sqrt(5))
423
+
424
+ def forward(self, hidden_states):
425
+ bsz, seq_len, h = hidden_states.shape
426
+ ### compute gating score
427
+ hidden_states = hidden_states.view(-1, h)
428
+ logits = F.linear(
429
+ hidden_states.type(torch.float32), self.weight.type(torch.float32), None
430
+ )
431
+ if self.scoring_func == "sigmoid":
432
+ scores = logits.sigmoid()
433
+ else:
434
+ raise NotImplementedError(
435
+ f"insupportable scoring function for MoE gating: {self.scoring_func}"
436
+ )
437
+
438
+ ### select top-k experts
439
+ if self.topk_method == "noaux_tc":
440
+ assert not self.training
441
+ scores_for_choice = scores.view(bsz * seq_len, -1) + self.e_score_correction_bias.unsqueeze(0)
442
+ group_scores = (
443
+ scores_for_choice.view(bsz * seq_len, self.n_group, -1).topk(2, dim=-1)[0].sum(dim = -1)
444
+ ) # [n, n_group]
445
+ group_idx = torch.topk(
446
+ group_scores, k=self.topk_group, dim=-1, sorted=False
447
+ )[
448
+ 1
449
+ ] # [n, top_k_group]
450
+ group_mask = torch.zeros_like(group_scores) # [n, n_group]
451
+ group_mask.scatter_(1, group_idx, 1) # [n, n_group]
452
+ score_mask = (
453
+ group_mask.unsqueeze(-1)
454
+ .expand(
455
+ bsz * seq_len, self.n_group, self.n_routed_experts // self.n_group
456
+ )
457
+ .reshape(bsz * seq_len, -1)
458
+ ) # [n, e]
459
+ tmp_scores = scores_for_choice.masked_fill(~score_mask.bool(), 0.0) # [n, e]
460
+ _, topk_idx = torch.topk(
461
+ tmp_scores, k=self.top_k, dim=-1, sorted=False
462
+ )
463
+ topk_weight = scores.gather(1, topk_idx)
464
+ else:
465
+ raise NotImplementedError(
466
+ f"insupportable TopK function for MoE gating: {self.topk_method}"
467
+ )
468
+
469
+ ### norm gate to sum 1
470
+ if self.top_k > 1 and self.norm_topk_prob:
471
+ denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
472
+ topk_weight = topk_weight / denominator
473
+ topk_weight = topk_weight * self.routed_scaling_factor # must multiply the scaling factor
474
+
475
+ return topk_idx, topk_weight
476
+
477
+ class DeepseekV3MoE(nn.Module):
478
+ """
479
+ A mixed expert module containing shared experts.
480
+ """
481
+
482
+ def __init__(self, config):
483
+ super().__init__()
484
+ self.config = config
485
+ self.num_experts_per_tok = config.num_experts_per_tok
486
+
487
+ if hasattr(config, "ep_size") and config.ep_size > 1:
488
+ assert config.ep_size == dist.get_world_size()
489
+ self.ep_size = config.ep_size
490
+ self.experts_per_rank = config.n_routed_experts // config.ep_size
491
+ self.ep_rank = dist.get_rank()
492
+ self.experts = nn.ModuleList(
493
+ [
494
+ (
495
+ DeepseekV3MLP(
496
+ config, intermediate_size=config.moe_intermediate_size
497
+ )
498
+ if i >= self.ep_rank * self.experts_per_rank
499
+ and i < (self.ep_rank + 1) * self.experts_per_rank
500
+ else None
501
+ )
502
+ for i in range(config.n_routed_experts)
503
+ ]
504
+ )
505
+ else:
506
+ self.ep_size = 1
507
+ self.experts_per_rank = config.n_routed_experts
508
+ self.ep_rank = 0
509
+ self.experts = nn.ModuleList(
510
+ [
511
+ DeepseekV3MLP(
512
+ config, intermediate_size=config.moe_intermediate_size
513
+ )
514
+ for i in range(config.n_routed_experts)
515
+ ]
516
+ )
517
+ self.gate = MoEGate(config)
518
+ if config.n_shared_experts is not None:
519
+ intermediate_size = config.moe_intermediate_size * config.n_shared_experts
520
+ self.shared_experts = DeepseekV3MLP(
521
+ config=config, intermediate_size=intermediate_size
522
+ )
523
+
524
+ def forward(self, hidden_states):
525
+ identity = hidden_states
526
+ orig_shape = hidden_states.shape
527
+ topk_idx, topk_weight = self.gate(hidden_states)
528
+ hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
529
+ flat_topk_idx = topk_idx.view(-1)
530
+ if not self.training:
531
+ y = self.moe_infer(hidden_states, topk_idx, topk_weight).view(*orig_shape)
532
+ if self.config.n_shared_experts is not None:
533
+ y = y + self.shared_experts(identity)
534
+ y = y.clip(torch.finfo(y.dtype).min, torch.finfo(y.dtype).max)
535
+ return y
536
+
537
+ @torch.no_grad()
538
+ def moe_infer(self, x, topk_ids, topk_weight):
539
+ cnts = topk_ids.new_zeros((topk_ids.shape[0], len(self.experts)))
540
+ cnts.scatter_(1, topk_ids, 1)
541
+ tokens_per_expert = cnts.sum(dim=0)
542
+ idxs = topk_ids.view(-1).argsort()
543
+ sorted_tokens = x[idxs // topk_ids.shape[1]]
544
+ sorted_tokens_shape = sorted_tokens.shape
545
+ if self.ep_size > 1:
546
+ tokens_per_ep_rank = tokens_per_expert.view(self.ep_size, -1).sum(dim=1)
547
+ tokens_per_expert_group = tokens_per_expert.new_empty(
548
+ tokens_per_expert.shape[0]
549
+ )
550
+ dist.all_to_all_single(tokens_per_expert_group, tokens_per_expert)
551
+ output_splits = (
552
+ tokens_per_expert_group.view(self.ep_size, -1)
553
+ .sum(1)
554
+ .cpu()
555
+ .numpy()
556
+ .tolist()
557
+ )
558
+ gathered_tokens = sorted_tokens.new_empty(
559
+ tokens_per_expert_group.sum(dim=0).cpu().item(), sorted_tokens.shape[1]
560
+ )
561
+ input_split_sizes = tokens_per_ep_rank.cpu().numpy().tolist()
562
+ dist.all_to_all(
563
+ list(gathered_tokens.split(output_splits)),
564
+ list(sorted_tokens.split(input_split_sizes)),
565
+ )
566
+ tokens_per_expert_post_gather = tokens_per_expert_group.view(
567
+ self.ep_size, self.experts_per_rank
568
+ ).sum(dim=0)
569
+ gatherd_idxs = np.zeros(shape=(gathered_tokens.shape[0],), dtype=np.int32)
570
+ s = 0
571
+ for i, k in enumerate(tokens_per_expert_group.cpu().numpy()):
572
+ gatherd_idxs[s : s + k] = i % self.experts_per_rank
573
+ s += k
574
+ gatherd_idxs = gatherd_idxs.argsort()
575
+ sorted_tokens = gathered_tokens[gatherd_idxs]
576
+ tokens_per_expert = tokens_per_expert_post_gather
577
+ tokens_per_expert = tokens_per_expert.cpu().numpy()
578
+
579
+ outputs = []
580
+ start_idx = 0
581
+ for i, num_tokens in enumerate(tokens_per_expert):
582
+ end_idx = start_idx + num_tokens
583
+ if num_tokens == 0:
584
+ continue
585
+ expert = self.experts[i + self.ep_rank * self.experts_per_rank]
586
+ tokens_for_this_expert = sorted_tokens[start_idx:end_idx]
587
+ expert_out = expert(tokens_for_this_expert)
588
+ outputs.append(expert_out)
589
+ start_idx = end_idx
590
+
591
+ outs = torch.cat(outputs, dim=0) if len(outputs) else sorted_tokens.new_empty(0)
592
+ if self.ep_size > 1:
593
+ new_x = torch.empty_like(outs)
594
+ new_x[gatherd_idxs] = outs
595
+ gathered_tokens = new_x.new_empty(*sorted_tokens_shape)
596
+ dist.all_to_all(
597
+ list(gathered_tokens.split(input_split_sizes)),
598
+ list(new_x.split(output_splits)),
599
+ )
600
+ outs = gathered_tokens
601
+
602
+ new_x = torch.empty_like(outs)
603
+ new_x[idxs] = outs
604
+ final_out = (
605
+ new_x.view(*topk_ids.shape, -1)
606
+ .type(topk_weight.dtype)
607
+ .mul_(topk_weight.unsqueeze(dim=-1))
608
+ .sum(dim=1)
609
+ .type(new_x.dtype)
610
+ )
611
+ return final_out
612
+
613
+
614
+ # Copied from transformers.models.llama.modeling_llama.repeat_kv
615
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
616
+ """
617
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
618
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
619
+ """
620
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
621
+ if n_rep == 1:
622
+ return hidden_states
623
+ hidden_states = hidden_states[:, :, None, :, :].expand(
624
+ batch, num_key_value_heads, n_rep, slen, head_dim
625
+ )
626
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
627
+
628
+
629
+ # Copied from transformers.models.llama.modeling_llama.LlamaAttention with Llama->DeepseekV3
630
+ class DeepseekV3Attention(nn.Module):
631
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
632
+
633
+ def __init__(self, config: DeepseekV3Config, layer_idx: Optional[int] = None):
634
+ super().__init__()
635
+ self.config = config
636
+ self.layer_idx = layer_idx
637
+ if layer_idx is None:
638
+ logger.warning_once(
639
+ f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
640
+ "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
641
+ "when creating this class."
642
+ )
643
+
644
+ self.attention_dropout = config.attention_dropout
645
+ self.hidden_size = config.hidden_size
646
+ self.num_heads = config.num_attention_heads
647
+
648
+ self.max_position_embeddings = config.max_position_embeddings
649
+ self.rope_theta = config.rope_theta
650
+ self.q_lora_rank = config.q_lora_rank
651
+ self.qk_rope_head_dim = config.qk_rope_head_dim
652
+ self.kv_lora_rank = config.kv_lora_rank
653
+ self.v_head_dim = config.v_head_dim
654
+ self.qk_nope_head_dim = config.qk_nope_head_dim
655
+ self.q_head_dim = config.qk_nope_head_dim + config.qk_rope_head_dim
656
+
657
+ self.is_causal = True
658
+
659
+ if self.q_lora_rank is None:
660
+ self.q_proj = nn.Linear(
661
+ self.hidden_size, self.num_heads * self.q_head_dim, bias=False
662
+ )
663
+ else:
664
+ self.q_a_proj = nn.Linear(
665
+ self.hidden_size, config.q_lora_rank, bias=config.attention_bias
666
+ )
667
+ self.q_a_layernorm = DeepseekV3RMSNorm(config.q_lora_rank)
668
+ self.q_b_proj = nn.Linear(
669
+ config.q_lora_rank, self.num_heads * self.q_head_dim, bias=False
670
+ )
671
+
672
+ self.kv_a_proj_with_mqa = nn.Linear(
673
+ self.hidden_size,
674
+ config.kv_lora_rank + config.qk_rope_head_dim,
675
+ bias=config.attention_bias,
676
+ )
677
+ self.kv_a_layernorm = DeepseekV3RMSNorm(config.kv_lora_rank)
678
+ self.kv_b_proj = nn.Linear(
679
+ config.kv_lora_rank,
680
+ self.num_heads
681
+ * (self.q_head_dim - self.qk_rope_head_dim + self.v_head_dim),
682
+ bias=False,
683
+ )
684
+
685
+ self.o_proj = nn.Linear(
686
+ self.num_heads * self.v_head_dim,
687
+ self.hidden_size,
688
+ bias=config.attention_bias,
689
+ )
690
+ self._init_rope()
691
+
692
+ self.softmax_scale = self.q_head_dim ** (-0.5)
693
+ if self.config.rope_scaling is not None:
694
+ mscale_all_dim = self.config.rope_scaling.get("mscale_all_dim", 0)
695
+ scaling_factor = self.config.rope_scaling["factor"]
696
+ if mscale_all_dim:
697
+ mscale = yarn_get_mscale(scaling_factor, mscale_all_dim)
698
+ self.softmax_scale = self.softmax_scale * mscale * mscale
699
+
700
+ def _init_rope(self):
701
+ if self.config.rope_scaling is None:
702
+ self.rotary_emb = DeepseekV3RotaryEmbedding(
703
+ self.qk_rope_head_dim,
704
+ max_position_embeddings=self.max_position_embeddings,
705
+ base=self.rope_theta,
706
+ )
707
+ else:
708
+ scaling_type = self.config.rope_scaling["type"]
709
+ scaling_factor = self.config.rope_scaling["factor"]
710
+ if scaling_type == "linear":
711
+ self.rotary_emb = DeepseekV3LinearScalingRotaryEmbedding(
712
+ self.qk_rope_head_dim,
713
+ max_position_embeddings=self.max_position_embeddings,
714
+ scaling_factor=scaling_factor,
715
+ base=self.rope_theta,
716
+ )
717
+ elif scaling_type == "dynamic":
718
+ self.rotary_emb = DeepseekV3DynamicNTKScalingRotaryEmbedding(
719
+ self.qk_rope_head_dim,
720
+ max_position_embeddings=self.max_position_embeddings,
721
+ scaling_factor=scaling_factor,
722
+ base=self.rope_theta,
723
+ )
724
+ elif scaling_type == "yarn":
725
+ kwargs = {
726
+ key: self.config.rope_scaling[key]
727
+ for key in [
728
+ "original_max_position_embeddings",
729
+ "beta_fast",
730
+ "beta_slow",
731
+ "mscale",
732
+ "mscale_all_dim",
733
+ ]
734
+ if key in self.config.rope_scaling
735
+ }
736
+ self.rotary_emb = DeepseekV3YarnRotaryEmbedding(
737
+ self.qk_rope_head_dim,
738
+ max_position_embeddings=self.max_position_embeddings,
739
+ scaling_factor=scaling_factor,
740
+ base=self.rope_theta,
741
+ **kwargs,
742
+ )
743
+ else:
744
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
745
+
746
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
747
+ return (
748
+ tensor.view(bsz, seq_len, self.num_heads, self.v_head_dim)
749
+ .transpose(1, 2)
750
+ .contiguous()
751
+ )
752
+
753
+ def forward(
754
+ self,
755
+ hidden_states: torch.Tensor,
756
+ attention_mask: Optional[torch.Tensor] = None,
757
+ position_ids: Optional[torch.LongTensor] = None,
758
+ past_key_value: Optional[Cache] = None,
759
+ output_attentions: bool = False,
760
+ use_cache: bool = False,
761
+ **kwargs,
762
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
763
+ if "padding_mask" in kwargs:
764
+ warnings.warn(
765
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
766
+ )
767
+ bsz, q_len, _ = hidden_states.size()
768
+
769
+ if self.q_lora_rank is None:
770
+ q = self.q_proj(hidden_states)
771
+ else:
772
+ q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
773
+ q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2)
774
+ q_nope, q_pe = torch.split(
775
+ q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
776
+ )
777
+
778
+ compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
779
+ compressed_kv, k_pe = torch.split(
780
+ compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
781
+ )
782
+ k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)
783
+ kv = (
784
+ self.kv_b_proj(self.kv_a_layernorm(compressed_kv))
785
+ .view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim)
786
+ .transpose(1, 2)
787
+ )
788
+
789
+ k_nope, value_states = torch.split(
790
+ kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1
791
+ )
792
+ kv_seq_len = value_states.shape[-2]
793
+ if past_key_value is not None:
794
+ if self.layer_idx is None:
795
+ raise ValueError(
796
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
797
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
798
+ "with a layer index."
799
+ )
800
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
801
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
802
+
803
+ q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids)
804
+
805
+ query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
806
+ query_states[:, :, :, : self.qk_nope_head_dim] = q_nope
807
+ query_states[:, :, :, self.qk_nope_head_dim :] = q_pe
808
+
809
+ key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
810
+ key_states[:, :, :, : self.qk_nope_head_dim] = k_nope
811
+ key_states[:, :, :, self.qk_nope_head_dim :] = k_pe
812
+ if past_key_value is not None:
813
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
814
+ key_states, value_states = past_key_value.update(
815
+ key_states, value_states, self.layer_idx, cache_kwargs
816
+ )
817
+
818
+ attn_weights = (
819
+ torch.matmul(query_states * self.softmax_scale, key_states.transpose(2, 3))
820
+ )
821
+
822
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
823
+ raise ValueError(
824
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
825
+ f" {attn_weights.size()}"
826
+ )
827
+ assert attention_mask is not None
828
+ if attention_mask is not None:
829
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
830
+ raise ValueError(
831
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
832
+ )
833
+ attn_weights = attn_weights + attention_mask
834
+
835
+ # upcast attention to fp32
836
+ attn_weights = attn_weights.clip(torch.finfo(attn_weights.dtype).min, torch.finfo(attn_weights.dtype).max)
837
+ attn_weights = nn.functional.softmax(
838
+ attn_weights, dim=-1, dtype=torch.float32
839
+ ).to(query_states.dtype)
840
+ attn_weights = nn.functional.dropout(
841
+ attn_weights, p=self.attention_dropout, training=self.training
842
+ )
843
+ attn_output = torch.matmul(attn_weights, value_states)
844
+
845
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.v_head_dim):
846
+ raise ValueError(
847
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.v_head_dim)}, but is"
848
+ f" {attn_output.size()}"
849
+ )
850
+
851
+ attn_output = attn_output.transpose(1, 2).contiguous()
852
+
853
+ attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.v_head_dim)
854
+
855
+ attn_output = self.o_proj(attn_output)
856
+
857
+ if not output_attentions:
858
+ attn_weights = None
859
+
860
+ return attn_output, attn_weights, past_key_value
861
+
862
+
863
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2 with Llama->DeepseekV3
864
+ class DeepseekV3FlashAttention2(DeepseekV3Attention):
865
+ """
866
+ DeepseekV3 flash attention module. This module inherits from `DeepseekV3Attention` as the weights of the module stays
867
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
868
+ flash attention and deal with padding tokens in case the input contains any of them.
869
+ """
870
+
871
+ def __init__(self, *args, **kwargs):
872
+ super().__init__(*args, **kwargs)
873
+
874
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
875
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
876
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
877
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
878
+
879
+ def forward(
880
+ self,
881
+ hidden_states: torch.Tensor,
882
+ attention_mask: Optional[torch.LongTensor] = None,
883
+ position_ids: Optional[torch.LongTensor] = None,
884
+ past_key_value: Optional[Cache] = None,
885
+ output_attentions: bool = False,
886
+ use_cache: bool = False,
887
+ **kwargs,
888
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
889
+ # DeepseekV3FlashAttention2 attention does not support output_attentions
890
+ if "padding_mask" in kwargs:
891
+ warnings.warn(
892
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
893
+ )
894
+
895
+ # overwrite attention_mask with padding_mask
896
+ attention_mask = kwargs.pop("padding_mask")
897
+
898
+ output_attentions = False
899
+
900
+ bsz, q_len, _ = hidden_states.size()
901
+
902
+ if self.q_lora_rank is None:
903
+ q = self.q_proj(hidden_states)
904
+ else:
905
+ q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
906
+ q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2)
907
+ q_nope, q_pe = torch.split(
908
+ q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
909
+ )
910
+
911
+ # Flash attention requires the input to have the shape
912
+ # batch_size x seq_length x head_dim x hidden_dim
913
+ # therefore we just need to keep the original shape
914
+ compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
915
+ compressed_kv, k_pe = torch.split(
916
+ compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
917
+ )
918
+ k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)
919
+ kv = (
920
+ self.kv_b_proj(self.kv_a_layernorm(compressed_kv))
921
+ .view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim)
922
+ .transpose(1, 2)
923
+ )
924
+
925
+ k_nope, value_states = torch.split(
926
+ kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1
927
+ )
928
+ kv_seq_len = value_states.shape[-2]
929
+
930
+ kv_seq_len = value_states.shape[-2]
931
+ if past_key_value is not None:
932
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
933
+
934
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
935
+ q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids)
936
+
937
+ query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
938
+ query_states[:, :, :, : self.qk_nope_head_dim] = q_nope
939
+ query_states[:, :, :, self.qk_nope_head_dim :] = q_pe
940
+
941
+ key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
942
+ key_states[:, :, :, : self.qk_nope_head_dim] = k_nope
943
+ key_states[:, :, :, self.qk_nope_head_dim :] = k_pe
944
+
945
+ if self.q_head_dim != self.v_head_dim:
946
+ value_states = F.pad(value_states, [0, self.q_head_dim - self.v_head_dim])
947
+
948
+ if past_key_value is not None:
949
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
950
+ key_states, value_states = past_key_value.update(
951
+ key_states, value_states, self.layer_idx, cache_kwargs
952
+ )
953
+
954
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
955
+ # to be able to avoid many of these transpose/reshape/view.
956
+ query_states = query_states.transpose(1, 2)
957
+ key_states = key_states.transpose(1, 2)
958
+ value_states = value_states.transpose(1, 2)
959
+
960
+ dropout_rate = self.attention_dropout if self.training else 0.0
961
+
962
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
963
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
964
+ # cast them back in the correct dtype just to be sure everything works as expected.
965
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
966
+ # in fp32. (DeepseekV3RMSNorm handles it correctly)
967
+
968
+ input_dtype = query_states.dtype
969
+ if input_dtype == torch.float32:
970
+ # Handle the case where the model is quantized
971
+ if hasattr(self.config, "_pre_quantization_dtype"):
972
+ target_dtype = self.config._pre_quantization_dtype
973
+ elif torch.is_autocast_enabled():
974
+ target_dtype = torch.get_autocast_gpu_dtype()
975
+ else:
976
+ target_dtype = (
977
+ self.q_proj.weight.dtype
978
+ if self.q_lora_rank is None
979
+ else self.q_a_proj.weight.dtype
980
+ )
981
+
982
+ logger.warning_once(
983
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
984
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
985
+ f" {target_dtype}."
986
+ )
987
+
988
+ query_states = query_states.to(target_dtype)
989
+ key_states = key_states.to(target_dtype)
990
+ value_states = value_states.to(target_dtype)
991
+
992
+ attn_output = self._flash_attention_forward(
993
+ query_states,
994
+ key_states,
995
+ value_states,
996
+ attention_mask,
997
+ q_len,
998
+ dropout=dropout_rate,
999
+ softmax_scale=self.softmax_scale,
1000
+ )
1001
+ if self.q_head_dim != self.v_head_dim:
1002
+ attn_output = attn_output[:, :, :, : self.v_head_dim]
1003
+
1004
+ attn_output = attn_output.reshape(
1005
+ bsz, q_len, self.num_heads * self.v_head_dim
1006
+ ).contiguous()
1007
+ attn_output = self.o_proj(attn_output)
1008
+
1009
+ if not output_attentions:
1010
+ attn_weights = None
1011
+
1012
+ return attn_output, attn_weights, past_key_value
1013
+
1014
+ def _flash_attention_forward(
1015
+ self,
1016
+ query_states,
1017
+ key_states,
1018
+ value_states,
1019
+ attention_mask,
1020
+ query_length,
1021
+ dropout=0.0,
1022
+ softmax_scale=None,
1023
+ ):
1024
+ """
1025
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
1026
+ first unpad the input, then computes the attention scores and pad the final attention scores.
1027
+
1028
+ Args:
1029
+ query_states (`torch.Tensor`):
1030
+ Input query states to be passed to Flash Attention API
1031
+ key_states (`torch.Tensor`):
1032
+ Input key states to be passed to Flash Attention API
1033
+ value_states (`torch.Tensor`):
1034
+ Input value states to be passed to Flash Attention API
1035
+ attention_mask (`torch.Tensor`):
1036
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
1037
+ position of padding tokens and 1 for the position of non-padding tokens.
1038
+ dropout (`int`, *optional*):
1039
+ Attention dropout
1040
+ softmax_scale (`float`, *optional*):
1041
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
1042
+ """
1043
+ if not self._flash_attn_uses_top_left_mask:
1044
+ causal = self.is_causal
1045
+ else:
1046
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in DeepseekV3FlashAttention2 __init__.
1047
+ causal = self.is_causal and query_length != 1
1048
+
1049
+ # Contains at least one padding token in the sequence
1050
+ if attention_mask is not None:
1051
+ batch_size = query_states.shape[0]
1052
+ (
1053
+ query_states,
1054
+ key_states,
1055
+ value_states,
1056
+ indices_q,
1057
+ cu_seq_lens,
1058
+ max_seq_lens,
1059
+ ) = self._upad_input(
1060
+ query_states, key_states, value_states, attention_mask, query_length
1061
+ )
1062
+
1063
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
1064
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
1065
+
1066
+ attn_output_unpad = flash_attn_varlen_func(
1067
+ query_states,
1068
+ key_states,
1069
+ value_states,
1070
+ cu_seqlens_q=cu_seqlens_q,
1071
+ cu_seqlens_k=cu_seqlens_k,
1072
+ max_seqlen_q=max_seqlen_in_batch_q,
1073
+ max_seqlen_k=max_seqlen_in_batch_k,
1074
+ dropout_p=dropout,
1075
+ softmax_scale=softmax_scale,
1076
+ causal=causal,
1077
+ )
1078
+
1079
+ attn_output = pad_input(
1080
+ attn_output_unpad, indices_q, batch_size, query_length
1081
+ )
1082
+ else:
1083
+ attn_output = flash_attn_func(
1084
+ query_states,
1085
+ key_states,
1086
+ value_states,
1087
+ dropout,
1088
+ softmax_scale=softmax_scale,
1089
+ causal=causal,
1090
+ )
1091
+
1092
+ return attn_output
1093
+
1094
+ def _upad_input(
1095
+ self, query_layer, key_layer, value_layer, attention_mask, query_length
1096
+ ):
1097
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
1098
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
1099
+
1100
+ key_layer = index_first_axis(
1101
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
1102
+ indices_k,
1103
+ )
1104
+ value_layer = index_first_axis(
1105
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
1106
+ indices_k,
1107
+ )
1108
+ if query_length == kv_seq_len:
1109
+ query_layer = index_first_axis(
1110
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim),
1111
+ indices_k,
1112
+ )
1113
+ cu_seqlens_q = cu_seqlens_k
1114
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
1115
+ indices_q = indices_k
1116
+ elif query_length == 1:
1117
+ max_seqlen_in_batch_q = 1
1118
+ cu_seqlens_q = torch.arange(
1119
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
1120
+ ) # There is a memcpy here, that is very bad.
1121
+ indices_q = cu_seqlens_q[:-1]
1122
+ query_layer = query_layer.squeeze(1)
1123
+ else:
1124
+ # The -q_len: slice assumes left padding.
1125
+ attention_mask = attention_mask[:, -query_length:]
1126
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
1127
+ query_layer, attention_mask
1128
+ )
1129
+
1130
+ return (
1131
+ query_layer,
1132
+ key_layer,
1133
+ value_layer,
1134
+ indices_q,
1135
+ (cu_seqlens_q, cu_seqlens_k),
1136
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
1137
+ )
1138
+
1139
+
1140
+ ATTENTION_CLASSES = {
1141
+ "eager": DeepseekV3Attention,
1142
+ "flash_attention_2": DeepseekV3FlashAttention2,
1143
+ }
1144
+
1145
+
1146
+ class DeepseekV3DecoderLayer(nn.Module):
1147
+ def __init__(self, config: DeepseekV3Config, layer_idx: int):
1148
+ super().__init__()
1149
+ self.hidden_size = config.hidden_size
1150
+
1151
+ self.self_attn = ATTENTION_CLASSES[config._attn_implementation](
1152
+ config=config, layer_idx=layer_idx
1153
+ )
1154
+
1155
+ self.mlp = (
1156
+ DeepseekV3MoE(config)
1157
+ if (
1158
+ config.n_routed_experts is not None
1159
+ and layer_idx >= config.first_k_dense_replace
1160
+ and layer_idx % config.moe_layer_freq == 0
1161
+ )
1162
+ else DeepseekV3MLP(config)
1163
+ )
1164
+ self.input_layernorm = DeepseekV3RMSNorm(
1165
+ config.hidden_size, eps=config.rms_norm_eps
1166
+ )
1167
+ self.post_attention_layernorm = DeepseekV3RMSNorm(
1168
+ config.hidden_size, eps=config.rms_norm_eps
1169
+ )
1170
+
1171
+ def forward(
1172
+ self,
1173
+ hidden_states: torch.Tensor,
1174
+ attention_mask: Optional[torch.Tensor] = None,
1175
+ position_ids: Optional[torch.LongTensor] = None,
1176
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
1177
+ output_attentions: Optional[bool] = False,
1178
+ use_cache: Optional[bool] = False,
1179
+ **kwargs,
1180
+ ) -> Tuple[
1181
+ torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
1182
+ ]:
1183
+ """
1184
+ Args:
1185
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
1186
+ attention_mask (`torch.FloatTensor`, *optional*):
1187
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
1188
+ query_sequence_length, key_sequence_length)` if default attention is used.
1189
+ output_attentions (`bool`, *optional*):
1190
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
1191
+ returned tensors for more detail.
1192
+ use_cache (`bool`, *optional*):
1193
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
1194
+ (see `past_key_values`).
1195
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
1196
+ """
1197
+ if "padding_mask" in kwargs:
1198
+ warnings.warn(
1199
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
1200
+ )
1201
+ residual = hidden_states
1202
+
1203
+ hidden_states = self.input_layernorm(hidden_states)
1204
+
1205
+ # Self Attention
1206
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
1207
+ hidden_states=hidden_states,
1208
+ attention_mask=attention_mask,
1209
+ position_ids=position_ids,
1210
+ past_key_value=past_key_value,
1211
+ output_attentions=output_attentions,
1212
+ use_cache=use_cache,
1213
+ **kwargs,
1214
+ )
1215
+ hidden_states = residual + hidden_states
1216
+
1217
+ # Fully Connected
1218
+ residual = hidden_states
1219
+ hidden_states = self.post_attention_layernorm(hidden_states)
1220
+ hidden_states = self.mlp(hidden_states)
1221
+ hidden_states = residual + hidden_states
1222
+ hidden_states = hidden_states.clip(torch.finfo(hidden_states.dtype).min, torch.finfo(hidden_states.dtype).max)
1223
+
1224
+ outputs = (hidden_states,)
1225
+
1226
+ if output_attentions:
1227
+ outputs += (self_attn_weights,)
1228
+
1229
+ if use_cache:
1230
+ outputs += (present_key_value,)
1231
+
1232
+ return outputs
1233
+
1234
+
1235
+ DeepseekV3_START_DOCSTRING = r"""
1236
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
1237
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
1238
+ etc.)
1239
+
1240
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
1241
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
1242
+ and behavior.
1243
+
1244
+ Parameters:
1245
+ config ([`DeepseekV3Config`]):
1246
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
1247
+ load the weights associated with the model, only the configuration. Check out the
1248
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
1249
+ """
1250
+
1251
+
1252
+ @add_start_docstrings(
1253
+ "The bare DeepseekV3 Model outputting raw hidden-states without any specific head on top.",
1254
+ DeepseekV3_START_DOCSTRING,
1255
+ )
1256
+ class DeepseekV3PreTrainedModel(PreTrainedModel):
1257
+ config_class = DeepseekV3Config
1258
+ base_model_prefix = "model"
1259
+ supports_gradient_checkpointing = True
1260
+ _no_split_modules = ["DeepseekV3DecoderLayer"]
1261
+ _skip_keys_device_placement = "past_key_values"
1262
+ _supports_flash_attn_2 = True
1263
+ _supports_cache_class = True
1264
+
1265
+ def _init_weights(self, module):
1266
+ std = self.config.initializer_range
1267
+ if isinstance(module, nn.Linear):
1268
+ module.weight.data.normal_(mean=0.0, std=std)
1269
+ if module.bias is not None:
1270
+ module.bias.data.zero_()
1271
+ elif isinstance(module, nn.Embedding):
1272
+ module.weight.data.normal_(mean=0.0, std=std)
1273
+ if module.padding_idx is not None:
1274
+ module.weight.data[module.padding_idx].zero_()
1275
+
1276
+
1277
+ DeepseekV3_INPUTS_DOCSTRING = r"""
1278
+ Args:
1279
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
1280
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
1281
+ it.
1282
+
1283
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1284
+ [`PreTrainedTokenizer.__call__`] for details.
1285
+
1286
+ [What are input IDs?](../glossary#input-ids)
1287
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
1288
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
1289
+
1290
+ - 1 for tokens that are **not masked**,
1291
+ - 0 for tokens that are **masked**.
1292
+
1293
+ [What are attention masks?](../glossary#attention-mask)
1294
+
1295
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1296
+ [`PreTrainedTokenizer.__call__`] for details.
1297
+
1298
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
1299
+ `past_key_values`).
1300
+
1301
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
1302
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
1303
+ information on the default strategy.
1304
+
1305
+ - 1 indicates the head is **not masked**,
1306
+ - 0 indicates the head is **masked**.
1307
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1308
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
1309
+ config.n_positions - 1]`.
1310
+
1311
+ [What are position IDs?](../glossary#position-ids)
1312
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
1313
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
1314
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
1315
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
1316
+
1317
+ Two formats are allowed:
1318
+ - a [`~cache_utils.Cache`] instance;
1319
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
1320
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
1321
+ cache format.
1322
+
1323
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
1324
+ legacy cache format will be returned.
1325
+
1326
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
1327
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
1328
+ of shape `(batch_size, sequence_length)`.
1329
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1330
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
1331
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
1332
+ model's internal embedding lookup matrix.
1333
+ use_cache (`bool`, *optional*):
1334
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1335
+ `past_key_values`).
1336
+ output_attentions (`bool`, *optional*):
1337
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
1338
+ tensors for more detail.
1339
+ output_hidden_states (`bool`, *optional*):
1340
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
1341
+ more detail.
1342
+ return_dict (`bool`, *optional*):
1343
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1344
+ """
1345
+
1346
+
1347
+ @add_start_docstrings(
1348
+ "The bare DeepseekV3 Model outputting raw hidden-states without any specific head on top.",
1349
+ DeepseekV3_START_DOCSTRING,
1350
+ )
1351
+ class DeepseekV3Model(DeepseekV3PreTrainedModel):
1352
+ """
1353
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DeepseekV3DecoderLayer`]
1354
+
1355
+ Args:
1356
+ config: DeepseekV3Config
1357
+ """
1358
+
1359
+ def __init__(self, config: DeepseekV3Config):
1360
+ super().__init__(config)
1361
+ self.padding_idx = config.pad_token_id
1362
+ self.vocab_size = config.vocab_size
1363
+
1364
+ self.embed_tokens = nn.Embedding(
1365
+ config.vocab_size, config.hidden_size, self.padding_idx
1366
+ )
1367
+ self.layers = nn.ModuleList(
1368
+ [
1369
+ DeepseekV3DecoderLayer(config, layer_idx)
1370
+ for layer_idx in range(config.num_hidden_layers)
1371
+ ]
1372
+ )
1373
+ self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
1374
+ self.norm = DeepseekV3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1375
+
1376
+ self.gradient_checkpointing = False
1377
+ # Initialize weights and apply final processing
1378
+ self.post_init()
1379
+
1380
+ def get_input_embeddings(self):
1381
+ return self.embed_tokens
1382
+
1383
+ def set_input_embeddings(self, value):
1384
+ self.embed_tokens = value
1385
+
1386
+ @add_start_docstrings_to_model_forward(DeepseekV3_INPUTS_DOCSTRING)
1387
+ def forward(
1388
+ self,
1389
+ input_ids: torch.LongTensor = None,
1390
+ attention_mask: Optional[torch.Tensor] = None,
1391
+ position_ids: Optional[torch.LongTensor] = None,
1392
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1393
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1394
+ use_cache: Optional[bool] = None,
1395
+ output_attentions: Optional[bool] = None,
1396
+ output_hidden_states: Optional[bool] = None,
1397
+ return_dict: Optional[bool] = None,
1398
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
1399
+ output_attentions = (
1400
+ output_attentions
1401
+ if output_attentions is not None
1402
+ else self.config.output_attentions
1403
+ )
1404
+ output_hidden_states = (
1405
+ output_hidden_states
1406
+ if output_hidden_states is not None
1407
+ else self.config.output_hidden_states
1408
+ )
1409
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1410
+
1411
+ return_dict = (
1412
+ return_dict if return_dict is not None else self.config.use_return_dict
1413
+ )
1414
+
1415
+ # retrieve input_ids and inputs_embeds
1416
+ if input_ids is not None and inputs_embeds is not None:
1417
+ raise ValueError(
1418
+ "You cannot specify both input_ids and inputs_embeds at the same time"
1419
+ )
1420
+ elif input_ids is not None:
1421
+ batch_size, seq_length = input_ids.shape[:2]
1422
+ elif inputs_embeds is not None:
1423
+ batch_size, seq_length = inputs_embeds.shape[:2]
1424
+ else:
1425
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
1426
+
1427
+ past_key_values_length = 0
1428
+ if use_cache:
1429
+ use_legacy_cache = not isinstance(past_key_values, Cache)
1430
+ if use_legacy_cache:
1431
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
1432
+ past_key_values_length = past_key_values.get_usable_length(seq_length)
1433
+
1434
+ if position_ids is None:
1435
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1436
+ position_ids = torch.arange(
1437
+ past_key_values_length,
1438
+ seq_length + past_key_values_length,
1439
+ dtype=torch.long,
1440
+ device=device,
1441
+ )
1442
+ position_ids = position_ids.unsqueeze(0)
1443
+
1444
+ if inputs_embeds is None:
1445
+ inputs_embeds = self.embed_tokens(input_ids)
1446
+
1447
+ if self._use_flash_attention_2:
1448
+ # 2d mask is passed through the layers
1449
+ attention_mask = (
1450
+ attention_mask
1451
+ if (attention_mask is not None and 0 in attention_mask)
1452
+ else None
1453
+ )
1454
+ else:
1455
+ # 4d mask is passed through the layers
1456
+ attention_mask = _prepare_4d_causal_attention_mask(
1457
+ attention_mask,
1458
+ (batch_size, seq_length),
1459
+ inputs_embeds,
1460
+ past_key_values_length,
1461
+ )
1462
+
1463
+ # embed positions
1464
+ hidden_states = inputs_embeds
1465
+
1466
+ # decoder layers
1467
+ all_hidden_states = () if output_hidden_states else None
1468
+ all_self_attns = () if output_attentions else None
1469
+ next_decoder_cache = None
1470
+
1471
+ for decoder_layer in self.layers:
1472
+ if output_hidden_states:
1473
+ all_hidden_states += (hidden_states,)
1474
+
1475
+ layer_outputs = decoder_layer(
1476
+ hidden_states,
1477
+ attention_mask=attention_mask,
1478
+ position_ids=position_ids,
1479
+ past_key_value=past_key_values,
1480
+ output_attentions=output_attentions,
1481
+ use_cache=use_cache,
1482
+ )
1483
+
1484
+ hidden_states = layer_outputs[0]
1485
+
1486
+ if use_cache:
1487
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1488
+
1489
+ if output_attentions:
1490
+ all_self_attns += (layer_outputs[1],)
1491
+
1492
+ hidden_states = self.norm(hidden_states)
1493
+
1494
+ # add hidden states from the last decoder layer
1495
+ if output_hidden_states:
1496
+ all_hidden_states += (hidden_states,)
1497
+
1498
+ next_cache = None
1499
+ if use_cache:
1500
+ next_cache = (
1501
+ next_decoder_cache.to_legacy_cache()
1502
+ if use_legacy_cache
1503
+ else next_decoder_cache
1504
+ )
1505
+ if not return_dict:
1506
+ return tuple(
1507
+ v
1508
+ for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
1509
+ if v is not None
1510
+ )
1511
+ return BaseModelOutputWithPast(
1512
+ last_hidden_state=hidden_states,
1513
+ past_key_values=next_cache,
1514
+ hidden_states=all_hidden_states,
1515
+ attentions=all_self_attns,
1516
+ )
1517
+
1518
+
1519
+ class DeepseekV3ForCausalLM(DeepseekV3PreTrainedModel):
1520
+ _tied_weights_keys = ["lm_head.weight"]
1521
+
1522
+ def __init__(self, config):
1523
+ super().__init__(config)
1524
+ self.model = DeepseekV3Model(config)
1525
+ self.vocab_size = config.vocab_size
1526
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1527
+
1528
+ # Initialize weights and apply final processing
1529
+ self.post_init()
1530
+
1531
+ def get_input_embeddings(self):
1532
+ return self.model.embed_tokens
1533
+
1534
+ def set_input_embeddings(self, value):
1535
+ self.model.embed_tokens = value
1536
+
1537
+ def get_output_embeddings(self):
1538
+ return self.lm_head
1539
+
1540
+ def set_output_embeddings(self, new_embeddings):
1541
+ self.lm_head = new_embeddings
1542
+
1543
+ def set_decoder(self, decoder):
1544
+ self.model = decoder
1545
+
1546
+ def get_decoder(self):
1547
+ return self.model
1548
+
1549
+ @add_start_docstrings_to_model_forward(DeepseekV3_INPUTS_DOCSTRING)
1550
+ @replace_return_docstrings(
1551
+ output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
1552
+ )
1553
+ def forward(
1554
+ self,
1555
+ input_ids: torch.LongTensor = None,
1556
+ attention_mask: Optional[torch.Tensor] = None,
1557
+ position_ids: Optional[torch.LongTensor] = None,
1558
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1559
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1560
+ labels: Optional[torch.LongTensor] = None,
1561
+ use_cache: Optional[bool] = None,
1562
+ output_attentions: Optional[bool] = None,
1563
+ output_hidden_states: Optional[bool] = None,
1564
+ return_dict: Optional[bool] = None,
1565
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1566
+ r"""
1567
+ Args:
1568
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1569
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, transformers.,
1570
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1571
+ (masked), the loss is only computed for the tokens with labels in `[0, transformers., config.vocab_size]`.
1572
+
1573
+ Returns:
1574
+
1575
+ Example:
1576
+
1577
+ ```python
1578
+ >>> from transformers import AutoTokenizer, DeepseekV3ForCausalLM
1579
+
1580
+ >>> model = DeepseekV3ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1581
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1582
+
1583
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1584
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1585
+
1586
+ >>> # Generate
1587
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1588
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1589
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1590
+ ```"""
1591
+ output_attentions = (
1592
+ output_attentions
1593
+ if output_attentions is not None
1594
+ else self.config.output_attentions
1595
+ )
1596
+ output_hidden_states = (
1597
+ output_hidden_states
1598
+ if output_hidden_states is not None
1599
+ else self.config.output_hidden_states
1600
+ )
1601
+ return_dict = (
1602
+ return_dict if return_dict is not None else self.config.use_return_dict
1603
+ )
1604
+
1605
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1606
+ outputs = self.model(
1607
+ input_ids=input_ids,
1608
+ attention_mask=attention_mask,
1609
+ position_ids=position_ids,
1610
+ past_key_values=past_key_values,
1611
+ inputs_embeds=inputs_embeds,
1612
+ use_cache=use_cache,
1613
+ output_attentions=output_attentions,
1614
+ output_hidden_states=output_hidden_states,
1615
+ return_dict=return_dict,
1616
+ )
1617
+
1618
+ hidden_states = outputs[0]
1619
+ logits = self.lm_head(hidden_states)
1620
+ logits = logits.float()
1621
+
1622
+ loss = None
1623
+ if labels is not None:
1624
+ # Shift so that tokens < n predict n
1625
+ shift_logits = logits[..., :-1, :].contiguous()
1626
+ shift_labels = labels[..., 1:].contiguous()
1627
+ # Flatten the tokens
1628
+ loss_fct = CrossEntropyLoss()
1629
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1630
+ shift_labels = shift_labels.view(-1)
1631
+ # Enable model parallelism
1632
+ shift_labels = shift_labels.to(shift_logits.device)
1633
+ loss = loss_fct(shift_logits, shift_labels)
1634
+
1635
+ if not return_dict:
1636
+ output = (logits,) + outputs[1:]
1637
+ return (loss,) + output if loss is not None else output
1638
+
1639
+ return CausalLMOutputWithPast(
1640
+ loss=loss,
1641
+ logits=logits,
1642
+ past_key_values=outputs.past_key_values,
1643
+ hidden_states=outputs.hidden_states,
1644
+ attentions=outputs.attentions,
1645
+ )
1646
+
1647
+ def prepare_inputs_for_generation(
1648
+ self,
1649
+ input_ids,
1650
+ past_key_values=None,
1651
+ attention_mask=None,
1652
+ inputs_embeds=None,
1653
+ **kwargs,
1654
+ ):
1655
+ if past_key_values is not None:
1656
+ if isinstance(past_key_values, Cache):
1657
+ cache_length = past_key_values.get_seq_length()
1658
+ past_length = past_key_values.seen_tokens
1659
+ max_cache_length = past_key_values.get_max_length()
1660
+ else:
1661
+ cache_length = past_length = past_key_values[0][0].shape[2]
1662
+ max_cache_length = None
1663
+
1664
+ # Keep only the unprocessed tokens:
1665
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1666
+ # some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
1667
+ # input)
1668
+ if (
1669
+ attention_mask is not None
1670
+ and attention_mask.shape[1] > input_ids.shape[1]
1671
+ ):
1672
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1673
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1674
+ # input_ids based on the past_length.
1675
+ elif past_length < input_ids.shape[1]:
1676
+ input_ids = input_ids[:, past_length:]
1677
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1678
+
1679
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1680
+ if (
1681
+ max_cache_length is not None
1682
+ and attention_mask is not None
1683
+ and cache_length + input_ids.shape[1] > max_cache_length
1684
+ ):
1685
+ attention_mask = attention_mask[:, -max_cache_length:]
1686
+
1687
+ position_ids = kwargs.get("position_ids", None)
1688
+ if attention_mask is not None and position_ids is None:
1689
+ # create position_ids on the fly for batch generation
1690
+ position_ids = attention_mask.long().cumsum(-1) - 1
1691
+ position_ids.masked_fill_(attention_mask == 0, 1)
1692
+ if past_key_values:
1693
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1694
+
1695
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1696
+ if inputs_embeds is not None and past_key_values is None:
1697
+ model_inputs = {"inputs_embeds": inputs_embeds}
1698
+ else:
1699
+ model_inputs = {"input_ids": input_ids}
1700
+
1701
+ model_inputs.update(
1702
+ {
1703
+ "position_ids": position_ids,
1704
+ "past_key_values": past_key_values,
1705
+ "use_cache": kwargs.get("use_cache"),
1706
+ "attention_mask": attention_mask,
1707
+ }
1708
+ )
1709
+ return model_inputs
1710
+
1711
+ @staticmethod
1712
+ def _reorder_cache(past_key_values, beam_idx):
1713
+ reordered_past = ()
1714
+ for layer_past in past_key_values:
1715
+ reordered_past += (
1716
+ tuple(
1717
+ past_state.index_select(0, beam_idx.to(past_state.device))
1718
+ for past_state in layer_past
1719
+ ),
1720
+ )
1721
+ return reordered_past
1722
+
1723
+
1724
+ @add_start_docstrings(
1725
+ """
1726
+ The DeepseekV3 Model transformer with a sequence classification head on top (linear layer).
1727
+
1728
+ [`DeepseekV3ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1729
+ (e.g. GPT-2) do.
1730
+
1731
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1732
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1733
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1734
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1735
+ each row of the batch).
1736
+ """,
1737
+ DeepseekV3_START_DOCSTRING,
1738
+ )
1739
+ class DeepseekV3ForSequenceClassification(DeepseekV3PreTrainedModel):
1740
+ def __init__(self, config):
1741
+ super().__init__(config)
1742
+ self.num_labels = config.num_labels
1743
+ self.model = DeepseekV3Model(config)
1744
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1745
+
1746
+ # Initialize weights and apply final processing
1747
+ self.post_init()
1748
+
1749
+ def get_input_embeddings(self):
1750
+ return self.model.embed_tokens
1751
+
1752
+ def set_input_embeddings(self, value):
1753
+ self.model.embed_tokens = value
1754
+
1755
+ @add_start_docstrings_to_model_forward(DeepseekV3_INPUTS_DOCSTRING)
1756
+ def forward(
1757
+ self,
1758
+ input_ids: torch.LongTensor = None,
1759
+ attention_mask: Optional[torch.Tensor] = None,
1760
+ position_ids: Optional[torch.LongTensor] = None,
1761
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1762
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1763
+ labels: Optional[torch.LongTensor] = None,
1764
+ use_cache: Optional[bool] = None,
1765
+ output_attentions: Optional[bool] = None,
1766
+ output_hidden_states: Optional[bool] = None,
1767
+ return_dict: Optional[bool] = None,
1768
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1769
+ r"""
1770
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1771
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, transformers.,
1772
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1773
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1774
+ """
1775
+ return_dict = (
1776
+ return_dict if return_dict is not None else self.config.use_return_dict
1777
+ )
1778
+
1779
+ transformer_outputs = self.model(
1780
+ input_ids,
1781
+ attention_mask=attention_mask,
1782
+ position_ids=position_ids,
1783
+ past_key_values=past_key_values,
1784
+ inputs_embeds=inputs_embeds,
1785
+ use_cache=use_cache,
1786
+ output_attentions=output_attentions,
1787
+ output_hidden_states=output_hidden_states,
1788
+ return_dict=return_dict,
1789
+ )
1790
+ hidden_states = transformer_outputs[0]
1791
+ logits = self.score(hidden_states)
1792
+
1793
+ if input_ids is not None:
1794
+ batch_size = input_ids.shape[0]
1795
+ else:
1796
+ batch_size = inputs_embeds.shape[0]
1797
+
1798
+ if self.config.pad_token_id is None and batch_size != 1:
1799
+ raise ValueError(
1800
+ "Cannot handle batch sizes > 1 if no padding token is defined."
1801
+ )
1802
+ if self.config.pad_token_id is None:
1803
+ sequence_lengths = -1
1804
+ else:
1805
+ if input_ids is not None:
1806
+ sequence_lengths = (
1807
+ torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1808
+ ).to(logits.device)
1809
+ else:
1810
+ sequence_lengths = -1
1811
+
1812
+ pooled_logits = logits[
1813
+ torch.arange(batch_size, device=logits.device), sequence_lengths
1814
+ ]
1815
+
1816
+ loss = None
1817
+ if labels is not None:
1818
+ labels = labels.to(logits.device)
1819
+ if self.config.problem_type is None:
1820
+ if self.num_labels == 1:
1821
+ self.config.problem_type = "regression"
1822
+ elif self.num_labels > 1 and (
1823
+ labels.dtype == torch.long or labels.dtype == torch.int
1824
+ ):
1825
+ self.config.problem_type = "single_label_classification"
1826
+ else:
1827
+ self.config.problem_type = "multi_label_classification"
1828
+
1829
+ if self.config.problem_type == "regression":
1830
+ loss_fct = MSELoss()
1831
+ if self.num_labels == 1:
1832
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1833
+ else:
1834
+ loss = loss_fct(pooled_logits, labels)
1835
+ elif self.config.problem_type == "single_label_classification":
1836
+ loss_fct = CrossEntropyLoss()
1837
+ loss = loss_fct(
1838
+ pooled_logits.view(-1, self.num_labels), labels.view(-1)
1839
+ )
1840
+ elif self.config.problem_type == "multi_label_classification":
1841
+ loss_fct = BCEWithLogitsLoss()
1842
+ loss = loss_fct(pooled_logits, labels)
1843
+ if not return_dict:
1844
+ output = (pooled_logits,) + transformer_outputs[1:]
1845
+ return ((loss,) + output) if loss is not None else output
1846
+
1847
+ return SequenceClassifierOutputWithPast(
1848
+ loss=loss,
1849
+ logits=pooled_logits,
1850
+ past_key_values=transformer_outputs.past_key_values,
1851
+ hidden_states=transformer_outputs.hidden_states,
1852
+ attentions=transformer_outputs.attentions,
1853
+ )
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin▁of▁sentence|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|end▁of▁sentence|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|end▁of▁sentence|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff