File size: 22,613 Bytes
1f1b5fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
#!/usr/bin/env python3
# SPDX-License-Identifier: Apache-2.0

"""
Script to compare the results of an ONNX model with a TFLite model given the same input.
Optionally also compare with Tract runtime for ONNX.
Created by Copilot.

Usage:
    python compare_onnx_tflite.py --onnx model.onnx --tflite model.tflite
    python compare_onnx_tflite.py --onnx model.onnx --tflite model.tflite --input input.npy
    python compare_onnx_tflite.py --onnx model.onnx --tflite model.tflite --rtol 1e-5 --atol 1e-5
    python compare_onnx_tflite.py --onnx model.onnx --tflite model.tflite --benchmark
    python compare_onnx_tflite.py --onnx model.onnx --tflite model.tflite --use-tract --benchmark
"""

import argparse
import time
import numpy as np
import onnxruntime as ort
import tensorflow as tf
from typing import Dict, List, Tuple, Optional, Any

try:
    import tract

    TRACT_AVAILABLE = True
except ImportError:
    TRACT_AVAILABLE = False


def load_onnx_model(onnx_path: str) -> ort.InferenceSession:
    """Load an ONNX model and return an inference session."""
    print(f"Loading ONNX model from: {onnx_path}")
    session = ort.InferenceSession(onnx_path)
    return session


def load_tflite_model(tflite_path: str) -> tf.lite.Interpreter:
    """Load a TFLite model and return an interpreter."""
    print(f"Loading TFLite model from: {tflite_path}")
    interpreter = tf.lite.Interpreter(model_path=tflite_path)
    interpreter.allocate_tensors()
    return interpreter


def load_tract_model(onnx_path: str) -> Optional[Any]:
    """Load an ONNX model using tract and return a runnable model."""
    if not TRACT_AVAILABLE:
        print("Tract is not available. Install with: pip install tract")
        return None
    print(f"Loading ONNX model with tract from: {onnx_path}")
    model = tract.onnx().model_for_path(onnx_path).into_optimized().into_runnable()
    return model


def get_onnx_model_info(session: ort.InferenceSession) -> Tuple[List, List]:
    """Get input and output information from ONNX model."""
    inputs = session.get_inputs()
    outputs = session.get_outputs()

    print("\nONNX Model Information:")
    print("Inputs:")
    for inp in inputs:
        print(f"  - Name: {inp.name}, Shape: {inp.shape}, Type: {inp.type}")
    print("Outputs:")
    for out in outputs:
        print(f"  - Name: {out.name}, Shape: {out.shape}, Type: {out.type}")

    return inputs, outputs


def get_tflite_model_info(interpreter: tf.lite.Interpreter) -> Tuple[List, List]:
    """Get input and output information from TFLite model."""
    input_details = interpreter.get_input_details()
    output_details = interpreter.get_output_details()

    print("\nTFLite Model Information:")
    print("Inputs:")
    for inp in input_details:
        print(f"  - Name: {inp['name']}, Shape: {inp['shape']}, Type: {inp['dtype']}")
    print("Outputs:")
    for out in output_details:
        print(f"  - Name: {out['name']}, Shape: {out['shape']}, Type: {out['dtype']}")

    return input_details, output_details


def generate_random_inputs(onnx_inputs: List, seed: int = 42) -> Dict[str, np.ndarray]:
    """Generate random inputs based on ONNX model input specs."""
    np.random.seed(seed)
    inputs = {}

    print("\nGenerating random inputs:")
    for inp in onnx_inputs:
        # Handle dynamic dimensions
        shape = []
        for dim in inp.shape:
            if isinstance(dim, str) or dim is None or dim < 0:
                # Default to 1 for dynamic dimensions
                shape.append(1)
            else:
                shape.append(dim)

        # Generate random data based on type
        if "float" in inp.type.lower():
            data = np.random.randn(*shape).astype(np.float32)
        elif "int64" in inp.type.lower():
            data = np.random.randint(0, 100, size=shape).astype(np.int64)
        elif "int32" in inp.type.lower():
            data = np.random.randint(0, 100, size=shape).astype(np.int32)
        else:
            # Default to float32
            data = np.random.randn(*shape).astype(np.float32)

        inputs[inp.name] = data
        print(f"  - {inp.name}: shape={data.shape}, dtype={data.dtype}")

    return inputs


def load_inputs_from_file(input_path: str) -> Dict[str, np.ndarray]:
    """Load inputs from a numpy file (.npy or .npz)."""
    print(f"\nLoading inputs from: {input_path}")

    if input_path.endswith(".npz"):
        data = np.load(input_path)
        inputs = {key: data[key] for key in data.files}
    elif input_path.endswith(".npy"):
        data = np.load(input_path)
        # Assume single input
        inputs = {"input": data}
    else:
        raise ValueError("Input file must be .npy or .npz format")

    for name, value in inputs.items():
        print(f"  - {name}: shape={value.shape}, dtype={value.dtype}")

    return inputs


def run_onnx_model(
    session: ort.InferenceSession, inputs: Dict[str, np.ndarray]
) -> List[np.ndarray]:
    """Run inference on ONNX model."""
    print("\nRunning ONNX model inference...")
    outputs = session.run(None, inputs)
    return outputs


def run_tflite_model(
    interpreter: tf.lite.Interpreter, inputs: Dict[str, np.ndarray], input_details: List
) -> List[np.ndarray]:
    """Run inference on TFLite model."""
    print("Running TFLite model inference...")

    # Set input tensors
    for i, detail in enumerate(input_details):
        # Try to match by name or use order
        input_data = None
        if detail["name"] in inputs:
            input_data = inputs[detail["name"]]
        elif len(inputs) == 1:
            # If only one input, use it
            input_data = list(inputs.values())[0]
        elif i < len(inputs):
            # Use by order
            input_data = list(inputs.values())[i]
        else:
            raise ValueError(f"Cannot match input for TFLite input {detail['name']}")

        # Ensure correct dtype
        if input_data.dtype != detail["dtype"]:
            input_data = input_data.astype(detail["dtype"])

        interpreter.set_tensor(detail["index"], input_data)

    # Run inference
    interpreter.invoke()

    # Get output tensors
    output_details = interpreter.get_output_details()
    outputs = []
    for detail in output_details:
        outputs.append(interpreter.get_tensor(detail["index"]))

    return outputs


def run_tract_model(model: Any, inputs: Dict[str, np.ndarray]) -> List[np.ndarray]:
    """Run inference on tract model."""
    if model is None:
        return []
    print("Running tract model inference...")

    # Convert inputs to list (tract expects a list of tensors)
    input_list = list(inputs.values())

    # Run inference
    outputs = model.run(input_list)

    # Convert outputs to numpy arrays
    result = []
    for output in outputs:
        result.append(output.to_numpy())

    return result


def benchmark_onnx_model(
    session: ort.InferenceSession,
    inputs: Dict[str, np.ndarray],
    num_runs: int = 100,
    warmup_runs: int = 10,
) -> Dict[str, float]:
    """Benchmark ONNX model inference speed."""
    print(f"\nBenchmarking ONNX model ({warmup_runs} warmup + {num_runs} test runs)...")

    # Warmup runs
    for _ in range(warmup_runs):
        session.run(None, inputs)

    # Timed runs
    times = []
    for _ in range(num_runs):
        start = time.perf_counter()
        session.run(None, inputs)
        end = time.perf_counter()
        times.append((end - start) * 1000)  # Convert to ms

    return {
        "mean": np.mean(times),
        "median": np.median(times),
        "std": np.std(times),
        "min": np.min(times),
        "max": np.max(times),
    }


def benchmark_tflite_model(
    interpreter: tf.lite.Interpreter,
    inputs: Dict[str, np.ndarray],
    input_details: List,
    num_runs: int = 100,
    warmup_runs: int = 10,
) -> Dict[str, float]:
    """Benchmark TFLite model inference speed."""
    print(f"Benchmarking TFLite model ({warmup_runs} warmup + {num_runs} test runs)...")

    # Prepare inputs
    def set_inputs():
        for i, detail in enumerate(input_details):
            input_data = None
            if detail["name"] in inputs:
                input_data = inputs[detail["name"]]
            elif len(inputs) == 1:
                input_data = list(inputs.values())[0]
            elif i < len(inputs):
                input_data = list(inputs.values())[i]
            else:
                raise ValueError(
                    f"Cannot match input for TFLite input {detail['name']}"
                )

            if input_data.dtype != detail["dtype"]:
                input_data = input_data.astype(detail["dtype"])

            interpreter.set_tensor(detail["index"], input_data)

    # Warmup runs
    for _ in range(warmup_runs):
        set_inputs()
        interpreter.invoke()

    # Timed runs
    times = []
    for _ in range(num_runs):
        set_inputs()
        start = time.perf_counter()
        interpreter.invoke()
        end = time.perf_counter()
        times.append((end - start) * 1000)  # Convert to ms

    return {
        "mean": np.mean(times),
        "median": np.median(times),
        "std": np.std(times),
        "min": np.min(times),
        "max": np.max(times),
    }


def benchmark_tract_model(
    model: Any,
    inputs: Dict[str, np.ndarray],
    num_runs: int = 100,
    warmup_runs: int = 10,
) -> Optional[Dict[str, float]]:
    """Benchmark tract model inference speed."""
    if model is None:
        return None
    print(f"Benchmarking tract model ({warmup_runs} warmup + {num_runs} test runs)...")

    # Convert inputs to list
    input_list = list(inputs.values())

    # Warmup runs
    for _ in range(warmup_runs):
        model.run(input_list)

    # Timed runs
    times = []
    for _ in range(num_runs):
        start = time.perf_counter()
        model.run(input_list)
        end = time.perf_counter()
        times.append((end - start) * 1000)  # Convert to ms

    return {
        "mean": np.mean(times),
        "median": np.median(times),
        "std": np.std(times),
        "min": np.min(times),
        "max": np.max(times),
    }


def print_benchmark_results(
    onnx_stats: Dict[str, float],
    tflite_stats: Dict[str, float],
    tract_stats: Optional[Dict[str, float]] = None,
) -> None:
    """Print benchmark comparison results."""
    print("\n" + "=" * 80)
    print("BENCHMARK RESULTS")
    print("=" * 80)

    print("\nONNX Model:")
    print(f"  Mean:   {onnx_stats['mean']:.3f} ms")
    print(f"  Median: {onnx_stats['median']:.3f} ms")
    print(f"  Std:    {onnx_stats['std']:.3f} ms")
    print(f"  Min:    {onnx_stats['min']:.3f} ms")
    print(f"  Max:    {onnx_stats['max']:.3f} ms")

    print("\nTFLite Model:")
    print(f"  Mean:   {tflite_stats['mean']:.3f} ms")
    print(f"  Median: {tflite_stats['median']:.3f} ms")
    print(f"  Std:    {tflite_stats['std']:.3f} ms")
    print(f"  Min:    {tflite_stats['min']:.3f} ms")
    print(f"  Max:    {tflite_stats['max']:.3f} ms")

    if tract_stats:
        print("\nTract Model:")
        print(f"  Mean:   {tract_stats['mean']:.3f} ms")
        print(f"  Median: {tract_stats['median']:.3f} ms")
        print(f"  Std:    {tract_stats['std']:.3f} ms")
        print(f"  Min:    {tract_stats['min']:.3f} ms")
        print(f"  Max:    {tract_stats['max']:.3f} ms")

    print("\nComparison:")
    speedup = tflite_stats["mean"] / onnx_stats["mean"]
    if speedup > 1:
        print(f"  ONNX Runtime is {speedup:.2f}x faster than TFLite")
    else:
        print(f"  TFLite is {1 / speedup:.2f}x faster than ONNX Runtime")
    print(f"  Difference: {abs(onnx_stats['mean'] - tflite_stats['mean']):.3f} ms")

    if tract_stats:
        speedup_tract = tflite_stats["mean"] / tract_stats["mean"]
        if speedup_tract > 1:
            print(f"  Tract is {speedup_tract:.2f}x faster than TFLite")
        else:
            print(f"  TFLite is {1 / speedup_tract:.2f}x faster than Tract")
        print(f"  Difference: {abs(tract_stats['mean'] - tflite_stats['mean']):.3f} ms")

        speedup_ort = onnx_stats["mean"] / tract_stats["mean"]
        if speedup_ort > 1:
            print(f"  Tract is {speedup_ort:.2f}x faster than ONNX Runtime")
        else:
            print(f"  ONNX Runtime is {1 / speedup_ort:.2f}x faster than Tract")
        print(f"  Difference: {abs(tract_stats['mean'] - onnx_stats['mean']):.3f} ms")

    print("=" * 80)


def compare_outputs(
    onnx_outputs: List[np.ndarray],
    tflite_outputs: List[np.ndarray],
    tract_outputs: Optional[List[np.ndarray]] = None,
    rtol: float = 1e-5,
    atol: float = 1e-5,
) -> bool:
    """Compare outputs from ONNX, TFLite, and optionally Tract models."""
    print("\n" + "=" * 80)
    print("COMPARISON RESULTS")
    print("=" * 80)

    if len(onnx_outputs) != len(tflite_outputs):
        print(
            f"❌ Number of outputs differs: ONNX={len(onnx_outputs)}, TFLite={len(tflite_outputs)}"
        )
        return False

    if tract_outputs and len(onnx_outputs) != len(tract_outputs):
        print(
            f"❌ Number of outputs differs: ONNX={len(onnx_outputs)}, Tract={len(tract_outputs)}"
        )
        return False

    all_match = True
    for i, (onnx_out, tflite_out) in enumerate(zip(onnx_outputs, tflite_outputs)):
        tract_out = tract_outputs[i] if tract_outputs else None

        print(f"\nOutput {i}:")
        print(f"  ONNX Runtime shape: {onnx_out.shape}, dtype: {onnx_out.dtype}")
        print(f"  TFLite shape:       {tflite_out.shape}, dtype: {tflite_out.dtype}")
        if tract_out is not None:
            print(f"  Tract shape:        {tract_out.shape}, dtype: {tract_out.dtype}")

        if onnx_out.shape != tflite_out.shape:
            print("  ❌ Shape mismatch between ONNX and TFLite!")
            all_match = False
            continue

        if tract_out is not None and onnx_out.shape != tract_out.shape:
            print("  ❌ Shape mismatch between ONNX and Tract!")
            all_match = False
            continue

        # Convert to same dtype for comparison
        if onnx_out.dtype != tflite_out.dtype:
            print("  ⚠️  Different dtypes, converting to float32 for comparison")
            onnx_out = onnx_out.astype(np.float32)
            tflite_out = tflite_out.astype(np.float32)

        if tract_out is not None and onnx_out.dtype != tract_out.dtype:
            tract_out = tract_out.astype(np.float32)

        # Compute statistics - ONNX vs TFLite
        print("\n  ONNX Runtime vs TFLite:")
        diff = np.abs(onnx_out - tflite_out)
        max_diff = np.max(diff)
        mean_diff = np.mean(diff)
        is_close = np.allclose(onnx_out, tflite_out, rtol=rtol, atol=atol)

        print(f"    Max difference:  {max_diff:.10f}")
        print(f"    Mean difference: {mean_diff:.10f}")
        print(f"    Relative tolerance: {rtol}")
        print(f"    Absolute tolerance: {atol}")

        if is_close:
            print("    βœ… Outputs match within tolerance")
        else:
            print("    ❌ Outputs do NOT match within tolerance")
            all_match = False

            # Show some sample values
            print("\n    Sample values (first 5 elements):")
            flat_onnx = onnx_out.flatten()[:5]
            flat_tflite = tflite_out.flatten()[:5]
            for j, (o, t) in enumerate(zip(flat_onnx, flat_tflite)):
                print(
                    f"      [{j}] ONNX: {o:.10f}, TFLite: {t:.10f}, Diff: {abs(o - t):.10f}"
                )

        # Compute statistics - ONNX vs Tract
        if tract_out is not None:
            print("\n  ONNX Runtime vs Tract:")
            diff_tract = np.abs(onnx_out - tract_out)
            max_diff_tract = np.max(diff_tract)
            mean_diff_tract = np.mean(diff_tract)
            is_close_tract = np.allclose(onnx_out, tract_out, rtol=rtol, atol=atol)

            print(f"    Max difference:  {max_diff_tract:.10f}")
            print(f"    Mean difference: {mean_diff_tract:.10f}")

            if is_close_tract:
                print("    βœ… Outputs match within tolerance")
            else:
                print("    ❌ Outputs do NOT match within tolerance")
                all_match = False

                # Show some sample values
                print("\n    Sample values (first 5 elements):")
                flat_onnx_tract = onnx_out.flatten()[:5]
                flat_tract = tract_out.flatten()[:5]
                for j, (o, tr) in enumerate(zip(flat_onnx_tract, flat_tract)):
                    print(
                        f"      [{j}] ONNX: {o:.10f}, Tract: {tr:.10f}, Diff: {abs(o - tr):.10f}"
                    )

            # Compute statistics - TFLite vs Tract
            print("\n  TFLite vs Tract:")
            diff_tflite_tract = np.abs(tflite_out - tract_out)
            max_diff_tflite_tract = np.max(diff_tflite_tract)
            mean_diff_tflite_tract = np.mean(diff_tflite_tract)
            is_close_tflite_tract = np.allclose(
                tflite_out, tract_out, rtol=rtol, atol=atol
            )

            print(f"    Max difference:  {max_diff_tflite_tract:.10f}")
            print(f"    Mean difference: {mean_diff_tflite_tract:.10f}")

            if is_close_tflite_tract:
                print("    βœ… Outputs match within tolerance")
            else:
                print("    ❌ Outputs do NOT match within tolerance")
                all_match = False

    print("\n" + "=" * 80)
    if all_match:
        print("βœ… ALL OUTPUTS MATCH!")
    else:
        print("❌ SOME OUTPUTS DO NOT MATCH")
    print("=" * 80)

    return all_match


def main():
    parser = argparse.ArgumentParser(
        description="Compare ONNX and TFLite model outputs",
        formatter_class=argparse.RawDescriptionHelpFormatter,
        epilog="""
Examples:
  # Compare with random inputs
  python compare_onnx_tflite.py --onnx model.onnx --tflite model.tflite

  # Compare with custom inputs from file
  python compare_onnx_tflite.py --onnx model.onnx --tflite model.tflite --input input.npz

  # Compare with custom tolerances
  python compare_onnx_tflite.py --onnx model.onnx --tflite model.tflite --rtol 1e-3 --atol 1e-3

  # Save outputs for inspection
  python compare_onnx_tflite.py --onnx model.onnx --tflite model.tflite --save-outputs

  # Benchmark execution speed
  python compare_onnx_tflite.py --onnx model.onnx --tflite model.tflite --benchmark

  # Benchmark with custom number of runs
  python compare_onnx_tflite.py --onnx model.onnx --tflite model.tflite --benchmark --num-runs 200 --warmup-runs 20

  # Compare with tract runtime as well
  python compare_onnx_tflite.py --onnx model.onnx --tflite model.tflite --use-tract

  # Benchmark all three runtimes
  python compare_onnx_tflite.py --onnx model.onnx --tflite model.tflite --use-tract --benchmark
        """,
    )

    parser.add_argument("--onnx", required=True, help="Path to ONNX model")
    parser.add_argument("--tflite", required=True, help="Path to TFLite model")
    parser.add_argument("--input", help="Path to input file (.npy or .npz)")
    parser.add_argument(
        "--rtol", type=float, default=1e-5, help="Relative tolerance (default: 1e-5)"
    )
    parser.add_argument(
        "--atol", type=float, default=1e-5, help="Absolute tolerance (default: 1e-5)"
    )
    parser.add_argument(
        "--seed",
        type=int,
        default=42,
        help="Random seed for input generation (default: 42)",
    )
    parser.add_argument(
        "--save-outputs", action="store_true", help="Save outputs to files"
    )
    parser.add_argument(
        "--benchmark",
        action="store_true",
        help="Benchmark execution speed of both models",
    )
    parser.add_argument(
        "--num-runs",
        type=int,
        default=100,
        help="Number of benchmark runs (default: 100)",
    )
    parser.add_argument(
        "--warmup-runs",
        type=int,
        default=10,
        help="Number of warmup runs (default: 10)",
    )
    parser.add_argument(
        "--use-tract", action="store_true", help="Also test with tract ONNX runtime"
    )

    args = parser.parse_args()

    # Load models
    onnx_session = load_onnx_model(args.onnx)
    tflite_interpreter = load_tflite_model(args.tflite)

    # Load tract model if requested
    tract_model = None
    if args.use_tract:
        if not TRACT_AVAILABLE:
            print(
                "\n⚠️  Warning: Tract is not installed. Install with: pip install tract"
            )
            print("Continuing without tract comparison...\n")
        else:
            tract_model = load_tract_model(args.onnx)

    # Get model info
    onnx_inputs, onnx_outputs = get_onnx_model_info(onnx_session)
    tflite_input_details, tflite_output_details = get_tflite_model_info(
        tflite_interpreter
    )

    # Prepare inputs
    if args.input:
        inputs = load_inputs_from_file(args.input)
    else:
        inputs = generate_random_inputs(onnx_inputs, seed=args.seed)

    # Run inference
    onnx_results = run_onnx_model(onnx_session, inputs)
    tflite_results = run_tflite_model(tflite_interpreter, inputs, tflite_input_details)
    tract_results = None
    if tract_model:
        tract_results = run_tract_model(tract_model, inputs)

    # Save outputs if requested
    if args.save_outputs:
        print("\nSaving outputs...")
        np.savez("onnx_outputs.npz", *onnx_results)
        np.savez("tflite_outputs.npz", *tflite_results)
        print("  - onnx_outputs.npz")
        print("  - tflite_outputs.npz")
        if tract_results:
            np.savez("tract_outputs.npz", *tract_results)
            print("  - tract_outputs.npz")

    # Compare results
    match = compare_outputs(
        onnx_results, tflite_results, tract_results, rtol=args.rtol, atol=args.atol
    )

    # Benchmark if requested
    if args.benchmark:
        onnx_stats = benchmark_onnx_model(
            onnx_session, inputs, args.num_runs, args.warmup_runs
        )
        tflite_stats = benchmark_tflite_model(
            tflite_interpreter,
            inputs,
            tflite_input_details,
            args.num_runs,
            args.warmup_runs,
        )
        tract_stats = None
        if tract_model:
            tract_stats = benchmark_tract_model(
                tract_model, inputs, args.num_runs, args.warmup_runs
            )
        print_benchmark_results(onnx_stats, tflite_stats, tract_stats)

    # Return exit code
    return 0 if match else 1


if __name__ == "__main__":
    exit(main())