|  | from __future__ import annotations | 
					
						
						|  |  | 
					
						
						|  | import math | 
					
						
						|  | import warnings | 
					
						
						|  | from typing import Any, Optional, Union, List | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | import torch.nn as nn | 
					
						
						|  |  | 
					
						
						|  | from peft.tuners.lora import LoraLayer | 
					
						
						|  |  | 
					
						
						|  | class MultiAdapterLinear(nn.Module, LoraLayer): | 
					
						
						|  | """ | 
					
						
						|  | Custom LoRA module supporting multiple adapters for a linear layer. | 
					
						
						|  |  | 
					
						
						|  | This module extends the standard LoRA implementation to support multiple task-specific | 
					
						
						|  | adapters that can be dynamically selected during the forward pass. The task_label | 
					
						
						|  | parameter passed to the forward function determines which LoRA adapter(s) to use: | 
					
						
						|  | - If task_label is a string, all examples in the batch use the same adapter | 
					
						
						|  | - If task_label is a list of strings, each example can use a different adapter | 
					
						
						|  |  | 
					
						
						|  | This enables efficient multi-task inference where all task-specific LoRA adapters | 
					
						
						|  | are loaded in memory simultaneously and dynamically selected per example, eliminating | 
					
						
						|  | the need to switch adapter states between tasks and allowing optimal throughput | 
					
						
						|  | for mixed-task batches. | 
					
						
						|  |  | 
					
						
						|  | Derived from peft.tuners.lora.Linear. | 
					
						
						|  | """ | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | base_layer, | 
					
						
						|  | adapter_name: str, | 
					
						
						|  | task_names: List[str], | 
					
						
						|  | r: int = 0, | 
					
						
						|  | lora_alpha: int = 1, | 
					
						
						|  | lora_dropout: float = 0.0, | 
					
						
						|  | fan_in_fan_out: bool = False, | 
					
						
						|  | is_target_conv_1d_layer: bool = False, | 
					
						
						|  | init_lora_weights: Union[bool, str] = True, | 
					
						
						|  | use_rslora: bool = False, | 
					
						
						|  | use_dora: bool = False, | 
					
						
						|  | lora_bias: bool = False, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> None: | 
					
						
						|  | super().__init__() | 
					
						
						|  | LoraLayer.__init__(self, base_layer, **kwargs) | 
					
						
						|  |  | 
					
						
						|  | self.fan_in_fan_out = fan_in_fan_out | 
					
						
						|  | self.task_names = task_names | 
					
						
						|  | self._active_adapter = adapter_name | 
					
						
						|  | self.update_layer( | 
					
						
						|  | adapter_name, | 
					
						
						|  | r, | 
					
						
						|  | lora_alpha=lora_alpha, | 
					
						
						|  | lora_dropout=lora_dropout, | 
					
						
						|  | init_lora_weights=init_lora_weights, | 
					
						
						|  | use_rslora=use_rslora, | 
					
						
						|  | use_dora=use_dora, | 
					
						
						|  | lora_bias=lora_bias, | 
					
						
						|  | ) | 
					
						
						|  | self.is_target_conv_1d_layer = is_target_conv_1d_layer | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x: torch.Tensor, task_label: Union[str, List[str]], *args: Any, **kwargs: Any) -> torch.Tensor: | 
					
						
						|  | self._check_forward_args(x, *args, **kwargs) | 
					
						
						|  |  | 
					
						
						|  | if self.disable_adapters: | 
					
						
						|  | if self.merged: | 
					
						
						|  | self.unmerge() | 
					
						
						|  | result = self.base_layer(x, *args, **kwargs) | 
					
						
						|  | elif self.merged: | 
					
						
						|  | result = self.base_layer(x, *args, **kwargs) | 
					
						
						|  | else: | 
					
						
						|  | result = self.base_layer(x, *args, **kwargs) | 
					
						
						|  | torch_result_dtype = result.dtype | 
					
						
						|  |  | 
					
						
						|  | lora_A_keys = self.lora_A.keys() | 
					
						
						|  | for active_adapter in self.active_adapters: | 
					
						
						|  | if active_adapter not in lora_A_keys: | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  | if isinstance(task_label, str): | 
					
						
						|  | lora_A = self.lora_A[active_adapter][task_label] | 
					
						
						|  | lora_B = self.lora_B[active_adapter][task_label] | 
					
						
						|  | dropout = self.lora_dropout[active_adapter] | 
					
						
						|  | scaling = self.scaling[active_adapter] | 
					
						
						|  | x = self._cast_input_dtype(x, lora_A.weight.dtype) | 
					
						
						|  | result = result + lora_B(lora_A(dropout(x))) * scaling | 
					
						
						|  | else: | 
					
						
						|  | unique_tasks = list(set(task_label)) | 
					
						
						|  | lora_output = torch.zeros_like(result) | 
					
						
						|  |  | 
					
						
						|  | for task in unique_tasks: | 
					
						
						|  | task_indices = [i for i, t in enumerate(task_label) if t == task] | 
					
						
						|  | task_x = x[task_indices] | 
					
						
						|  |  | 
					
						
						|  | lora_A = self.lora_A[active_adapter][task] | 
					
						
						|  | lora_B = self.lora_B[active_adapter][task] | 
					
						
						|  | dropout = self.lora_dropout[active_adapter] | 
					
						
						|  | scaling = self.scaling[active_adapter] | 
					
						
						|  |  | 
					
						
						|  | task_x = self._cast_input_dtype(task_x, lora_A.weight.dtype) | 
					
						
						|  | task_lora_value = lora_B(lora_A(dropout(task_x))) * scaling | 
					
						
						|  |  | 
					
						
						|  | for i, idx in enumerate(task_indices): | 
					
						
						|  | lora_output[idx] = task_lora_value[i] | 
					
						
						|  |  | 
					
						
						|  | result = result + lora_output | 
					
						
						|  |  | 
					
						
						|  | result = result.to(torch_result_dtype) | 
					
						
						|  |  | 
					
						
						|  | return result | 
					
						
						|  |  | 
					
						
						|  | def __repr__(self) -> str: | 
					
						
						|  | rep = super().__repr__() | 
					
						
						|  | return "lora." + rep | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def update_layer( | 
					
						
						|  | self, | 
					
						
						|  | adapter_name, | 
					
						
						|  | r, | 
					
						
						|  | lora_alpha, | 
					
						
						|  | lora_dropout, | 
					
						
						|  | init_lora_weights, | 
					
						
						|  | use_rslora, | 
					
						
						|  | use_dora: bool = False, | 
					
						
						|  | lora_bias: bool = False, | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  | if r <= 0: | 
					
						
						|  | raise ValueError(f"`r` should be a positive integer value but the value passed is {r}") | 
					
						
						|  |  | 
					
						
						|  | self.r[adapter_name] = r | 
					
						
						|  | self.lora_alpha[adapter_name] = lora_alpha | 
					
						
						|  | if lora_dropout > 0.0: | 
					
						
						|  | lora_dropout_layer = nn.Dropout(p=lora_dropout) | 
					
						
						|  | else: | 
					
						
						|  | lora_dropout_layer = nn.Identity() | 
					
						
						|  |  | 
					
						
						|  | self.lora_dropout.update(nn.ModuleDict({adapter_name: lora_dropout_layer})) | 
					
						
						|  |  | 
					
						
						|  | self.lora_A[adapter_name] = nn.ModuleDict({ | 
					
						
						|  | task_name: nn.Linear(self.in_features, r, bias=False) | 
					
						
						|  | for task_name in self.task_names | 
					
						
						|  | }) | 
					
						
						|  | self.lora_B[adapter_name] = nn.ModuleDict({ | 
					
						
						|  | task_name: nn.Linear(r, self.out_features, bias=lora_bias) | 
					
						
						|  | for task_name in self.task_names | 
					
						
						|  | }) | 
					
						
						|  | self.lora_bias[adapter_name] = lora_bias | 
					
						
						|  |  | 
					
						
						|  | if use_rslora: | 
					
						
						|  | self.scaling[adapter_name] = lora_alpha / math.sqrt(r) | 
					
						
						|  | else: | 
					
						
						|  | self.scaling[adapter_name] = lora_alpha / r | 
					
						
						|  |  | 
					
						
						|  | self.reset_lora_parameters(adapter_name, init_lora_weights) | 
					
						
						|  | self._move_adapter_to_device_of_base_layer(adapter_name) | 
					
						
						|  | self.use_dora[adapter_name] = False | 
					
						
						|  | self.set_adapter(self.active_adapters) | 
					
						
						|  |  | 
					
						
						|  | def reset_lora_parameters(self, adapter_name, init_lora_weights): | 
					
						
						|  | if init_lora_weights is False: | 
					
						
						|  | return | 
					
						
						|  | if init_lora_weights is True: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for task_name in self.task_names: | 
					
						
						|  | nn.init.kaiming_uniform_(self.lora_A[adapter_name][task_name].weight, a=math.sqrt(5)) | 
					
						
						|  | elif init_lora_weights.lower() == "gaussian": | 
					
						
						|  | for task_name in self.task_names: | 
					
						
						|  | nn.init.normal_(self.lora_A[adapter_name][task_name].weight, std=1 / self.r[adapter_name]) | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f"Unknown initialization {init_lora_weights=}") | 
					
						
						|  | for task_name in self.task_names: | 
					
						
						|  | nn.init.zeros_(self.lora_B[adapter_name][task_name].weight) | 
					
						
						|  | if self.lora_bias[adapter_name]: | 
					
						
						|  | for task_name in self.task_names: | 
					
						
						|  | nn.init.zeros_(self.lora_B[adapter_name][task_name].bias) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def merge(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> None: | 
					
						
						|  | """ | 
					
						
						|  | Merge the active adapter weights into the base weights | 
					
						
						|  | """ | 
					
						
						|  | raise NotImplementedError("Merge operation is not supported") | 
					
						
						|  |  | 
					
						
						|  | def unmerge(self) -> None: | 
					
						
						|  | """ | 
					
						
						|  | This method unmerges all merged adapter layers from the base weights. | 
					
						
						|  | """ | 
					
						
						|  | raise NotImplementedError("Unmerge operation is not supported") | 
					
						
						|  |  |