File size: 15,077 Bytes
7b7cd7f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 |
#!/usr/bin/env python3
"""BirdNET Audio Classification Script
This script loads a WAV file and uses the BirdNET ONNX model to predict bird species.
The model expects audio input of shape [batch_size, 144000] (3 seconds at 48kHz).
Created using Copilot.
"""
from __future__ import annotations
import numpy as np
import librosa
import onnxruntime as ort
import argparse
import os
from collections import defaultdict
def load_audio(
file_path: str, target_sr: int = 48000, duration: float = 3.0
) -> np.ndarray:
"""
Load and preprocess audio file for BirdNET model.
Args:
file_path (str): Path to the audio file
target_sr (int): Target sample rate (48kHz for BirdNET)
duration (float): Duration in seconds (3.0 for BirdNET)
Returns:
np.ndarray: Preprocessed audio array of shape [144000]
"""
try:
# Load audio file
audio, sr = librosa.load(file_path, sr=target_sr, duration=duration)
# Ensure we have exactly 144000 samples (3 seconds at 48kHz)
target_length = int(target_sr * duration)
if len(audio) < target_length:
# Pad with zeros if too short
audio = np.pad(audio, (0, target_length - len(audio)))
elif len(audio) > target_length:
# Truncate if too long
audio = audio[:target_length]
return audio.astype(np.float32)
except Exception as e:
raise RuntimeError(f"Error loading audio file {file_path}: {str(e)}")
def load_labels(labels_path: str) -> list[str]:
"""
Load BirdNET species labels from the labels file.
Args:
labels_path (str): Path to the labels file
Returns:
list[str]: List of species names
"""
try:
labels = []
with open(labels_path, "r", encoding="utf-8") as f:
for line in f:
line = line.strip()
if line:
# Format: "Scientific_name_Common Name"
# Extract the common name part after the underscore
if "_" in line:
common_name = line.split("_", 1)[1]
labels.append(common_name)
else:
labels.append(line)
return labels
except Exception as e:
raise RuntimeError(f"Error loading labels file {labels_path}: {str(e)}")
def load_audio_full(file_path: str, target_sr: int = 48000) -> np.ndarray:
"""
Load full audio file for moving window analysis.
Args:
file_path (str): Path to the audio file
target_sr (int): Target sample rate (48kHz for BirdNET)
Returns:
np.ndarray: Full audio array
"""
try:
# Load entire audio file
audio, sr = librosa.load(file_path, sr=target_sr)
return audio.astype(np.float32)
except Exception as e:
raise RuntimeError(f"Error loading audio file {file_path}: {str(e)}")
def create_audio_windows(
audio: np.ndarray, window_size: int = 144000, overlap: float = 0.5
) -> tuple[np.ndarray, list[float]]:
"""
Create overlapping windows from audio for analysis.
Args:
audio (np.ndarray): Full audio array
window_size (int): Size of each window (144000 for 3 seconds at 48kHz)
overlap (float): Overlap ratio (0.5 = 50% overlap)
Returns:
tuple[np.ndarray, list[float]]: (windows array, timestamps)
"""
step_size = int(window_size * (1 - overlap))
windows = []
timestamps = []
for start in range(0, len(audio) - window_size + 1, step_size):
end = start + window_size
window = audio[start:end]
# Ensure window is exactly the right size
if len(window) == window_size:
windows.append(window)
# Calculate timestamp in seconds
timestamps.append(start / 48000.0)
return np.array(windows), timestamps
def load_onnx_model(model_path: str) -> ort.InferenceSession:
"""
Load ONNX model for inference.
Args:
model_path (str): Path to the ONNX model file
Returns:
ort.InferenceSession: Loaded ONNX model session
"""
try:
# Create inference session
session = ort.InferenceSession(model_path)
return session
except Exception as e:
raise RuntimeError(f"Error loading ONNX model {model_path}: {str(e)}")
def predict_audio(session: ort.InferenceSession, audio_data: np.ndarray) -> np.ndarray:
"""
Run inference on audio data using the ONNX model.
Args:
session (ort.InferenceSession): ONNX model session
audio_data (np.ndarray): Audio data of shape [144000] or [batch, 144000]
Returns:
np.ndarray: Model predictions
"""
try:
# Ensure we have batch dimension
if len(audio_data.shape) == 1:
input_data = np.expand_dims(audio_data, axis=0)
else:
input_data = audio_data
# Get input name from the model
input_name = session.get_inputs()[0].name
# Run inference
outputs = session.run(None, {input_name: input_data})
return outputs[0]
except Exception as e:
raise RuntimeError(f"Error during model inference: {str(e)}")
def predict_audio_batch(
session: ort.InferenceSession,
windows_batch: np.ndarray,
batch_size: int = 128,
show_progress: bool = True,
) -> np.ndarray:
"""
Run inference on batches of audio windows for better performance.
Args:
session (ort.InferenceSession): ONNX model session
windows_batch (np.ndarray): Array of windows, shape [num_windows, 144000]
batch_size (int): Number of windows to process in each batch
show_progress (bool): Whether to show progress updates
Returns:
np.ndarray: All predictions concatenated, shape [num_windows, num_classes]
"""
try:
all_predictions = []
num_windows = len(windows_batch)
# Get input name from the model
input_name = session.get_inputs()[0].name
# Process in batches
batch_num = 0
for start_idx in range(0, num_windows, batch_size):
end_idx = min(start_idx + batch_size, num_windows)
current_batch = windows_batch[start_idx:end_idx]
batch_num += 1
if show_progress and (batch_num % 5 == 0 or batch_num == 1):
progress = (end_idx / num_windows) * 100
print(
f" Batch {batch_num}: processing windows {start_idx + 1}-{end_idx} ({progress:.1f}%)"
)
# Run inference on current batch
outputs = session.run(None, {input_name: current_batch})
batch_predictions = outputs[0]
all_predictions.append(batch_predictions)
# Concatenate all batch results
return np.concatenate(all_predictions, axis=0)
except Exception as e:
raise RuntimeError(f"Error during batch model inference: {str(e)}")
def analyze_detections(
all_predictions: np.ndarray,
timestamps: list[float],
labels: list[str],
confidence_threshold: float = 0.1,
) -> dict[str, list[dict[str, float | int]]]:
"""
Analyze predictions across all windows and summarize detections.
Args:
all_predictions (np.ndarray): Predictions from all windows, shape [num_windows, num_classes]
timestamps (list[float]): Timestamps for each window
labels (list[str]): Species labels
confidence_threshold (float): Minimum confidence for detection
Returns:
dict[str, list[dict[str, float | int]]]: Summary of detections with timestamps
"""
detections = defaultdict(list)
# all_predictions is now shape [num_windows, num_classes] from batch processing
for i, (predictions, timestamp) in enumerate(zip(all_predictions, timestamps)):
# predictions is now a 1D array of scores for this window
scores = predictions
# Find all detections above threshold
above_threshold = np.where(scores > confidence_threshold)[0]
for idx in above_threshold:
confidence = float(scores[idx])
species_name = labels[idx] if idx < len(labels) else f"Class {idx}"
detections[species_name].append(
{"timestamp": timestamp, "confidence": confidence, "window": i}
)
return dict(detections)
def main() -> int:
parser = argparse.ArgumentParser(
description="BirdNET Audio Classification with Moving Window"
)
parser.add_argument("audio_file", help="Path to the WAV audio file")
parser.add_argument(
"--model", default="model.onnx", help="Path to the ONNX model file"
)
parser.add_argument(
"--labels",
default="BirdNET_GLOBAL_6K_V2.4_Labels.txt",
help="Path to the labels file",
)
parser.add_argument(
"--top-k",
type=int,
default=5,
help="Number of top predictions to show per window",
)
parser.add_argument(
"--overlap", type=float, default=0.5, help="Window overlap ratio (0.0-1.0)"
)
parser.add_argument(
"--confidence",
type=float,
default=0.1,
help="Minimum confidence threshold for detections",
)
parser.add_argument(
"--batch-size",
type=int,
default=128,
help="Batch size for inference (default: 128)",
)
parser.add_argument(
"--single-window",
action="store_true",
help="Analyze only first 3 seconds (single window)",
)
args = parser.parse_args()
# Check if files exist
if not os.path.exists(args.audio_file):
print(f"Error: Audio file '{args.audio_file}' not found.")
return 1
if not os.path.exists(args.model):
print(f"Error: Model file '{args.model}' not found.")
return 1
if not os.path.exists(args.labels):
print(f"Error: Labels file '{args.labels}' not found.")
return 1
try:
# Load labels
print(f"Loading labels from: {args.labels}")
labels = load_labels(args.labels)
print(f"Loaded {len(labels)} species labels")
# Load ONNX model
print(f"Loading ONNX model: {args.model}")
session = load_onnx_model(args.model)
# Print model info
input_info = session.get_inputs()[0]
output_info = session.get_outputs()[0]
print(f"Model input: {input_info.name}, shape: {input_info.shape}")
print(f"Model output: {output_info.name}, shape: {output_info.shape}")
if args.single_window:
# Single window analysis (original behavior)
print(f"Loading first 3 seconds of audio file: {args.audio_file}")
audio_data = load_audio(args.audio_file)
print(f"Audio loaded successfully. Shape: {audio_data.shape}")
print("Running inference on single window...")
predictions = predict_audio(session, audio_data)
# Get scores
predictions = np.array(predictions)
if len(predictions.shape) > 1:
scores = predictions[0]
else:
scores = predictions
# Get top-k predictions
top_indices = np.argsort(scores)[-args.top_k :][::-1]
print(f"\nTop {args.top_k} predictions for first 3 seconds:")
for i, idx in enumerate(top_indices):
confidence = float(scores[idx])
species_name = labels[idx] if idx < len(labels) else f"Class {idx}"
print(f"{i + 1:2d}. {species_name}: {confidence:.6f}")
else:
# Moving window analysis
print(f"Loading full audio file: {args.audio_file}")
full_audio = load_audio_full(args.audio_file)
audio_duration = len(full_audio) / 48000.0
print(f"Audio loaded successfully. Duration: {audio_duration:.2f} seconds")
# Create windows
print(f"Creating windows with {args.overlap * 100:.0f}% overlap...")
windows, timestamps = create_audio_windows(full_audio, overlap=args.overlap)
print(f"Created {len(windows)} windows of 3 seconds each")
# Run batch inference on all windows
print(
f"Running batch inference on {len(windows)} windows (batch size: {args.batch_size})..."
)
num_batches = (len(windows) + args.batch_size - 1) // args.batch_size
print(f"Processing {num_batches} batches...")
# Use batch prediction for better performance
all_predictions = predict_audio_batch(session, windows, args.batch_size)
print(f"Completed batch inference on {len(windows)} windows")
# Analyze detections across all windows
print(
f"Analyzing detections with confidence threshold {args.confidence}..."
)
detections = analyze_detections(
all_predictions, timestamps, labels, args.confidence
)
# Sort species by maximum confidence
sorted_species = sorted(
detections.items(),
key=lambda x: max(det["confidence"] for det in x[1]),
reverse=True,
)
print("\n=== DETECTION SUMMARY ===")
print(f"Audio duration: {audio_duration:.2f} seconds")
print(f"Windows analyzed: {len(windows)}")
print(
f"Species detected (>{args.confidence:.2f} confidence): {len(sorted_species)}"
)
if sorted_species:
print("\nTop detections:")
for species, detections_list in sorted_species[: args.top_k]:
max_conf = max(det["confidence"] for det in detections_list)
num_detections = len(detections_list)
first_detection = min(det["timestamp"] for det in detections_list)
last_detection = max(det["timestamp"] for det in detections_list)
print(f"\n{species}")
print(f" Max confidence: {max_conf:.6f}")
print(f" Detections: {num_detections}")
print(
f" Time range: {first_detection:.1f}s - {last_detection:.1f}s"
)
# Show strongest detections for this species
strong_detections = sorted(
detections_list, key=lambda x: x["confidence"], reverse=True
)[:3]
for det in strong_detections:
print(f" {det['timestamp']:6.1f}s: {det['confidence']:.6f}")
else:
print(
f"No detections found above confidence threshold {args.confidence}"
)
return 0
except Exception as e:
print(f"Error: {str(e)}")
return 1
if __name__ == "__main__":
exit(main())
|