Commit 
							
							·
						
						8a9e9ed
	
1
								Parent(s):
							
							85f64e2
								
feat: finalized implementation
Browse filesSigned-off-by: jupyterjazz <saba.sturua@jina.ai>
- config.json +3 -1
 - custom_lora_module.py +73 -197
 - modeling_jina_embeddings_v4.py +112 -76
 - qwen2_5_vl.py +18 -85
 
    	
        config.json
    CHANGED
    
    | 
         @@ -54,5 +54,7 @@ 
     | 
|
| 54 | 
         
             
              "vision_start_token_id": 151652,
         
     | 
| 55 | 
         
             
              "vision_token_id": 151654,
         
     | 
| 56 | 
         
             
              "vocab_size": 151936,
         
     | 
| 57 | 
         
            -
              "truncate_dim": null
         
     | 
| 
         | 
|
| 
         | 
|
| 58 | 
         
             
            }
         
     | 
| 
         | 
|
| 54 | 
         
             
              "vision_start_token_id": 151652,
         
     | 
| 55 | 
         
             
              "vision_token_id": 151654,
         
     | 
| 56 | 
         
             
              "vocab_size": 151936,
         
     | 
| 57 | 
         
            +
              "truncate_dim": null,
         
     | 
| 58 | 
         
            +
              "task_names": ["retrieval", "text-matching", "code"],
         
     | 
| 59 | 
         
            +
              "matryoshka_dims": [128, 256, 512, 1024]
         
     | 
| 60 | 
         
             
            }
         
     | 
    	
        custom_lora_module.py
    CHANGED
    
    | 
         @@ -2,31 +2,35 @@ from __future__ import annotations 
     | 
|
| 2 | 
         | 
| 3 | 
         
             
            import math
         
     | 
| 4 | 
         
             
            import warnings
         
     | 
| 5 | 
         
            -
            from typing import Any, Optional, Union
         
     | 
| 6 | 
         | 
| 7 | 
         
             
            import torch
         
     | 
| 8 | 
         
             
            import torch.nn as nn
         
     | 
| 9 | 
         
            -
            import torch.nn.functional as F
         
     | 
| 10 | 
         
            -
            from accelerate.utils.imports import is_xpu_available
         
     | 
| 11 | 
         
            -
            from torch import svd_lowrank
         
     | 
| 12 | 
         
            -
            from transformers.pytorch_utils import Conv1D
         
     | 
| 13 | 
         | 
| 14 | 
         
            -
            from peft.tuners.tuners_utils import BaseTunerLayer, check_adapters_to_merge
         
     | 
| 15 | 
         
            -
            from peft.utils.integrations import (
         
     | 
| 16 | 
         
            -
                dequantize_module_weight,
         
     | 
| 17 | 
         
            -
                gather_params_ctx,
         
     | 
| 18 | 
         
            -
                get_bnb_param_type,
         
     | 
| 19 | 
         
            -
                skip_init_on_device,
         
     | 
| 20 | 
         
            -
            )
         
     | 
| 21 | 
         
            -
            from peft.utils.other import transpose
         
     | 
| 22 | 
         
             
            from peft.tuners.lora import LoraLayer
         
     | 
| 23 | 
         | 
| 24 | 
         
            -
            class  
     | 
| 25 | 
         
            -
                 
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 26 | 
         
             
                def __init__(
         
     | 
| 27 | 
         
             
                    self,
         
     | 
| 28 | 
         
             
                    base_layer,
         
     | 
| 29 | 
         
             
                    adapter_name: str,
         
     | 
| 
         | 
|
| 30 | 
         
             
                    r: int = 0,
         
     | 
| 31 | 
         
             
                    lora_alpha: int = 1,
         
     | 
| 32 | 
         
             
                    lora_dropout: float = 0.0,
         
     | 
| 
         @@ -40,8 +44,9 @@ class Linear(nn.Module, LoraLayer): 
     | 
|
| 40 | 
         
             
                ) -> None:
         
     | 
| 41 | 
         
             
                    super().__init__()
         
     | 
| 42 | 
         
             
                    LoraLayer.__init__(self, base_layer, **kwargs)
         
     | 
| 43 | 
         
            -
                    self.fan_in_fan_out = fan_in_fan_out
         
     | 
| 44 | 
         | 
| 
         | 
|
| 
         | 
|
| 45 | 
         
             
                    self._active_adapter = adapter_name
         
     | 
| 46 | 
         
             
                    self.update_layer(
         
     | 
| 47 | 
         
             
                        adapter_name,
         
     | 
| 
         @@ -55,160 +60,14 @@ class Linear(nn.Module, LoraLayer): 
     | 
|
| 55 | 
         
             
                    )
         
     | 
| 56 | 
         
             
                    self.is_target_conv_1d_layer = is_target_conv_1d_layer
         
     | 
| 57 | 
         | 
| 58 | 
         
            -
                def merge(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> None:
         
     | 
| 59 | 
         
            -
                    """
         
     | 
| 60 | 
         
            -
                    Merge the active adapter weights into the base weights
         
     | 
| 61 | 
         
            -
             
     | 
| 62 | 
         
            -
                    Args:
         
     | 
| 63 | 
         
            -
                        safe_merge (`bool`, *optional*):
         
     | 
| 64 | 
         
            -
                            If True, the merge operation will be performed in a copy of the original weights and check for NaNs
         
     | 
| 65 | 
         
            -
                            before merging the weights. This is useful if you want to check if the merge operation will produce
         
     | 
| 66 | 
         
            -
                            NaNs. Defaults to `False`.
         
     | 
| 67 | 
         
            -
                        adapter_names (`list[str]`, *optional*):
         
     | 
| 68 | 
         
            -
                            The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults
         
     | 
| 69 | 
         
            -
                            to `None`.
         
     | 
| 70 | 
         
            -
                    """
         
     | 
| 71 | 
         
            -
                    adapter_names = check_adapters_to_merge(self, adapter_names)
         
     | 
| 72 | 
         
            -
                    if not adapter_names:
         
     | 
| 73 | 
         
            -
                        # no adapter to merge
         
     | 
| 74 | 
         
            -
                        return
         
     | 
| 75 | 
         
            -
             
     | 
| 76 | 
         
            -
                    for active_adapter in adapter_names:
         
     | 
| 77 | 
         
            -
                        if active_adapter in self.lora_A.keys():
         
     | 
| 78 | 
         
            -
                            base_layer = self.get_base_layer()
         
     | 
| 79 | 
         
            -
                            if safe_merge:
         
     | 
| 80 | 
         
            -
                                # Note that safe_merge will be slower than the normal merge
         
     | 
| 81 | 
         
            -
                                # because of the copy operation.
         
     | 
| 82 | 
         
            -
                                orig_weights = base_layer.weight.data.clone()
         
     | 
| 83 | 
         
            -
                                delta_weight = self.get_delta_weight(active_adapter)
         
     | 
| 84 | 
         
            -
                                if not self.use_dora[active_adapter]:
         
     | 
| 85 | 
         
            -
                                    orig_weights += delta_weight
         
     | 
| 86 | 
         
            -
                                else:
         
     | 
| 87 | 
         
            -
                                    # handle dora
         
     | 
| 88 | 
         
            -
                                    # since delta_weight already includes scaling, set it to 1 here
         
     | 
| 89 | 
         
            -
                                    weight_norm = (
         
     | 
| 90 | 
         
            -
                                        self.lora_magnitude_vector[active_adapter]
         
     | 
| 91 | 
         
            -
                                        .get_weight_norm(orig_weights, transpose(delta_weight, self.fan_in_fan_out), scaling=1)
         
     | 
| 92 | 
         
            -
                                        .detach()
         
     | 
| 93 | 
         
            -
                                    )
         
     | 
| 94 | 
         
            -
                                    # We need to cache weight_norm because it has to be based on the original weights. We
         
     | 
| 95 | 
         
            -
                                    # cannot calculate it on the fly based on the merged weights when unmerging because its a
         
     | 
| 96 | 
         
            -
                                    # different value
         
     | 
| 97 | 
         
            -
                                    self._cache_store(f"{active_adapter}-weight_norm", weight_norm)
         
     | 
| 98 | 
         
            -
                                    dora_factor = self.lora_magnitude_vector[active_adapter].weight / weight_norm
         
     | 
| 99 | 
         
            -
                                    dora_factor = transpose(dora_factor.view(-1, 1), self.fan_in_fan_out)
         
     | 
| 100 | 
         
            -
                                    orig_weights = dora_factor * (orig_weights + delta_weight)
         
     | 
| 101 | 
         
            -
             
     | 
| 102 | 
         
            -
                                if not torch.isfinite(orig_weights).all():
         
     | 
| 103 | 
         
            -
                                    raise ValueError(
         
     | 
| 104 | 
         
            -
                                        f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken"
         
     | 
| 105 | 
         
            -
                                    )
         
     | 
| 106 | 
         
            -
             
     | 
| 107 | 
         
            -
                                base_layer.weight.data = orig_weights
         
     | 
| 108 | 
         
            -
             
     | 
| 109 | 
         
            -
                                if self.lora_bias[active_adapter]:
         
     | 
| 110 | 
         
            -
                                    new_bias = base_layer.bias + self.lora_B[active_adapter].bias
         
     | 
| 111 | 
         
            -
                                    if not torch.isfinite(new_bias).all():
         
     | 
| 112 | 
         
            -
                                        raise ValueError(
         
     | 
| 113 | 
         
            -
                                            f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken"
         
     | 
| 114 | 
         
            -
                                        )
         
     | 
| 115 | 
         
            -
                                    base_layer.bias.data = new_bias
         
     | 
| 116 | 
         
            -
             
     | 
| 117 | 
         
            -
                            else:
         
     | 
| 118 | 
         
            -
                                delta_weight = self.get_delta_weight(active_adapter)
         
     | 
| 119 | 
         
            -
                                if not self.use_dora[active_adapter]:
         
     | 
| 120 | 
         
            -
                                    base_layer.weight.data += delta_weight
         
     | 
| 121 | 
         
            -
                                else:
         
     | 
| 122 | 
         
            -
                                    # handle dora
         
     | 
| 123 | 
         
            -
                                    # since delta_weight already includes scaling, set it to 1 here
         
     | 
| 124 | 
         
            -
                                    weight_norm = (
         
     | 
| 125 | 
         
            -
                                        self.lora_magnitude_vector[active_adapter]
         
     | 
| 126 | 
         
            -
                                        .get_weight_norm(
         
     | 
| 127 | 
         
            -
                                            base_layer.weight, transpose(delta_weight, self.fan_in_fan_out), scaling=1
         
     | 
| 128 | 
         
            -
                                        )
         
     | 
| 129 | 
         
            -
                                        .detach()
         
     | 
| 130 | 
         
            -
                                    )
         
     | 
| 131 | 
         
            -
                                    # We need to cache weight_norm because it has to be based on the original weights. We
         
     | 
| 132 | 
         
            -
                                    # cannot calculate it on the fly based on the merged weights when unmerging because its a
         
     | 
| 133 | 
         
            -
                                    # different value
         
     | 
| 134 | 
         
            -
                                    self._cache_store(f"{active_adapter}-weight_norm", weight_norm)
         
     | 
| 135 | 
         
            -
                                    dora_factor = self.lora_magnitude_vector[active_adapter].weight / weight_norm
         
     | 
| 136 | 
         
            -
                                    dora_factor = transpose(dora_factor.view(-1, 1), self.fan_in_fan_out)
         
     | 
| 137 | 
         
            -
                                    new_weight = dora_factor * (base_layer.weight.data + delta_weight)
         
     | 
| 138 | 
         
            -
                                    base_layer.weight.data = new_weight
         
     | 
| 139 | 
         
            -
             
     | 
| 140 | 
         
            -
                                if self.lora_bias[active_adapter]:
         
     | 
| 141 | 
         
            -
                                    base_layer.bias.data += self.lora_B[active_adapter].bias
         
     | 
| 142 | 
         
            -
             
     | 
| 143 | 
         
            -
                            self.merged_adapters.append(active_adapter)
         
     | 
| 144 | 
         
            -
             
     | 
| 145 | 
         
            -
                def unmerge(self) -> None:
         
     | 
| 146 | 
         
            -
                    """
         
     | 
| 147 | 
         
            -
                    This method unmerges all merged adapter layers from the base weights.
         
     | 
| 148 | 
         
            -
                    """
         
     | 
| 149 | 
         
            -
                    if not self.merged:
         
     | 
| 150 | 
         
            -
                        warnings.warn("Already unmerged. Nothing to do.")
         
     | 
| 151 | 
         
            -
                        return
         
     | 
| 152 | 
         
            -
                    while len(self.merged_adapters) > 0:
         
     | 
| 153 | 
         
            -
                        active_adapter = self.merged_adapters.pop()
         
     | 
| 154 | 
         
            -
                        if active_adapter in self.lora_A.keys():
         
     | 
| 155 | 
         
            -
                            weight = self.get_base_layer().weight
         
     | 
| 156 | 
         
            -
                            delta_weight = self.get_delta_weight(active_adapter)
         
     | 
| 157 | 
         
            -
                            if not self.use_dora[active_adapter]:
         
     | 
| 158 | 
         
            -
                                weight.data -= delta_weight
         
     | 
| 159 | 
         
            -
                            else:
         
     | 
| 160 | 
         
            -
                                weight_norm = self._cache_pop(f"{active_adapter}-weight_norm")
         
     | 
| 161 | 
         
            -
                                dora_factor = self.lora_magnitude_vector[active_adapter].weight / weight_norm
         
     | 
| 162 | 
         
            -
                                weight_orig = weight.data / dora_factor.view(-1, 1) - delta_weight
         
     | 
| 163 | 
         
            -
                                weight.data = weight_orig
         
     | 
| 164 | 
         
            -
             
     | 
| 165 | 
         
            -
                            if self.lora_bias[active_adapter]:
         
     | 
| 166 | 
         
            -
                                self.get_base_layer().bias.data -= self.lora_B[active_adapter].bias
         
     | 
| 167 | 
         | 
| 168 | 
         
            -
                def  
     | 
| 169 | 
         
            -
                    """
         
     | 
| 170 | 
         
            -
                    Compute the delta weight for the given adapter.
         
     | 
| 171 | 
         
            -
             
     | 
| 172 | 
         
            -
                    Args:
         
     | 
| 173 | 
         
            -
                        adapter (str):
         
     | 
| 174 | 
         
            -
                            The name of the adapter for which the delta weight should be computed.
         
     | 
| 175 | 
         
            -
                    """
         
     | 
| 176 | 
         
            -
                    device = self.lora_B[adapter].weight.device
         
     | 
| 177 | 
         
            -
                    dtype = self.lora_B[adapter].weight.dtype
         
     | 
| 178 | 
         
            -
             
     | 
| 179 | 
         
            -
                    # In case users wants to merge the adapter weights that are in
         
     | 
| 180 | 
         
            -
                    # (b)float16 while being on CPU, we need to cast the weights to float32, perform the merge and then cast back to
         
     | 
| 181 | 
         
            -
                    # (b)float16 because some CPUs have slow bf16/fp16 matmuls.
         
     | 
| 182 | 
         
            -
                    cast_to_fp32 = device.type == "cpu" and (dtype == torch.float16 or dtype == torch.bfloat16)
         
     | 
| 183 | 
         
            -
             
     | 
| 184 | 
         
            -
                    weight_A = self.lora_A[adapter].weight
         
     | 
| 185 | 
         
            -
                    weight_B = self.lora_B[adapter].weight
         
     | 
| 186 | 
         
            -
             
     | 
| 187 | 
         
            -
                    if cast_to_fp32:
         
     | 
| 188 | 
         
            -
                        weight_A = weight_A.float()
         
     | 
| 189 | 
         
            -
                        weight_B = weight_B.float()
         
     | 
| 190 | 
         
            -
             
     | 
| 191 | 
         
            -
                    output_tensor = transpose(weight_B @ weight_A, self.fan_in_fan_out) * self.scaling[adapter]
         
     | 
| 192 | 
         
            -
             
     | 
| 193 | 
         
            -
                    if cast_to_fp32:
         
     | 
| 194 | 
         
            -
                        output_tensor = output_tensor.to(dtype=dtype)
         
     | 
| 195 | 
         
            -
             
     | 
| 196 | 
         
            -
                        # cast back the weights
         
     | 
| 197 | 
         
            -
                        self.lora_A[adapter].weight.data = weight_A.to(dtype)
         
     | 
| 198 | 
         
            -
                        self.lora_B[adapter].weight.data = weight_B.to(dtype)
         
     | 
| 199 | 
         
            -
             
     | 
| 200 | 
         
            -
                    return output_tensor
         
     | 
| 201 | 
         
            -
             
     | 
| 202 | 
         
            -
                def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor:
         
     | 
| 203 | 
         
             
                    self._check_forward_args(x, *args, **kwargs)
         
     | 
| 204 | 
         
            -
                    adapter_names = kwargs.pop("adapter_names", None)
         
     | 
| 205 | 
         | 
| 206 | 
         
             
                    if self.disable_adapters:
         
     | 
| 207 | 
         
             
                        if self.merged:
         
     | 
| 208 | 
         
             
                            self.unmerge()
         
     | 
| 209 | 
         
             
                        result = self.base_layer(x, *args, **kwargs)
         
     | 
| 210 | 
         
            -
                    elif adapter_names is not None:
         
     | 
| 211 | 
         
            -
                        result = self._mixed_batch_forward(x, *args, adapter_names=adapter_names, **kwargs)
         
     | 
| 212 | 
         
             
                    elif self.merged:
         
     | 
| 213 | 
         
             
                        result = self.base_layer(x, *args, **kwargs)
         
     | 
| 214 | 
         
             
                    else:
         
     | 
| 
         @@ -219,30 +78,34 @@ class Linear(nn.Module, LoraLayer): 
     | 
|
| 219 | 
         
             
                        for active_adapter in self.active_adapters:
         
     | 
| 220 | 
         
             
                            if active_adapter not in lora_A_keys:
         
     | 
| 221 | 
         
             
                                continue
         
     | 
| 222 | 
         
            -
             
     | 
| 223 | 
         
            -
                             
     | 
| 224 | 
         
            -
             
     | 
| 225 | 
         
            -
             
     | 
| 226 | 
         
            -
             
     | 
| 227 | 
         
            -
             
     | 
| 228 | 
         
            -
             
     | 
| 229 | 
         
            -
                            if not self.use_dora[active_adapter]:
         
     | 
| 230 | 
         
             
                                result = result + lora_B(lora_A(dropout(x))) * scaling
         
     | 
| 231 | 
         
             
                            else:
         
     | 
| 232 | 
         
            -
                                 
     | 
| 233 | 
         
            -
             
     | 
| 234 | 
         
            -
                                 
     | 
| 235 | 
         
            -
             
     | 
| 236 | 
         
            -
                                     
     | 
| 237 | 
         
            -
             
     | 
| 238 | 
         
            -
             
     | 
| 239 | 
         
            -
                                     
     | 
| 240 | 
         
            -
                                     
     | 
| 241 | 
         
            -
                                     
     | 
| 242 | 
         
            -
                                    scaling=scaling 
     | 
| 243 | 
         
            -
                                     
     | 
| 244 | 
         
            -
                                     
     | 
| 245 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 246 | 
         | 
| 247 | 
         
             
                        result = result.to(torch_result_dtype)
         
     | 
| 248 | 
         | 
| 
         @@ -278,12 +141,12 @@ class Linear(nn.Module, LoraLayer): 
     | 
|
| 278 | 
         
             
                    self.lora_dropout.update(nn.ModuleDict({adapter_name: lora_dropout_layer}))
         
     | 
| 279 | 
         
             
                    # Actual trainable parameters
         
     | 
| 280 | 
         
             
                    self.lora_A[adapter_name] = nn.ModuleDict({
         
     | 
| 281 | 
         
            -
                         
     | 
| 282 | 
         
            -
                         
     | 
| 283 | 
         
             
                    })
         
     | 
| 284 | 
         
             
                    self.lora_B[adapter_name] = nn.ModuleDict({
         
     | 
| 285 | 
         
            -
                         
     | 
| 286 | 
         
            -
                         
     | 
| 287 | 
         
             
                    })
         
     | 
| 288 | 
         
             
                    self.lora_bias[adapter_name] = lora_bias
         
     | 
| 289 | 
         | 
| 
         @@ -303,15 +166,28 @@ class Linear(nn.Module, LoraLayer): 
     | 
|
| 303 | 
         
             
                    if init_lora_weights is True:
         
     | 
| 304 | 
         
             
                        # initialize A the same way as the default for nn.Linear and B to zero
         
     | 
| 305 | 
         
             
                        # https://github.com/microsoft/LoRA/blob/a0a92e0f26c067cf94747bdbf1ce73793fa44d19/loralib/layers.py#L124
         
     | 
| 306 | 
         
            -
                         
     | 
| 307 | 
         
            -
             
     | 
| 308 | 
         
             
                    elif init_lora_weights.lower() == "gaussian":
         
     | 
| 309 | 
         
            -
                         
     | 
| 310 | 
         
            -
             
     | 
| 311 | 
         
             
                    else:
         
     | 
| 312 | 
         
             
                        raise ValueError(f"Unknown initialization {init_lora_weights=}")
         
     | 
| 313 | 
         
            -
                     
     | 
| 314 | 
         
            -
             
     | 
| 315 | 
         
             
                    if self.lora_bias[adapter_name]:
         
     | 
| 316 | 
         
            -
                         
     | 
| 317 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 2 | 
         | 
| 3 | 
         
             
            import math
         
     | 
| 4 | 
         
             
            import warnings
         
     | 
| 5 | 
         
            +
            from typing import Any, Optional, Union, List
         
     | 
| 6 | 
         | 
| 7 | 
         
             
            import torch
         
     | 
| 8 | 
         
             
            import torch.nn as nn
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 9 | 
         | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 10 | 
         
             
            from peft.tuners.lora import LoraLayer
         
     | 
| 11 | 
         | 
| 12 | 
         
            +
            class MultiAdapterLinear(nn.Module, LoraLayer):
         
     | 
| 13 | 
         
            +
                """
         
     | 
| 14 | 
         
            +
                Custom LoRA module supporting multiple adapters for a linear layer.
         
     | 
| 15 | 
         
            +
                
         
     | 
| 16 | 
         
            +
                This module extends the standard LoRA implementation to support multiple task-specific
         
     | 
| 17 | 
         
            +
                adapters that can be dynamically selected during the forward pass. The task_label
         
     | 
| 18 | 
         
            +
                parameter passed to the forward function determines which LoRA adapter(s) to use:
         
     | 
| 19 | 
         
            +
                - If task_label is a string, all examples in the batch use the same adapter
         
     | 
| 20 | 
         
            +
                - If task_label is a list of strings, each example can use a different adapter
         
     | 
| 21 | 
         
            +
                
         
     | 
| 22 | 
         
            +
                This enables efficient multi-task inference where all task-specific LoRA adapters
         
     | 
| 23 | 
         
            +
                are loaded in memory simultaneously and dynamically selected per example, eliminating
         
     | 
| 24 | 
         
            +
                the need to switch adapter states between tasks and allowing optimal throughput
         
     | 
| 25 | 
         
            +
                for mixed-task batches.
         
     | 
| 26 | 
         
            +
                
         
     | 
| 27 | 
         
            +
                Derived from peft.tuners.lora.Linear.
         
     | 
| 28 | 
         
            +
                """
         
     | 
| 29 | 
         
             
                def __init__(
         
     | 
| 30 | 
         
             
                    self,
         
     | 
| 31 | 
         
             
                    base_layer,
         
     | 
| 32 | 
         
             
                    adapter_name: str,
         
     | 
| 33 | 
         
            +
                    task_names: List[str],
         
     | 
| 34 | 
         
             
                    r: int = 0,
         
     | 
| 35 | 
         
             
                    lora_alpha: int = 1,
         
     | 
| 36 | 
         
             
                    lora_dropout: float = 0.0,
         
     | 
| 
         | 
|
| 44 | 
         
             
                ) -> None:
         
     | 
| 45 | 
         
             
                    super().__init__()
         
     | 
| 46 | 
         
             
                    LoraLayer.__init__(self, base_layer, **kwargs)
         
     | 
| 
         | 
|
| 47 | 
         | 
| 48 | 
         
            +
                    self.fan_in_fan_out = fan_in_fan_out
         
     | 
| 49 | 
         
            +
                    self.task_names = task_names
         
     | 
| 50 | 
         
             
                    self._active_adapter = adapter_name
         
     | 
| 51 | 
         
             
                    self.update_layer(
         
     | 
| 52 | 
         
             
                        adapter_name,
         
     | 
| 
         | 
|
| 60 | 
         
             
                    )
         
     | 
| 61 | 
         
             
                    self.is_target_conv_1d_layer = is_target_conv_1d_layer
         
     | 
| 62 | 
         | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 63 | 
         | 
| 64 | 
         
            +
                def forward(self, x: torch.Tensor, task_label: Union[str, List[str]], *args: Any, **kwargs: Any) -> torch.Tensor:
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 65 | 
         
             
                    self._check_forward_args(x, *args, **kwargs)
         
     | 
| 
         | 
|
| 66 | 
         | 
| 67 | 
         
             
                    if self.disable_adapters:
         
     | 
| 68 | 
         
             
                        if self.merged:
         
     | 
| 69 | 
         
             
                            self.unmerge()
         
     | 
| 70 | 
         
             
                        result = self.base_layer(x, *args, **kwargs)
         
     | 
| 
         | 
|
| 
         | 
|
| 71 | 
         
             
                    elif self.merged:
         
     | 
| 72 | 
         
             
                        result = self.base_layer(x, *args, **kwargs)
         
     | 
| 73 | 
         
             
                    else:
         
     | 
| 
         | 
|
| 78 | 
         
             
                        for active_adapter in self.active_adapters:
         
     | 
| 79 | 
         
             
                            if active_adapter not in lora_A_keys:
         
     | 
| 80 | 
         
             
                                continue
         
     | 
| 81 | 
         
            +
                            
         
     | 
| 82 | 
         
            +
                            if isinstance(task_label, str):
         
     | 
| 83 | 
         
            +
                                lora_A = self.lora_A[active_adapter][task_label]
         
     | 
| 84 | 
         
            +
                                lora_B = self.lora_B[active_adapter][task_label]
         
     | 
| 85 | 
         
            +
                                dropout = self.lora_dropout[active_adapter]
         
     | 
| 86 | 
         
            +
                                scaling = self.scaling[active_adapter]
         
     | 
| 87 | 
         
            +
                                x = self._cast_input_dtype(x, lora_A.weight.dtype)
         
     | 
| 
         | 
|
| 88 | 
         
             
                                result = result + lora_B(lora_A(dropout(x))) * scaling
         
     | 
| 89 | 
         
             
                            else:
         
     | 
| 90 | 
         
            +
                                unique_tasks = list(set(task_label))
         
     | 
| 91 | 
         
            +
                                lora_output = torch.zeros_like(result)
         
     | 
| 92 | 
         
            +
                                
         
     | 
| 93 | 
         
            +
                                for task in unique_tasks:
         
     | 
| 94 | 
         
            +
                                    task_indices = [i for i, t in enumerate(task_label) if t == task]
         
     | 
| 95 | 
         
            +
                                    task_x = x[task_indices]
         
     | 
| 96 | 
         
            +
                                    
         
     | 
| 97 | 
         
            +
                                    lora_A = self.lora_A[active_adapter][task]
         
     | 
| 98 | 
         
            +
                                    lora_B = self.lora_B[active_adapter][task]
         
     | 
| 99 | 
         
            +
                                    dropout = self.lora_dropout[active_adapter]
         
     | 
| 100 | 
         
            +
                                    scaling = self.scaling[active_adapter]
         
     | 
| 101 | 
         
            +
                                    
         
     | 
| 102 | 
         
            +
                                    task_x = self._cast_input_dtype(task_x, lora_A.weight.dtype)
         
     | 
| 103 | 
         
            +
                                    task_lora_value = lora_B(lora_A(dropout(task_x))) * scaling
         
     | 
| 104 | 
         
            +
                                    
         
     | 
| 105 | 
         
            +
                                    for i, idx in enumerate(task_indices):
         
     | 
| 106 | 
         
            +
                                        lora_output[idx] = task_lora_value[i]
         
     | 
| 107 | 
         
            +
                                
         
     | 
| 108 | 
         
            +
                                result = result + lora_output
         
     | 
| 109 | 
         | 
| 110 | 
         
             
                        result = result.to(torch_result_dtype)
         
     | 
| 111 | 
         | 
| 
         | 
|
| 141 | 
         
             
                    self.lora_dropout.update(nn.ModuleDict({adapter_name: lora_dropout_layer}))
         
     | 
| 142 | 
         
             
                    # Actual trainable parameters
         
     | 
| 143 | 
         
             
                    self.lora_A[adapter_name] = nn.ModuleDict({
         
     | 
| 144 | 
         
            +
                        task_name: nn.Linear(self.in_features, r, bias=False)
         
     | 
| 145 | 
         
            +
                        for task_name in self.task_names
         
     | 
| 146 | 
         
             
                    })
         
     | 
| 147 | 
         
             
                    self.lora_B[adapter_name] = nn.ModuleDict({
         
     | 
| 148 | 
         
            +
                        task_name: nn.Linear(r, self.out_features, bias=lora_bias)
         
     | 
| 149 | 
         
            +
                        for task_name in self.task_names
         
     | 
| 150 | 
         
             
                    })
         
     | 
| 151 | 
         
             
                    self.lora_bias[adapter_name] = lora_bias
         
     | 
| 152 | 
         | 
| 
         | 
|
| 166 | 
         
             
                    if init_lora_weights is True:
         
     | 
| 167 | 
         
             
                        # initialize A the same way as the default for nn.Linear and B to zero
         
     | 
| 168 | 
         
             
                        # https://github.com/microsoft/LoRA/blob/a0a92e0f26c067cf94747bdbf1ce73793fa44d19/loralib/layers.py#L124
         
     | 
| 169 | 
         
            +
                        for task_name in self.task_names:
         
     | 
| 170 | 
         
            +
                            nn.init.kaiming_uniform_(self.lora_A[adapter_name][task_name].weight, a=math.sqrt(5))
         
     | 
| 171 | 
         
             
                    elif init_lora_weights.lower() == "gaussian":
         
     | 
| 172 | 
         
            +
                        for task_name in self.task_names:
         
     | 
| 173 | 
         
            +
                            nn.init.normal_(self.lora_A[adapter_name][task_name].weight, std=1 / self.r[adapter_name])
         
     | 
| 174 | 
         
             
                    else:
         
     | 
| 175 | 
         
             
                        raise ValueError(f"Unknown initialization {init_lora_weights=}")
         
     | 
| 176 | 
         
            +
                    for task_name in self.task_names:
         
     | 
| 177 | 
         
            +
                        nn.init.zeros_(self.lora_B[adapter_name][task_name].weight)
         
     | 
| 178 | 
         
             
                    if self.lora_bias[adapter_name]:
         
     | 
| 179 | 
         
            +
                        for task_name in self.task_names:
         
     | 
| 180 | 
         
            +
                            nn.init.zeros_(self.lora_B[adapter_name][task_name].bias)
         
     | 
| 181 | 
         
            +
                
         
     | 
| 182 | 
         
            +
             
     | 
| 183 | 
         
            +
                def merge(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> None:
         
     | 
| 184 | 
         
            +
                    """
         
     | 
| 185 | 
         
            +
                    Merge the active adapter weights into the base weights
         
     | 
| 186 | 
         
            +
                    """
         
     | 
| 187 | 
         
            +
                    raise NotImplementedError("Merge operation is not supported")
         
     | 
| 188 | 
         
            +
             
     | 
| 189 | 
         
            +
                def unmerge(self) -> None:
         
     | 
| 190 | 
         
            +
                    """
         
     | 
| 191 | 
         
            +
                    This method unmerges all merged adapter layers from the base weights.
         
     | 
| 192 | 
         
            +
                    """
         
     | 
| 193 | 
         
            +
                    raise NotImplementedError("Unmerge operation is not supported")
         
     | 
    	
        modeling_jina_embeddings_v4.py
    CHANGED
    
    | 
         @@ -20,22 +20,15 @@ from transformers import BatchFeature 
     | 
|
| 20 | 
         
             
            from .qwen2_5_vl import Qwen2_5_VLForConditionalGeneration, Qwen2_5_VLProcessor
         
     | 
| 21 | 
         
             
            from .configuration_jina_embeddings_v4 import JinaEmbeddingsV4Config
         
     | 
| 22 | 
         
             
            import peft
         
     | 
| 23 | 
         
            -
            from .custom_lora_module import  
     | 
| 
         | 
|
| 24 | 
         | 
| 25 | 
         
             
            class PromptType(str, Enum):
         
     | 
| 26 | 
         
             
                query = "query"
         
     | 
| 27 | 
         
             
                passage = "passage"
         
     | 
| 28 | 
         | 
| 29 | 
         | 
| 30 | 
         
            -
            class TaskType(str, Enum):
         
     | 
| 31 | 
         
            -
                retrieval = "retrieval"
         
     | 
| 32 | 
         
            -
                code = "code"
         
     | 
| 33 | 
         
            -
                text_matching = "text-matching"
         
     | 
| 34 | 
         
            -
                test = "test"
         
     | 
| 35 | 
         
            -
             
     | 
| 36 | 
         
            -
             
     | 
| 37 | 
         
             
            PREFIX_DICT = {"query": "Query", "passage": "Passage"}
         
     | 
| 38 | 
         
            -
            TRUNCATE_DIMS = [128, 256, 512, 1024]
         
     | 
| 39 | 
         
             
            VECTOR_TYPES = ["single_vector", "multi_vector"]
         
     | 
| 40 | 
         | 
| 41 | 
         | 
| 
         @@ -153,9 +146,28 @@ class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration): 
     | 
|
| 153 | 
         
             
                    )
         
     | 
| 154 | 
         
             
                    self.single_vector_projector_dim = config.single_vector_projector_dim
         
     | 
| 155 | 
         
             
                    self.multi_vector_projector_dim = config.multi_vector_projector_dim
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 156 | 
         | 
| 157 | 
         
             
                def get_last_hidden_states(
         
     | 
| 158 | 
         
             
                    self,
         
     | 
| 
         | 
|
| 159 | 
         
             
                    input_ids: torch.LongTensor,
         
     | 
| 160 | 
         
             
                    attention_mask: torch.Tensor,
         
     | 
| 161 | 
         
             
                    **kwargs,
         
     | 
| 
         @@ -174,8 +186,9 @@ class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration): 
     | 
|
| 174 | 
         | 
| 175 | 
         
             
                    kwargs["output_hidden_states"] = True
         
     | 
| 176 | 
         
             
                    outputs = super().forward(
         
     | 
| 177 | 
         
            -
                         
     | 
| 178 | 
         
            -
                         
     | 
| 
         | 
|
| 179 | 
         
             
                        **kwargs,
         
     | 
| 180 | 
         
             
                        position_ids=position_ids,
         
     | 
| 181 | 
         
             
                        rope_deltas=rope_deltas,
         
     | 
| 
         @@ -207,6 +220,7 @@ class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration): 
     | 
|
| 207 | 
         | 
| 208 | 
         
             
                def project_to_single_vector_embeddings(
         
     | 
| 209 | 
         
             
                    self,
         
     | 
| 
         | 
|
| 210 | 
         
             
                    hidden_states: torch.Tensor,
         
     | 
| 211 | 
         
             
                    attention_mask: torch.Tensor,
         
     | 
| 212 | 
         
             
                    input_ids: Optional[torch.LongTensor] = None,
         
     | 
| 
         @@ -215,33 +229,48 @@ class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration): 
     | 
|
| 215 | 
         
             
                    Project the hidden states to single-vector embeddings.
         
     | 
| 216 | 
         
             
                    """
         
     | 
| 217 | 
         
             
                    if self._input_has_image(input_ids[0]):  # got document image
         
     | 
| 218 | 
         
            -
                        img_start_positions = torch.where( 
     | 
| 219 | 
         
            -
             
     | 
| 220 | 
         
            -
                        
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 221 | 
         
             
                        batch_size, seq_len = input_ids.shape
         
     | 
| 222 | 
         
            -
                        position_indices = torch.arange(seq_len, device=input_ids.device).expand( 
     | 
| 223 | 
         
            -
             
     | 
| 224 | 
         
            -
                        
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 225 | 
         
             
                        masked_hidden_states = hidden_states * image_mask.unsqueeze(-1)
         
     | 
| 226 | 
         
            -
                        pooled_output = masked_hidden_states.sum(dim=1) / image_mask.sum( 
     | 
| 
         | 
|
| 
         | 
|
| 227 | 
         | 
| 228 | 
         
             
                    else:  # got query text
         
     | 
| 229 | 
         
             
                        pooled_output = torch.sum(
         
     | 
| 230 | 
         
             
                            hidden_states * attention_mask.unsqueeze(-1), dim=1
         
     | 
| 231 | 
         
             
                        ) / torch.sum(attention_mask, dim=1, keepdim=True)
         
     | 
| 232 | 
         | 
| 233 | 
         
            -
                    single_vec_emb = self.single_vector_projector( 
     | 
| 
         | 
|
| 
         | 
|
| 234 | 
         
             
                    return torch.nn.functional.normalize(single_vec_emb, dim=-1)
         
     | 
| 235 | 
         | 
| 236 | 
         
             
                def project_to_multi_vector_embeddings(
         
     | 
| 237 | 
         
             
                    self,
         
     | 
| 
         | 
|
| 238 | 
         
             
                    hidden_states: torch.Tensor,
         
     | 
| 239 | 
         
             
                    attention_mask: torch.Tensor,
         
     | 
| 240 | 
         
             
                ) -> torch.Tensor:
         
     | 
| 241 | 
         
             
                    """
         
     | 
| 242 | 
         
             
                    Project the hidden states to multi-vector embeddings.
         
     | 
| 243 | 
         
             
                    """
         
     | 
| 244 | 
         
            -
                    multi_vec_emb = self.multi_vector_projector( 
     | 
| 
         | 
|
| 
         | 
|
| 245 | 
         
             
                    multi_vec_emb = torch.nn.functional.normalize(multi_vec_emb, dim=-1)
         
     | 
| 246 | 
         
             
                    return multi_vec_emb * attention_mask.unsqueeze(-1)
         
     | 
| 247 | 
         | 
| 
         @@ -250,6 +279,7 @@ class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration): 
     | 
|
| 250 | 
         | 
| 251 | 
         
             
                def forward(
         
     | 
| 252 | 
         
             
                    self,
         
     | 
| 
         | 
|
| 253 | 
         
             
                    input_ids: torch.LongTensor,
         
     | 
| 254 | 
         
             
                    attention_mask: torch.Tensor,
         
     | 
| 255 | 
         
             
                    output_vlm_last_hidden_states: bool = False,
         
     | 
| 
         @@ -267,14 +297,22 @@ class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration): 
     | 
|
| 267 | 
         
             
                    """
         
     | 
| 268 | 
         
             
                    # Forward pass through the VLM
         
     | 
| 269 | 
         
             
                    hidden_states = self.get_last_hidden_states(
         
     | 
| 270 | 
         
            -
                        input_ids=input_ids, 
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 271 | 
         
             
                    )  # (batch_size, seq_length, hidden_size)
         
     | 
| 272 | 
         
             
                    # Compute the embeddings
         
     | 
| 273 | 
         
             
                    single_vec_emb = self.project_to_single_vector_embeddings(
         
     | 
| 274 | 
         
            -
                        hidden_states, 
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 275 | 
         
             
                    )
         
     | 
| 276 | 
         
             
                    multi_vec_emb = self.project_to_multi_vector_embeddings(
         
     | 
| 277 | 
         
            -
                        hidden_states, 
     | 
| 
         | 
|
| 
         | 
|
| 278 | 
         
             
                    )
         
     | 
| 279 | 
         | 
| 280 | 
         
             
                    return JinaEmbeddingsV4ModelOutput(
         
     | 
| 
         @@ -288,6 +326,7 @@ class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration): 
     | 
|
| 288 | 
         
             
                def _process_batches(
         
     | 
| 289 | 
         
             
                    self,
         
     | 
| 290 | 
         
             
                    data: List[Union[str, Image.Image]],
         
     | 
| 
         | 
|
| 291 | 
         
             
                    processor_fn: Callable,
         
     | 
| 292 | 
         
             
                    desc: str,
         
     | 
| 293 | 
         
             
                    vector_type: str = "single_vector",
         
     | 
| 
         @@ -307,7 +346,7 @@ class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration): 
     | 
|
| 307 | 
         
             
                        with torch.no_grad():
         
     | 
| 308 | 
         
             
                            batch = {k: v.to(self.device) for k, v in batch.items()}
         
     | 
| 309 | 
         
             
                            with torch.autocast(device_type=torch.device(self.device).type):
         
     | 
| 310 | 
         
            -
                                embeddings = self(**batch)
         
     | 
| 311 | 
         
             
                                if vector_type == "single_vector":
         
     | 
| 312 | 
         
             
                                    embeddings = embeddings.single_vec_emb
         
     | 
| 313 | 
         
             
                                    if truncate_dim is not None:
         
     | 
| 
         @@ -338,7 +377,7 @@ class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration): 
     | 
|
| 338 | 
         
             
                        else:
         
     | 
| 339 | 
         
             
                            encode_kwargs["prefix"] = (
         
     | 
| 340 | 
         
             
                                PREFIX_DICT[prompt_name]
         
     | 
| 341 | 
         
            -
                                if self.task !=  
     | 
| 342 | 
         
             
                                else PREFIX_DICT["query"]
         
     | 
| 343 | 
         
             
                            )
         
     | 
| 344 | 
         | 
| 
         @@ -351,18 +390,32 @@ class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration): 
     | 
|
| 351 | 
         
             
                        encode_kwargs["vector_type"] = vector_type
         
     | 
| 352 | 
         | 
| 353 | 
         
             
                    truncate_dim = truncate_dim or self.config.truncate_dim
         
     | 
| 354 | 
         
            -
                    if truncate_dim is not None and truncate_dim not in  
     | 
| 355 | 
         
             
                        raise ValueError(
         
     | 
| 356 | 
         
            -
                            f"Invalid truncate_dim: {truncate_dim}. Must be one of { 
     | 
| 357 | 
         
             
                        )
         
     | 
| 358 | 
         
             
                    else:
         
     | 
| 359 | 
         
             
                        encode_kwargs["truncate_dim"] = truncate_dim
         
     | 
| 360 | 
         | 
| 361 | 
         
             
                    return encode_kwargs
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 362 | 
         | 
| 363 | 
         
             
                def encode_texts(
         
     | 
| 364 | 
         
             
                    self,
         
     | 
| 365 | 
         
             
                    texts: List[str],
         
     | 
| 
         | 
|
| 366 | 
         
             
                    max_length: int = 8192,
         
     | 
| 367 | 
         
             
                    batch_size: int = 8,
         
     | 
| 368 | 
         
             
                    vector_type: Optional[str] = None,
         
     | 
| 
         @@ -390,6 +443,8 @@ class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration): 
     | 
|
| 390 | 
         
             
                        vector_type, truncate_dim, prompt_name
         
     | 
| 391 | 
         
             
                    )
         
     | 
| 392 | 
         | 
| 
         | 
|
| 
         | 
|
| 393 | 
         
             
                    processor_fn = partial(
         
     | 
| 394 | 
         
             
                        self.processor.process_texts,
         
     | 
| 395 | 
         
             
                        max_length=max_length,
         
     | 
| 
         @@ -400,6 +455,7 @@ class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration): 
     | 
|
| 400 | 
         
             
                        data=texts,
         
     | 
| 401 | 
         
             
                        processor_fn=processor_fn,
         
     | 
| 402 | 
         
             
                        desc="Encoding texts...",
         
     | 
| 
         | 
|
| 403 | 
         
             
                        return_numpy=return_numpy,
         
     | 
| 404 | 
         
             
                        batch_size=batch_size,
         
     | 
| 405 | 
         
             
                        **encode_kwargs,
         
     | 
| 
         @@ -410,6 +466,7 @@ class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration): 
     | 
|
| 410 | 
         
             
                def encode_images(
         
     | 
| 411 | 
         
             
                    self,
         
     | 
| 412 | 
         
             
                    images: List[Image.Image],
         
     | 
| 
         | 
|
| 413 | 
         
             
                    batch_size: int = 8,
         
     | 
| 414 | 
         
             
                    vector_type: Optional[str] = None,
         
     | 
| 415 | 
         
             
                    return_numpy: bool = False,
         
     | 
| 
         @@ -432,14 +489,17 @@ class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration): 
     | 
|
| 432 | 
         
             
                    """
         
     | 
| 433 | 
         
             
                    if max_pixels:
         
     | 
| 434 | 
         
             
                        default_max_pixels = self.processor.image_processor.max_pixels
         
     | 
| 435 | 
         
            -
                        self.processor.image_processor.max_pixels =  
     | 
| 
         | 
|
| 
         | 
|
| 436 | 
         | 
| 437 | 
         
             
                    encode_kwargs = self._validate_encoding_params(vector_type, truncate_dim)
         
     | 
| 438 | 
         
            -
             
     | 
| 439 | 
         
             
                    embeddings = self._process_batches(
         
     | 
| 440 | 
         
             
                        data=images,
         
     | 
| 441 | 
         
             
                        processor_fn=self.processor.process_images,
         
     | 
| 442 | 
         
             
                        desc="Encoding images...",
         
     | 
| 
         | 
|
| 443 | 
         
             
                        batch_size=batch_size,
         
     | 
| 444 | 
         
             
                        return_numpy=return_numpy,
         
     | 
| 445 | 
         
             
                        **encode_kwargs,
         
     | 
| 
         @@ -463,15 +523,6 @@ class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration): 
     | 
|
| 463 | 
         
             
                    if "torch_dtype" not in kwargs:
         
     | 
| 464 | 
         
             
                        kwargs["torch_dtype"] = "auto"
         
     | 
| 465 | 
         | 
| 466 | 
         
            -
                    task_value = kwargs.pop("task", "test")
         
     | 
| 467 | 
         
            -
                    try:
         
     | 
| 468 | 
         
            -
                        task = TaskType(task_value)
         
     | 
| 469 | 
         
            -
                    except ValueError:
         
     | 
| 470 | 
         
            -
                        valid_tasks = [t.value for t in TaskType]
         
     | 
| 471 | 
         
            -
                        raise ValueError(
         
     | 
| 472 | 
         
            -
                            f"Invalid task: {task_value}. Must be one of {valid_tasks}."
         
     | 
| 473 | 
         
            -
                        )
         
     | 
| 474 | 
         
            -
             
     | 
| 475 | 
         
             
                    base_model = super().from_pretrained(
         
     | 
| 476 | 
         
             
                        pretrained_model_name_or_path, *args, **kwargs
         
     | 
| 477 | 
         
             
                    )
         
     | 
| 
         @@ -485,46 +536,31 @@ class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration): 
     | 
|
| 485 | 
         
             
                        )
         
     | 
| 486 | 
         
             
                        adapter_dir = os.path.join(adapter_cache_path, "adapters")
         
     | 
| 487 | 
         | 
| 488 | 
         
            -
                     
     | 
| 489 | 
         
            -
                     
     | 
| 490 | 
         
            -
             
     | 
| 491 | 
         
            -
             
     | 
| 492 | 
         
            -
             
     | 
| 493 | 
         
            -
             
     | 
| 
         | 
|
| 494 | 
         
             
                    peft_model = PeftModel.from_pretrained(
         
     | 
| 495 | 
         
            -
                        model=base_model, 
     | 
| 
         | 
|
| 
         | 
|
| 496 | 
         
             
                    )
         
     | 
| 497 | 
         | 
| 498 | 
         
            -
                     
     | 
| 499 | 
         
            -
                    def  
     | 
| 500 | 
         
            -
                         
     | 
| 501 | 
         
            -
             
     | 
| 502 | 
         
            -
             
     | 
| 503 | 
         
            -
             
     | 
| 504 | 
         
            -
             
     | 
| 505 | 
         
            -
             
     | 
| 506 | 
         
            -
             
     | 
| 507 | 
         
            -
             
     | 
| 508 | 
         
            -
             
     | 
| 509 | 
         
            -
             
     | 
| 510 | 
         
            -
             
     | 
| 511 | 
         
            -
                                valid_tasks = [t.value for t in TaskType]
         
     | 
| 512 | 
         
            -
                                raise ValueError(
         
     | 
| 513 | 
         
            -
                                    f"Invalid task: {task}. Must be one of {valid_tasks}"
         
     | 
| 514 | 
         
            -
                                )
         
     | 
| 515 | 
         
            -
                        if self.model.task != task:
         
     | 
| 516 | 
         
            -
                            adapter_path = os.path.join(self.adapter_dir, task.value)
         
     | 
| 517 | 
         
            -
                            hotswap_adapter(self, adapter_path, adapter_name="default")
         
     | 
| 518 | 
         
            -
                            self.model.task = task
         
     | 
| 519 | 
         
            -
             
     | 
| 520 | 
         
            -
                    def get_task_method(self):
         
     | 
| 521 | 
         
            -
                        """
         
     | 
| 522 | 
         
            -
                        Get the task adapter for the model.
         
     | 
| 523 | 
         
            -
                        """
         
     | 
| 524 | 
         
            -
                        return self.model.task.value
         
     | 
| 525 | 
         
            -
             
     | 
| 526 | 
         
            -
                    # Bind the methods to the instance
         
     | 
| 527 | 
         
            -
                    peft_model.set_task = set_task_method.__get__(peft_model, type(peft_model))
         
     | 
| 528 | 
         
            -
                    peft_model.get_task = get_task_method.__get__(peft_model, type(peft_model))
         
     | 
| 529 | 
         | 
| 530 | 
         
             
                    return peft_model
         
     | 
| 
         | 
|
| 20 | 
         
             
            from .qwen2_5_vl import Qwen2_5_VLForConditionalGeneration, Qwen2_5_VLProcessor
         
     | 
| 21 | 
         
             
            from .configuration_jina_embeddings_v4 import JinaEmbeddingsV4Config
         
     | 
| 22 | 
         
             
            import peft
         
     | 
| 23 | 
         
            +
            from .custom_lora_module import MultiAdapterLinear
         
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         | 
| 26 | 
         
             
            class PromptType(str, Enum):
         
     | 
| 27 | 
         
             
                query = "query"
         
     | 
| 28 | 
         
             
                passage = "passage"
         
     | 
| 29 | 
         | 
| 30 | 
         | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 31 | 
         
             
            PREFIX_DICT = {"query": "Query", "passage": "Passage"}
         
     | 
| 
         | 
|
| 32 | 
         
             
            VECTOR_TYPES = ["single_vector", "multi_vector"]
         
     | 
| 33 | 
         | 
| 34 | 
         | 
| 
         | 
|
| 146 | 
         
             
                    )
         
     | 
| 147 | 
         
             
                    self.single_vector_projector_dim = config.single_vector_projector_dim
         
     | 
| 148 | 
         
             
                    self.multi_vector_projector_dim = config.multi_vector_projector_dim
         
     | 
| 149 | 
         
            +
                    self._task = None
         
     | 
| 150 | 
         
            +
             
     | 
| 151 | 
         
            +
                @property
         
     | 
| 152 | 
         
            +
                def task(self) -> Optional[str]:
         
     | 
| 153 | 
         
            +
                    """Get the current task set for the model."""
         
     | 
| 154 | 
         
            +
                    return self._task
         
     | 
| 155 | 
         
            +
             
     | 
| 156 | 
         
            +
                @task.setter
         
     | 
| 157 | 
         
            +
                def task(self, task: str):
         
     | 
| 158 | 
         
            +
                    """
         
     | 
| 159 | 
         
            +
                    Set the task for the model.
         
     | 
| 160 | 
         
            +
             
     | 
| 161 | 
         
            +
                    Args:
         
     | 
| 162 | 
         
            +
                        task (str): The task name. Must be one of ['retrieval', 'text-matching', 'code']
         
     | 
| 163 | 
         
            +
                    """
         
     | 
| 164 | 
         
            +
                    if task not in self.config.task_names:
         
     | 
| 165 | 
         
            +
                        raise ValueError(f"Invalid task: {task}. Must be one of {self.config.task_names}.")
         
     | 
| 166 | 
         
            +
                    self._task = task
         
     | 
| 167 | 
         | 
| 168 | 
         
             
                def get_last_hidden_states(
         
     | 
| 169 | 
         
             
                    self,
         
     | 
| 170 | 
         
            +
                    task_label: Union[str, List[str]],
         
     | 
| 171 | 
         
             
                    input_ids: torch.LongTensor,
         
     | 
| 172 | 
         
             
                    attention_mask: torch.Tensor,
         
     | 
| 173 | 
         
             
                    **kwargs,
         
     | 
| 
         | 
|
| 186 | 
         | 
| 187 | 
         
             
                    kwargs["output_hidden_states"] = True
         
     | 
| 188 | 
         
             
                    outputs = super().forward(
         
     | 
| 189 | 
         
            +
                        task_label=task_label,
         
     | 
| 190 | 
         
            +
                        input_ids=input_ids,
         
     | 
| 191 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 192 | 
         
             
                        **kwargs,
         
     | 
| 193 | 
         
             
                        position_ids=position_ids,
         
     | 
| 194 | 
         
             
                        rope_deltas=rope_deltas,
         
     | 
| 
         | 
|
| 220 | 
         | 
| 221 | 
         
             
                def project_to_single_vector_embeddings(
         
     | 
| 222 | 
         
             
                    self,
         
     | 
| 223 | 
         
            +
                    task_label: Union[str, List[str]],
         
     | 
| 224 | 
         
             
                    hidden_states: torch.Tensor,
         
     | 
| 225 | 
         
             
                    attention_mask: torch.Tensor,
         
     | 
| 226 | 
         
             
                    input_ids: Optional[torch.LongTensor] = None,
         
     | 
| 
         | 
|
| 229 | 
         
             
                    Project the hidden states to single-vector embeddings.
         
     | 
| 230 | 
         
             
                    """
         
     | 
| 231 | 
         
             
                    if self._input_has_image(input_ids[0]):  # got document image
         
     | 
| 232 | 
         
            +
                        img_start_positions = torch.where(
         
     | 
| 233 | 
         
            +
                            input_ids == self.config.vision_start_token_id
         
     | 
| 234 | 
         
            +
                        )[1]
         
     | 
| 235 | 
         
            +
                        img_end_positions = torch.where(
         
     | 
| 236 | 
         
            +
                            input_ids == self.config.vision_end_token_id
         
     | 
| 237 | 
         
            +
                        )[1]
         
     | 
| 238 | 
         
            +
             
     | 
| 239 | 
         
             
                        batch_size, seq_len = input_ids.shape
         
     | 
| 240 | 
         
            +
                        position_indices = torch.arange(seq_len, device=input_ids.device).expand(
         
     | 
| 241 | 
         
            +
                            batch_size, -1
         
     | 
| 242 | 
         
            +
                        )
         
     | 
| 243 | 
         
            +
                        image_mask = (position_indices >= img_start_positions.unsqueeze(1)) & (
         
     | 
| 244 | 
         
            +
                            position_indices <= img_end_positions.unsqueeze(1)
         
     | 
| 245 | 
         
            +
                        )
         
     | 
| 246 | 
         
            +
             
     | 
| 247 | 
         
             
                        masked_hidden_states = hidden_states * image_mask.unsqueeze(-1)
         
     | 
| 248 | 
         
            +
                        pooled_output = masked_hidden_states.sum(dim=1) / image_mask.sum(
         
     | 
| 249 | 
         
            +
                            dim=1, keepdim=True
         
     | 
| 250 | 
         
            +
                        )
         
     | 
| 251 | 
         | 
| 252 | 
         
             
                    else:  # got query text
         
     | 
| 253 | 
         
             
                        pooled_output = torch.sum(
         
     | 
| 254 | 
         
             
                            hidden_states * attention_mask.unsqueeze(-1), dim=1
         
     | 
| 255 | 
         
             
                        ) / torch.sum(attention_mask, dim=1, keepdim=True)
         
     | 
| 256 | 
         | 
| 257 | 
         
            +
                    single_vec_emb = self.single_vector_projector(
         
     | 
| 258 | 
         
            +
                        pooled_output, task_label=task_label
         
     | 
| 259 | 
         
            +
                    )
         
     | 
| 260 | 
         
             
                    return torch.nn.functional.normalize(single_vec_emb, dim=-1)
         
     | 
| 261 | 
         | 
| 262 | 
         
             
                def project_to_multi_vector_embeddings(
         
     | 
| 263 | 
         
             
                    self,
         
     | 
| 264 | 
         
            +
                    task_label: Union[str, List[str]],
         
     | 
| 265 | 
         
             
                    hidden_states: torch.Tensor,
         
     | 
| 266 | 
         
             
                    attention_mask: torch.Tensor,
         
     | 
| 267 | 
         
             
                ) -> torch.Tensor:
         
     | 
| 268 | 
         
             
                    """
         
     | 
| 269 | 
         
             
                    Project the hidden states to multi-vector embeddings.
         
     | 
| 270 | 
         
             
                    """
         
     | 
| 271 | 
         
            +
                    multi_vec_emb = self.multi_vector_projector(
         
     | 
| 272 | 
         
            +
                        hidden_states, task_label=task_label
         
     | 
| 273 | 
         
            +
                    )
         
     | 
| 274 | 
         
             
                    multi_vec_emb = torch.nn.functional.normalize(multi_vec_emb, dim=-1)
         
     | 
| 275 | 
         
             
                    return multi_vec_emb * attention_mask.unsqueeze(-1)
         
     | 
| 276 | 
         | 
| 
         | 
|
| 279 | 
         | 
| 280 | 
         
             
                def forward(
         
     | 
| 281 | 
         
             
                    self,
         
     | 
| 282 | 
         
            +
                    task_label: Union[str, List[str]],
         
     | 
| 283 | 
         
             
                    input_ids: torch.LongTensor,
         
     | 
| 284 | 
         
             
                    attention_mask: torch.Tensor,
         
     | 
| 285 | 
         
             
                    output_vlm_last_hidden_states: bool = False,
         
     | 
| 
         | 
|
| 297 | 
         
             
                    """
         
     | 
| 298 | 
         
             
                    # Forward pass through the VLM
         
     | 
| 299 | 
         
             
                    hidden_states = self.get_last_hidden_states(
         
     | 
| 300 | 
         
            +
                        input_ids=input_ids,
         
     | 
| 301 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 302 | 
         
            +
                        task_label=task_label,
         
     | 
| 303 | 
         
            +
                        **kwargs,
         
     | 
| 304 | 
         
             
                    )  # (batch_size, seq_length, hidden_size)
         
     | 
| 305 | 
         
             
                    # Compute the embeddings
         
     | 
| 306 | 
         
             
                    single_vec_emb = self.project_to_single_vector_embeddings(
         
     | 
| 307 | 
         
            +
                        hidden_states=hidden_states,
         
     | 
| 308 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 309 | 
         
            +
                        input_ids=input_ids,
         
     | 
| 310 | 
         
            +
                        task_label=task_label,
         
     | 
| 311 | 
         
             
                    )
         
     | 
| 312 | 
         
             
                    multi_vec_emb = self.project_to_multi_vector_embeddings(
         
     | 
| 313 | 
         
            +
                        hidden_states=hidden_states,
         
     | 
| 314 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 315 | 
         
            +
                        task_label=task_label,
         
     | 
| 316 | 
         
             
                    )
         
     | 
| 317 | 
         | 
| 318 | 
         
             
                    return JinaEmbeddingsV4ModelOutput(
         
     | 
| 
         | 
|
| 326 | 
         
             
                def _process_batches(
         
     | 
| 327 | 
         
             
                    self,
         
     | 
| 328 | 
         
             
                    data: List[Union[str, Image.Image]],
         
     | 
| 329 | 
         
            +
                    task_label: Union[str, List[str]],
         
     | 
| 330 | 
         
             
                    processor_fn: Callable,
         
     | 
| 331 | 
         
             
                    desc: str,
         
     | 
| 332 | 
         
             
                    vector_type: str = "single_vector",
         
     | 
| 
         | 
|
| 346 | 
         
             
                        with torch.no_grad():
         
     | 
| 347 | 
         
             
                            batch = {k: v.to(self.device) for k, v in batch.items()}
         
     | 
| 348 | 
         
             
                            with torch.autocast(device_type=torch.device(self.device).type):
         
     | 
| 349 | 
         
            +
                                embeddings = self(**batch, task_label=task_label)
         
     | 
| 350 | 
         
             
                                if vector_type == "single_vector":
         
     | 
| 351 | 
         
             
                                    embeddings = embeddings.single_vec_emb
         
     | 
| 352 | 
         
             
                                    if truncate_dim is not None:
         
     | 
| 
         | 
|
| 377 | 
         
             
                        else:
         
     | 
| 378 | 
         
             
                            encode_kwargs["prefix"] = (
         
     | 
| 379 | 
         
             
                                PREFIX_DICT[prompt_name]
         
     | 
| 380 | 
         
            +
                                if self.task != "text-matching"
         
     | 
| 381 | 
         
             
                                else PREFIX_DICT["query"]
         
     | 
| 382 | 
         
             
                            )
         
     | 
| 383 | 
         | 
| 
         | 
|
| 390 | 
         
             
                        encode_kwargs["vector_type"] = vector_type
         
     | 
| 391 | 
         | 
| 392 | 
         
             
                    truncate_dim = truncate_dim or self.config.truncate_dim
         
     | 
| 393 | 
         
            +
                    if truncate_dim is not None and truncate_dim not in self.config.matryoshka_dims:
         
     | 
| 394 | 
         
             
                        raise ValueError(
         
     | 
| 395 | 
         
            +
                            f"Invalid truncate_dim: {truncate_dim}. Must be one of {self.config.matryoshka_dims}."
         
     | 
| 396 | 
         
             
                        )
         
     | 
| 397 | 
         
             
                    else:
         
     | 
| 398 | 
         
             
                        encode_kwargs["truncate_dim"] = truncate_dim
         
     | 
| 399 | 
         | 
| 400 | 
         
             
                    return encode_kwargs
         
     | 
| 401 | 
         
            +
                
         
     | 
| 402 | 
         
            +
                def _validate_task(self, task: Optional[str] = None) -> str:
         
     | 
| 403 | 
         
            +
                    if task is None:
         
     | 
| 404 | 
         
            +
                        if self.task is None:
         
     | 
| 405 | 
         
            +
                            raise ValueError(
         
     | 
| 406 | 
         
            +
                                "Task must be specified before encoding data. You can set it either as a model property "
         
     | 
| 407 | 
         
            +
                                "(e.g., model.task = 'retrieval') or pass it as an argument to the encode method."
         
     | 
| 408 | 
         
            +
                            )
         
     | 
| 409 | 
         
            +
                        task = self.task
         
     | 
| 410 | 
         
            +
                    else:
         
     | 
| 411 | 
         
            +
                        if task not in self.config.task_names:
         
     | 
| 412 | 
         
            +
                            raise ValueError(f"Invalid task: {task}. Must be one of {self.config.task_names}.")
         
     | 
| 413 | 
         
            +
                    return task
         
     | 
| 414 | 
         | 
| 415 | 
         
             
                def encode_texts(
         
     | 
| 416 | 
         
             
                    self,
         
     | 
| 417 | 
         
             
                    texts: List[str],
         
     | 
| 418 | 
         
            +
                    task: Optional[str] = None,
         
     | 
| 419 | 
         
             
                    max_length: int = 8192,
         
     | 
| 420 | 
         
             
                    batch_size: int = 8,
         
     | 
| 421 | 
         
             
                    vector_type: Optional[str] = None,
         
     | 
| 
         | 
|
| 443 | 
         
             
                        vector_type, truncate_dim, prompt_name
         
     | 
| 444 | 
         
             
                    )
         
     | 
| 445 | 
         | 
| 446 | 
         
            +
                    task = self._validate_task(task)
         
     | 
| 447 | 
         
            +
             
     | 
| 448 | 
         
             
                    processor_fn = partial(
         
     | 
| 449 | 
         
             
                        self.processor.process_texts,
         
     | 
| 450 | 
         
             
                        max_length=max_length,
         
     | 
| 
         | 
|
| 455 | 
         
             
                        data=texts,
         
     | 
| 456 | 
         
             
                        processor_fn=processor_fn,
         
     | 
| 457 | 
         
             
                        desc="Encoding texts...",
         
     | 
| 458 | 
         
            +
                        task_label=task,
         
     | 
| 459 | 
         
             
                        return_numpy=return_numpy,
         
     | 
| 460 | 
         
             
                        batch_size=batch_size,
         
     | 
| 461 | 
         
             
                        **encode_kwargs,
         
     | 
| 
         | 
|
| 466 | 
         
             
                def encode_images(
         
     | 
| 467 | 
         
             
                    self,
         
     | 
| 468 | 
         
             
                    images: List[Image.Image],
         
     | 
| 469 | 
         
            +
                    task: Optional[str] = None,
         
     | 
| 470 | 
         
             
                    batch_size: int = 8,
         
     | 
| 471 | 
         
             
                    vector_type: Optional[str] = None,
         
     | 
| 472 | 
         
             
                    return_numpy: bool = False,
         
     | 
| 
         | 
|
| 489 | 
         
             
                    """
         
     | 
| 490 | 
         
             
                    if max_pixels:
         
     | 
| 491 | 
         
             
                        default_max_pixels = self.processor.image_processor.max_pixels
         
     | 
| 492 | 
         
            +
                        self.processor.image_processor.max_pixels = (
         
     | 
| 493 | 
         
            +
                            max_pixels  # change during encoding
         
     | 
| 494 | 
         
            +
                        )
         
     | 
| 495 | 
         | 
| 496 | 
         
             
                    encode_kwargs = self._validate_encoding_params(vector_type, truncate_dim)
         
     | 
| 497 | 
         
            +
                    task = self._validate_task(task)
         
     | 
| 498 | 
         
             
                    embeddings = self._process_batches(
         
     | 
| 499 | 
         
             
                        data=images,
         
     | 
| 500 | 
         
             
                        processor_fn=self.processor.process_images,
         
     | 
| 501 | 
         
             
                        desc="Encoding images...",
         
     | 
| 502 | 
         
            +
                        task_label=task,
         
     | 
| 503 | 
         
             
                        batch_size=batch_size,
         
     | 
| 504 | 
         
             
                        return_numpy=return_numpy,
         
     | 
| 505 | 
         
             
                        **encode_kwargs,
         
     | 
| 
         | 
|
| 523 | 
         
             
                    if "torch_dtype" not in kwargs:
         
     | 
| 524 | 
         
             
                        kwargs["torch_dtype"] = "auto"
         
     | 
| 525 | 
         | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 526 | 
         
             
                    base_model = super().from_pretrained(
         
     | 
| 527 | 
         
             
                        pretrained_model_name_or_path, *args, **kwargs
         
     | 
| 528 | 
         
             
                    )
         
     | 
| 
         | 
|
| 536 | 
         
             
                        )
         
     | 
| 537 | 
         
             
                        adapter_dir = os.path.join(adapter_cache_path, "adapters")
         
     | 
| 538 | 
         | 
| 539 | 
         
            +
                    lora_config = LoraConfig.from_pretrained(os.path.join(adapter_dir, "test"))
         
     | 
| 540 | 
         
            +
                    lora_config._custom_modules = {
         
     | 
| 541 | 
         
            +
                        torch.nn.modules.linear.Linear: partial(
         
     | 
| 542 | 
         
            +
                            MultiAdapterLinear,
         
     | 
| 543 | 
         
            +
                            task_names=base_model.config.task_names,
         
     | 
| 544 | 
         
            +
                        )
         
     | 
| 545 | 
         
            +
                    }
         
     | 
| 546 | 
         
             
                    peft_model = PeftModel.from_pretrained(
         
     | 
| 547 | 
         
            +
                        model=base_model,
         
     | 
| 548 | 
         
            +
                        model_id=os.path.join(adapter_dir, "test"),
         
     | 
| 549 | 
         
            +
                        config=lora_config,
         
     | 
| 550 | 
         
             
                    )
         
     | 
| 551 | 
         | 
| 552 | 
         
            +
                    @property
         
     | 
| 553 | 
         
            +
                    def task(self):
         
     | 
| 554 | 
         
            +
                        return self.model.task
         
     | 
| 555 | 
         
            +
                    
         
     | 
| 556 | 
         
            +
                    @task.setter
         
     | 
| 557 | 
         
            +
                    def task(self, value):
         
     | 
| 558 | 
         
            +
                        self.model.task = value
         
     | 
| 559 | 
         
            +
                    
         
     | 
| 560 | 
         
            +
                    peft_model.task = property(task.fget, task.fset)
         
     | 
| 561 | 
         
            +
                    peft_model.__class__.task = property(
         
     | 
| 562 | 
         
            +
                        lambda self: self.model.task,
         
     | 
| 563 | 
         
            +
                        lambda self, value: setattr(self.model, 'task', value)
         
     | 
| 564 | 
         
            +
                    )
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 565 | 
         | 
| 566 | 
         
             
                    return peft_model
         
     | 
    	
        qwen2_5_vl.py
    CHANGED
    
    | 
         @@ -1,28 +1,6 @@ 
     | 
|
| 1 | 
         
            -
            # 
     | 
| 2 | 
         
            -
            # 
     | 
| 3 | 
         
            -
             
     | 
| 4 | 
         
            -
            #             the file from the modular. If any change should be done, please apply the change to the
         
     | 
| 5 | 
         
            -
            #                          modular_qwen2_5_vl.py file directly. One of our CI enforces this.
         
     | 
| 6 | 
         
            -
            #                🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
         
     | 
| 7 | 
         
            -
            # coding=utf-8
         
     | 
| 8 | 
         
            -
            # Copyright 2025 The Qwen Team and The HuggingFace Inc. team. All rights reserved.
         
     | 
| 9 | 
         
            -
            #
         
     | 
| 10 | 
         
            -
            # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
         
     | 
| 11 | 
         
            -
            # and OPT implementations in this library. It has been modified from its
         
     | 
| 12 | 
         
            -
            # original forms to accommodate minor architectural differences compared
         
     | 
| 13 | 
         
            -
            # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
         
     | 
| 14 | 
         
            -
            #
         
     | 
| 15 | 
         
            -
            # Licensed under the Apache License, Version 2.0 (the "License");
         
     | 
| 16 | 
         
            -
            # you may not use this file except in compliance with the License.
         
     | 
| 17 | 
         
            -
            # You may obtain a copy of the License at
         
     | 
| 18 | 
         
            -
            #
         
     | 
| 19 | 
         
            -
            #     http://www.apache.org/licenses/LICENSE-2.0
         
     | 
| 20 | 
         
            -
            #
         
     | 
| 21 | 
         
            -
            # Unless required by applicable law or agreed to in writing, software
         
     | 
| 22 | 
         
            -
            # distributed under the License is distributed on an "AS IS" BASIS,
         
     | 
| 23 | 
         
            -
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         
     | 
| 24 | 
         
            -
            # See the License for the specific language governing permissions and
         
     | 
| 25 | 
         
            -
            # limitations under the License.
         
     | 
| 26 | 
         
             
            from transformers.configuration_utils import PretrainedConfig
         
     | 
| 27 | 
         
             
            from transformers.modeling_rope_utils import rope_config_validation
         
     | 
| 28 | 
         | 
| 
         @@ -256,32 +234,6 @@ class Qwen2_5_VLConfig(PretrainedConfig): 
     | 
|
| 256 | 
         | 
| 257 | 
         | 
| 258 | 
         | 
| 259 | 
         
            -
            #                🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
         
     | 
| 260 | 
         
            -
            #           This file was automatically generated from src/transformers/models/qwen2_5_vl/modular_qwen2_5_vl.py.
         
     | 
| 261 | 
         
            -
            #               Do NOT edit this file manually as any edits will be overwritten by the generation of
         
     | 
| 262 | 
         
            -
            #             the file from the modular. If any change should be done, please apply the change to the
         
     | 
| 263 | 
         
            -
            #                          modular_qwen2_5_vl.py file directly. One of our CI enforces this.
         
     | 
| 264 | 
         
            -
            #                🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
         
     | 
| 265 | 
         
            -
            # coding=utf-8
         
     | 
| 266 | 
         
            -
            # Copyright 2025 The Qwen Team and The HuggingFace Inc. team. All rights reserved.
         
     | 
| 267 | 
         
            -
            #
         
     | 
| 268 | 
         
            -
            # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
         
     | 
| 269 | 
         
            -
            # and OPT implementations in this library. It has been modified from its
         
     | 
| 270 | 
         
            -
            # original forms to accommodate minor architectural differences compared
         
     | 
| 271 | 
         
            -
            # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
         
     | 
| 272 | 
         
            -
            #
         
     | 
| 273 | 
         
            -
            # Licensed under the Apache License, Version 2.0 (the "License");
         
     | 
| 274 | 
         
            -
            # you may not use this file except in compliance with the License.
         
     | 
| 275 | 
         
            -
            # You may obtain a copy of the License at
         
     | 
| 276 | 
         
            -
            #
         
     | 
| 277 | 
         
            -
            #     http://www.apache.org/licenses/LICENSE-2.0
         
     | 
| 278 | 
         
            -
            #
         
     | 
| 279 | 
         
            -
            # Unless required by applicable law or agreed to in writing, software
         
     | 
| 280 | 
         
            -
            # distributed under the License is distributed on an "AS IS" BASIS,
         
     | 
| 281 | 
         
            -
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         
     | 
| 282 | 
         
            -
            # See the License for the specific language governing permissions and
         
     | 
| 283 | 
         
            -
            # limitations under the License.
         
     | 
| 284 | 
         
            -
             
     | 
| 285 | 
         
             
            import math
         
     | 
| 286 | 
         
             
            from dataclasses import dataclass
         
     | 
| 287 | 
         
             
            from typing import Any, Dict, List, Optional, Tuple, Union
         
     | 
| 
         @@ -891,8 +843,8 @@ class Qwen2MLP(nn.Module): 
     | 
|
| 891 | 
         
             
                    self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
         
     | 
| 892 | 
         
             
                    self.act_fn = ACT2FN[config.hidden_act]
         
     | 
| 893 | 
         | 
| 894 | 
         
            -
                def forward(self, x):
         
     | 
| 895 | 
         
            -
                    down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
         
     | 
| 896 | 
         
             
                    return down_proj
         
     | 
| 897 | 
         | 
| 898 | 
         | 
| 
         @@ -1179,6 +1131,7 @@ class Qwen2_5_VLSdpaAttention(Qwen2_5_VLAttention): 
     | 
|
| 1179 | 
         
             
                # Adapted from Qwen2Attention.forward
         
     | 
| 1180 | 
         
             
                def forward(
         
     | 
| 1181 | 
         
             
                    self,
         
     | 
| 
         | 
|
| 1182 | 
         
             
                    hidden_states: torch.Tensor,
         
     | 
| 1183 | 
         
             
                    attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 1184 | 
         
             
                    position_ids: Optional[torch.LongTensor] = None,
         
     | 
| 
         @@ -1207,9 +1160,9 @@ class Qwen2_5_VLSdpaAttention(Qwen2_5_VLAttention): 
     | 
|
| 1207 | 
         | 
| 1208 | 
         
             
                    bsz, q_len, _ = hidden_states.size()
         
     | 
| 1209 | 
         | 
| 1210 | 
         
            -
                    query_states = self.q_proj(hidden_states)
         
     | 
| 1211 | 
         
            -
                    key_states = self.k_proj(hidden_states)
         
     | 
| 1212 | 
         
            -
                    value_states = self.v_proj(hidden_states)
         
     | 
| 1213 | 
         | 
| 1214 | 
         
             
                    query_states = query_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
         
     | 
| 1215 | 
         
             
                    key_states = key_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
         
     | 
| 
         @@ -1255,7 +1208,7 @@ class Qwen2_5_VLSdpaAttention(Qwen2_5_VLAttention): 
     | 
|
| 1255 | 
         
             
                    attn_output = attn_output.transpose(1, 2).contiguous()
         
     | 
| 1256 | 
         
             
                    attn_output = attn_output.view(bsz, q_len, self.hidden_size)
         
     | 
| 1257 | 
         | 
| 1258 | 
         
            -
                    attn_output = self.o_proj(attn_output)
         
     | 
| 1259 | 
         | 
| 1260 | 
         
             
                    return attn_output, None, past_key_value
         
     | 
| 1261 | 
         | 
| 
         @@ -1285,6 +1238,7 @@ class Qwen2_5_VLDecoderLayer(nn.Module): 
     | 
|
| 1285 | 
         | 
| 1286 | 
         
             
                def forward(
         
     | 
| 1287 | 
         
             
                    self,
         
     | 
| 
         | 
|
| 1288 | 
         
             
                    hidden_states: torch.Tensor,
         
     | 
| 1289 | 
         
             
                    attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 1290 | 
         
             
                    position_ids: Optional[torch.LongTensor] = None,
         
     | 
| 
         @@ -1323,6 +1277,7 @@ class Qwen2_5_VLDecoderLayer(nn.Module): 
     | 
|
| 1323 | 
         | 
| 1324 | 
         
             
                    # Self Attention
         
     | 
| 1325 | 
         
             
                    hidden_states, self_attn_weights, present_key_value = self.self_attn(
         
     | 
| 
         | 
|
| 1326 | 
         
             
                        hidden_states=hidden_states,
         
     | 
| 1327 | 
         
             
                        attention_mask=attention_mask,
         
     | 
| 1328 | 
         
             
                        position_ids=position_ids,
         
     | 
| 
         @@ -1337,7 +1292,7 @@ class Qwen2_5_VLDecoderLayer(nn.Module): 
     | 
|
| 1337 | 
         
             
                    # Fully Connected
         
     | 
| 1338 | 
         
             
                    residual = hidden_states
         
     | 
| 1339 | 
         
             
                    hidden_states = self.post_attention_layernorm(hidden_states)
         
     | 
| 1340 | 
         
            -
                    hidden_states = self.mlp(hidden_states)
         
     | 
| 1341 | 
         
             
                    hidden_states = residual + hidden_states
         
     | 
| 1342 | 
         | 
| 1343 | 
         
             
                    outputs = (hidden_states,)
         
     | 
| 
         @@ -1381,6 +1336,7 @@ class Qwen2_5_VLModel(Qwen2_5_VLPreTrainedModel): 
     | 
|
| 1381 | 
         | 
| 1382 | 
         
             
                def forward(
         
     | 
| 1383 | 
         
             
                    self,
         
     | 
| 
         | 
|
| 1384 | 
         
             
                    input_ids: torch.LongTensor = None,
         
     | 
| 1385 | 
         
             
                    attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 1386 | 
         
             
                    position_ids: Optional[torch.LongTensor] = None,
         
     | 
| 
         @@ -1461,7 +1417,8 @@ class Qwen2_5_VLModel(Qwen2_5_VLPreTrainedModel): 
     | 
|
| 1461 | 
         
             
                            )
         
     | 
| 1462 | 
         
             
                        else:
         
     | 
| 1463 | 
         
             
                            layer_outputs = decoder_layer(
         
     | 
| 1464 | 
         
            -
                                 
     | 
| 
         | 
|
| 1465 | 
         
             
                                attention_mask=causal_mask,
         
     | 
| 1466 | 
         
             
                                position_ids=position_ids,
         
     | 
| 1467 | 
         
             
                                past_key_value=past_key_values,
         
     | 
| 
         @@ -1979,6 +1936,7 @@ class Qwen2_5_VLForConditionalGeneration(Qwen2_5_VLPreTrainedModel, GenerationMi 
     | 
|
| 1979 | 
         
             
                @replace_return_docstrings(output_type=Qwen2_5_VLCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
         
     | 
| 1980 | 
         
             
                def forward(
         
     | 
| 1981 | 
         
             
                    self,
         
     | 
| 
         | 
|
| 1982 | 
         
             
                    input_ids: torch.LongTensor = None,
         
     | 
| 1983 | 
         
             
                    attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 1984 | 
         
             
                    position_ids: Optional[torch.LongTensor] = None,
         
     | 
| 
         @@ -2115,6 +2073,7 @@ class Qwen2_5_VLForConditionalGeneration(Qwen2_5_VLPreTrainedModel, GenerationMi 
     | 
|
| 2115 | 
         
             
                            position_ids = position_ids.unsqueeze(0).expand(3, -1, -1)
         
     | 
| 2116 | 
         | 
| 2117 | 
         
             
                    outputs = self.model(
         
     | 
| 
         | 
|
| 2118 | 
         
             
                        input_ids=None,
         
     | 
| 2119 | 
         
             
                        position_ids=position_ids,
         
     | 
| 2120 | 
         
             
                        attention_mask=attention_mask,
         
     | 
| 
         @@ -2324,32 +2283,6 @@ class Qwen2_5_VLForConditionalGeneration(Qwen2_5_VLPreTrainedModel, GenerationMi 
     | 
|
| 2324 | 
         
             
                    return input_ids, model_kwargs
         
     | 
| 2325 | 
         | 
| 2326 | 
         | 
| 2327 | 
         
            -
             
     | 
| 2328 | 
         
            -
            #                🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
         
     | 
| 2329 | 
         
            -
            #           This file was automatically generated from src/transformers/models/qwen2_5_vl/modular_qwen2_5_vl.py.
         
     | 
| 2330 | 
         
            -
            #               Do NOT edit this file manually as any edits will be overwritten by the generation of
         
     | 
| 2331 | 
         
            -
            #             the file from the modular. If any change should be done, please apply the change to the
         
     | 
| 2332 | 
         
            -
            #                          modular_qwen2_5_vl.py file directly. One of our CI enforces this.
         
     | 
| 2333 | 
         
            -
            #                🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
         
     | 
| 2334 | 
         
            -
            # coding=utf-8
         
     | 
| 2335 | 
         
            -
            # Copyright 2025 The Qwen Team and The HuggingFace Inc. team. All rights reserved.
         
     | 
| 2336 | 
         
            -
            #
         
     | 
| 2337 | 
         
            -
            # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
         
     | 
| 2338 | 
         
            -
            # and OPT implementations in this library. It has been modified from its
         
     | 
| 2339 | 
         
            -
            # original forms to accommodate minor architectural differences compared
         
     | 
| 2340 | 
         
            -
            # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
         
     | 
| 2341 | 
         
            -
            #
         
     | 
| 2342 | 
         
            -
            # Licensed under the Apache License, Version 2.0 (the "License");
         
     | 
| 2343 | 
         
            -
            # you may not use this file except in compliance with the License.
         
     | 
| 2344 | 
         
            -
            # You may obtain a copy of the License at
         
     | 
| 2345 | 
         
            -
            #
         
     | 
| 2346 | 
         
            -
            #     http://www.apache.org/licenses/LICENSE-2.0
         
     | 
| 2347 | 
         
            -
            #
         
     | 
| 2348 | 
         
            -
            # Unless required by applicable law or agreed to in writing, software
         
     | 
| 2349 | 
         
            -
            # distributed under the License is distributed on an "AS IS" BASIS,
         
     | 
| 2350 | 
         
            -
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         
     | 
| 2351 | 
         
            -
            # See the License for the specific language governing permissions and
         
     | 
| 2352 | 
         
            -
            # limitations under the License.
         
     | 
| 2353 | 
         
             
            from typing import List, Union
         
     | 
| 2354 | 
         | 
| 2355 | 
         
             
            from transformers.feature_extraction_utils import BatchFeature
         
     | 
| 
         | 
|
| 1 | 
         
            +
            # This file is a modified version of the Qwen2_5_VL model from the transformers library
         
     | 
| 2 | 
         
            +
            # that implements task-specific LoRA layers for multi-task embeddings.
         
     | 
| 3 | 
         
            +
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 4 | 
         
             
            from transformers.configuration_utils import PretrainedConfig
         
     | 
| 5 | 
         
             
            from transformers.modeling_rope_utils import rope_config_validation
         
     | 
| 6 | 
         | 
| 
         | 
|
| 234 | 
         | 
| 235 | 
         | 
| 236 | 
         | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 237 | 
         
             
            import math
         
     | 
| 238 | 
         
             
            from dataclasses import dataclass
         
     | 
| 239 | 
         
             
            from typing import Any, Dict, List, Optional, Tuple, Union
         
     | 
| 
         | 
|
| 843 | 
         
             
                    self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
         
     | 
| 844 | 
         
             
                    self.act_fn = ACT2FN[config.hidden_act]
         
     | 
| 845 | 
         | 
| 846 | 
         
            +
                def forward(self, x, task_label: Union[str, List[str]]):
         
     | 
| 847 | 
         
            +
                    down_proj = self.down_proj(self.act_fn(self.gate_proj(x, task_label=task_label)) * self.up_proj(x, task_label=task_label), task_label=task_label)
         
     | 
| 848 | 
         
             
                    return down_proj
         
     | 
| 849 | 
         | 
| 850 | 
         | 
| 
         | 
|
| 1131 | 
         
             
                # Adapted from Qwen2Attention.forward
         
     | 
| 1132 | 
         
             
                def forward(
         
     | 
| 1133 | 
         
             
                    self,
         
     | 
| 1134 | 
         
            +
                    task_label: Union[str, List[str]],
         
     | 
| 1135 | 
         
             
                    hidden_states: torch.Tensor,
         
     | 
| 1136 | 
         
             
                    attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 1137 | 
         
             
                    position_ids: Optional[torch.LongTensor] = None,
         
     | 
| 
         | 
|
| 1160 | 
         | 
| 1161 | 
         
             
                    bsz, q_len, _ = hidden_states.size()
         
     | 
| 1162 | 
         | 
| 1163 | 
         
            +
                    query_states = self.q_proj(hidden_states, task_label=task_label)
         
     | 
| 1164 | 
         
            +
                    key_states = self.k_proj(hidden_states, task_label=task_label)
         
     | 
| 1165 | 
         
            +
                    value_states = self.v_proj(hidden_states, task_label=task_label)
         
     | 
| 1166 | 
         | 
| 1167 | 
         
             
                    query_states = query_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
         
     | 
| 1168 | 
         
             
                    key_states = key_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
         
     | 
| 
         | 
|
| 1208 | 
         
             
                    attn_output = attn_output.transpose(1, 2).contiguous()
         
     | 
| 1209 | 
         
             
                    attn_output = attn_output.view(bsz, q_len, self.hidden_size)
         
     | 
| 1210 | 
         | 
| 1211 | 
         
            +
                    attn_output = self.o_proj(attn_output, task_label=task_label)
         
     | 
| 1212 | 
         | 
| 1213 | 
         
             
                    return attn_output, None, past_key_value
         
     | 
| 1214 | 
         | 
| 
         | 
|
| 1238 | 
         | 
| 1239 | 
         
             
                def forward(
         
     | 
| 1240 | 
         
             
                    self,
         
     | 
| 1241 | 
         
            +
                    task_label: Union[str, List[str]],
         
     | 
| 1242 | 
         
             
                    hidden_states: torch.Tensor,
         
     | 
| 1243 | 
         
             
                    attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 1244 | 
         
             
                    position_ids: Optional[torch.LongTensor] = None,
         
     | 
| 
         | 
|
| 1277 | 
         | 
| 1278 | 
         
             
                    # Self Attention
         
     | 
| 1279 | 
         
             
                    hidden_states, self_attn_weights, present_key_value = self.self_attn(
         
     | 
| 1280 | 
         
            +
                        task_label=task_label,
         
     | 
| 1281 | 
         
             
                        hidden_states=hidden_states,
         
     | 
| 1282 | 
         
             
                        attention_mask=attention_mask,
         
     | 
| 1283 | 
         
             
                        position_ids=position_ids,
         
     | 
| 
         | 
|
| 1292 | 
         
             
                    # Fully Connected
         
     | 
| 1293 | 
         
             
                    residual = hidden_states
         
     | 
| 1294 | 
         
             
                    hidden_states = self.post_attention_layernorm(hidden_states)
         
     | 
| 1295 | 
         
            +
                    hidden_states = self.mlp(hidden_states, task_label=task_label)
         
     | 
| 1296 | 
         
             
                    hidden_states = residual + hidden_states
         
     | 
| 1297 | 
         | 
| 1298 | 
         
             
                    outputs = (hidden_states,)
         
     | 
| 
         | 
|
| 1336 | 
         | 
| 1337 | 
         
             
                def forward(
         
     | 
| 1338 | 
         
             
                    self,
         
     | 
| 1339 | 
         
            +
                    task_label: Union[str, List[str]],
         
     | 
| 1340 | 
         
             
                    input_ids: torch.LongTensor = None,
         
     | 
| 1341 | 
         
             
                    attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 1342 | 
         
             
                    position_ids: Optional[torch.LongTensor] = None,
         
     | 
| 
         | 
|
| 1417 | 
         
             
                            )
         
     | 
| 1418 | 
         
             
                        else:
         
     | 
| 1419 | 
         
             
                            layer_outputs = decoder_layer(
         
     | 
| 1420 | 
         
            +
                                task_label=task_label,
         
     | 
| 1421 | 
         
            +
                                hidden_states=hidden_states,
         
     | 
| 1422 | 
         
             
                                attention_mask=causal_mask,
         
     | 
| 1423 | 
         
             
                                position_ids=position_ids,
         
     | 
| 1424 | 
         
             
                                past_key_value=past_key_values,
         
     | 
| 
         | 
|
| 1936 | 
         
             
                @replace_return_docstrings(output_type=Qwen2_5_VLCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
         
     | 
| 1937 | 
         
             
                def forward(
         
     | 
| 1938 | 
         
             
                    self,
         
     | 
| 1939 | 
         
            +
                    task_label: Union[str, List[str]],
         
     | 
| 1940 | 
         
             
                    input_ids: torch.LongTensor = None,
         
     | 
| 1941 | 
         
             
                    attention_mask: Optional[torch.Tensor] = None,
         
     | 
| 1942 | 
         
             
                    position_ids: Optional[torch.LongTensor] = None,
         
     | 
| 
         | 
|
| 2073 | 
         
             
                            position_ids = position_ids.unsqueeze(0).expand(3, -1, -1)
         
     | 
| 2074 | 
         | 
| 2075 | 
         
             
                    outputs = self.model(
         
     | 
| 2076 | 
         
            +
                        task_label=task_label,
         
     | 
| 2077 | 
         
             
                        input_ids=None,
         
     | 
| 2078 | 
         
             
                        position_ids=position_ids,
         
     | 
| 2079 | 
         
             
                        attention_mask=attention_mask,
         
     | 
| 
         | 
|
| 2283 | 
         
             
                    return input_ids, model_kwargs
         
     | 
| 2284 | 
         | 
| 2285 | 
         | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 2286 | 
         
             
            from typing import List, Union
         
     | 
| 2287 | 
         | 
| 2288 | 
         
             
            from transformers.feature_extraction_utils import BatchFeature
         
     |