Create realtime script
Browse files- REALTIME_README.md +205 -0
- realtime_detection.py +378 -0
- requirements.txt +2 -0
REALTIME_README.md
ADDED
|
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# BirdNET Real-Time Detection
|
| 2 |
+
|
| 3 |
+
Real-time bird species detection using your microphone and the BirdNET ONNX model.
|
| 4 |
+
|
| 5 |
+
## Features
|
| 6 |
+
|
| 7 |
+
π€ **Live Microphone Input**: Continuously captures and analyzes audio from your microphone
|
| 8 |
+
π¦ **Real-Time Detection**: Identifies bird species as they sing with configurable confidence thresholds
|
| 9 |
+
π **Live Display**: Dynamic terminal interface showing current detections and recent activity
|
| 10 |
+
β‘ **Optimized Performance**: Efficient audio processing with rolling buffers and threading
|
| 11 |
+
π§ **Configurable**: Adjustable confidence thresholds, update intervals, and display options
|
| 12 |
+
|
| 13 |
+
## Installation
|
| 14 |
+
|
| 15 |
+
### Manual Installation
|
| 16 |
+
|
| 17 |
+
Install required packages:
|
| 18 |
+
|
| 19 |
+
```bash
|
| 20 |
+
pip install sounddevice numpy librosa onnxruntime soundfile
|
| 21 |
+
```
|
| 22 |
+
|
| 23 |
+
## Usage
|
| 24 |
+
|
| 25 |
+
### Basic Usage
|
| 26 |
+
|
| 27 |
+
Start real-time detection with default settings:
|
| 28 |
+
|
| 29 |
+
```bash
|
| 30 |
+
python realtime_detection.py
|
| 31 |
+
```
|
| 32 |
+
|
| 33 |
+
### Advanced Options
|
| 34 |
+
|
| 35 |
+
```bash
|
| 36 |
+
# Higher confidence threshold for fewer false positives
|
| 37 |
+
python realtime_detection.py --confidence 0.3
|
| 38 |
+
|
| 39 |
+
# Show more detections
|
| 40 |
+
python realtime_detection.py --top-k 10
|
| 41 |
+
|
| 42 |
+
# Faster display updates
|
| 43 |
+
python realtime_detection.py --update-interval 0.5
|
| 44 |
+
|
| 45 |
+
# Custom model and labels
|
| 46 |
+
python realtime_detection.py --model custom_model.onnx --labels custom_labels.txt
|
| 47 |
+
```
|
| 48 |
+
|
| 49 |
+
### List Audio Devices
|
| 50 |
+
|
| 51 |
+
To see available microphones:
|
| 52 |
+
|
| 53 |
+
```bash
|
| 54 |
+
python realtime_detection.py --list-devices
|
| 55 |
+
```
|
| 56 |
+
|
| 57 |
+
## Command Line Arguments
|
| 58 |
+
|
| 59 |
+
- `--model`: Path to ONNX model file (default: `model.onnx`)
|
| 60 |
+
- `--labels`: Path to species labels file (default: `BirdNET_GLOBAL_6K_V2.4_Labels.txt`)
|
| 61 |
+
- `--confidence`: Minimum confidence threshold (default: 0.1)
|
| 62 |
+
- `--top-k`: Number of top predictions to show (default: 5)
|
| 63 |
+
- `--update-interval`: Display update interval in seconds (default: 1.0)
|
| 64 |
+
- `--list-devices`: List available audio input devices
|
| 65 |
+
|
| 66 |
+
## Display Interface
|
| 67 |
+
|
| 68 |
+
The real-time interface shows:
|
| 69 |
+
|
| 70 |
+
### Current Detections
|
| 71 |
+
|
| 72 |
+
```
|
| 73 |
+
π¦ Current Detections (Top 5):
|
| 74 |
+
----------------------------------------
|
| 75 |
+
1. American Robin
|
| 76 |
+
ββββββββββββββββββββ 0.8542
|
| 77 |
+
|
| 78 |
+
2. Song Sparrow
|
| 79 |
+
ββββββββββββββββββββ 0.3214
|
| 80 |
+
```
|
| 81 |
+
|
| 82 |
+
### Recent Activity
|
| 83 |
+
|
| 84 |
+
```
|
| 85 |
+
π Recent Activity (Last 10):
|
| 86 |
+
----------------------------------------
|
| 87 |
+
14:25:32 - American Robin (0.854)
|
| 88 |
+
14:25:28 - Song Sparrow (0.321)
|
| 89 |
+
14:25:15 - House Finch (0.287)
|
| 90 |
+
```
|
| 91 |
+
|
| 92 |
+
## Technical Details
|
| 93 |
+
|
| 94 |
+
### Audio Processing
|
| 95 |
+
|
| 96 |
+
- **Sample Rate**: 48kHz (BirdNET requirement)
|
| 97 |
+
- **Window Size**: 3 seconds (144,000 samples)
|
| 98 |
+
- **Buffer**: 6-second rolling buffer for continuous analysis
|
| 99 |
+
- **Processing**: 100ms audio blocks with threaded processing
|
| 100 |
+
|
| 101 |
+
### Performance Features
|
| 102 |
+
|
| 103 |
+
- **Non-blocking Audio**: Uses threading for audio capture and processing
|
| 104 |
+
- **Efficient Buffering**: Rolling deque buffer prevents memory buildup
|
| 105 |
+
- **Real-time Display**: Separate thread for UI updates
|
| 106 |
+
- **Graceful Shutdown**: Ctrl+C handling for clean exit
|
| 107 |
+
|
| 108 |
+
### Requirements
|
| 109 |
+
|
| 110 |
+
- **Python**: 3.7+ (recommended: 3.9+)
|
| 111 |
+
- **Audio Input**: Working microphone or audio input device
|
| 112 |
+
- **Memory**: ~200MB RAM for model and audio buffers
|
| 113 |
+
- **CPU**: Moderate CPU usage for real-time inference
|
| 114 |
+
|
| 115 |
+
## Troubleshooting
|
| 116 |
+
|
| 117 |
+
### Audio Issues
|
| 118 |
+
|
| 119 |
+
**No microphone detected:**
|
| 120 |
+
|
| 121 |
+
```bash
|
| 122 |
+
# List available devices
|
| 123 |
+
python realtime_detection.py --list-devices
|
| 124 |
+
|
| 125 |
+
# Check system audio settings
|
| 126 |
+
# Ensure microphone permissions are granted
|
| 127 |
+
```
|
| 128 |
+
|
| 129 |
+
**Audio quality issues:**
|
| 130 |
+
|
| 131 |
+
- Check microphone positioning (closer to birds)
|
| 132 |
+
- Reduce background noise
|
| 133 |
+
- Adjust confidence threshold
|
| 134 |
+
|
| 135 |
+
### Performance Issues
|
| 136 |
+
|
| 137 |
+
**High CPU usage:**
|
| 138 |
+
|
| 139 |
+
```bash
|
| 140 |
+
# Reduce update frequency
|
| 141 |
+
python realtime_detection.py --update-interval 2.0
|
| 142 |
+
|
| 143 |
+
# Increase confidence threshold
|
| 144 |
+
python realtime_detection.py --confidence 0.3
|
| 145 |
+
```
|
| 146 |
+
|
| 147 |
+
**Memory issues:**
|
| 148 |
+
|
| 149 |
+
- Close other applications
|
| 150 |
+
- The detector uses fixed-size buffers to prevent memory leaks
|
| 151 |
+
|
| 152 |
+
### Detection Issues
|
| 153 |
+
|
| 154 |
+
**No detections:**
|
| 155 |
+
|
| 156 |
+
- Lower confidence threshold: `--confidence 0.05`
|
| 157 |
+
- Check if birds are actually singing
|
| 158 |
+
- Verify microphone is working
|
| 159 |
+
|
| 160 |
+
**Too many false positives:**
|
| 161 |
+
|
| 162 |
+
- Increase confidence threshold: `--confidence 0.3`
|
| 163 |
+
- Reduce background noise
|
| 164 |
+
- Position microphone outdoors
|
| 165 |
+
|
| 166 |
+
## Example Sessions
|
| 167 |
+
|
| 168 |
+
### Backyard Birding
|
| 169 |
+
|
| 170 |
+
```bash
|
| 171 |
+
# Conservative detection for mixed environment
|
| 172 |
+
python realtime_detection.py --confidence 0.2 --top-k 3
|
| 173 |
+
```
|
| 174 |
+
|
| 175 |
+
### Bird Walk
|
| 176 |
+
|
| 177 |
+
```bash
|
| 178 |
+
# Sensitive detection for bird-rich areas
|
| 179 |
+
python realtime_detection.py --confidence 0.1 --top-k 8 --update-interval 0.5
|
| 180 |
+
```
|
| 181 |
+
|
| 182 |
+
### Indoor Testing
|
| 183 |
+
|
| 184 |
+
```bash
|
| 185 |
+
# High threshold for testing with recorded sounds
|
| 186 |
+
python realtime_detection.py --confidence 0.4 --top-k 5
|
| 187 |
+
```
|
| 188 |
+
|
| 189 |
+
## Tips for Best Results
|
| 190 |
+
|
| 191 |
+
1. **Positioning**: Place microphone outdoors or near open windows
|
| 192 |
+
2. **Timing**: Early morning and evening are typically best for bird activity
|
| 193 |
+
3. **Environment**: Quiet locations with minimal human/traffic noise
|
| 194 |
+
4. **Distance**: Microphone should be within 10-20 feet of singing birds
|
| 195 |
+
5. **Weather**: Calm, clear conditions provide best audio quality
|
| 196 |
+
|
| 197 |
+
## Stopping Detection
|
| 198 |
+
|
| 199 |
+
Press `Ctrl+C` at any time to stop the real-time detection and return to terminal.
|
| 200 |
+
|
| 201 |
+
The detector will display:
|
| 202 |
+
|
| 203 |
+
```
|
| 204 |
+
π Detection stopped.
|
| 205 |
+
```
|
realtime_detection.py
ADDED
|
@@ -0,0 +1,378 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""BirdNET Real-Time Audio Classification Script
|
| 3 |
+
|
| 4 |
+
This script captures audio from the microphone and uses the BirdNET ONNX model
|
| 5 |
+
to predict bird species in real-time with continuous display updates.
|
| 6 |
+
|
| 7 |
+
Created using Copilot.
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
from __future__ import annotations
|
| 11 |
+
|
| 12 |
+
import numpy as np
|
| 13 |
+
import sounddevice as sd
|
| 14 |
+
import onnxruntime as ort
|
| 15 |
+
import argparse
|
| 16 |
+
import os
|
| 17 |
+
import time
|
| 18 |
+
import threading
|
| 19 |
+
from collections import deque
|
| 20 |
+
from datetime import datetime
|
| 21 |
+
import queue
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class RealTimeBirdDetector:
|
| 25 |
+
"""Real-time bird detection using microphone input."""
|
| 26 |
+
|
| 27 |
+
def __init__(
|
| 28 |
+
self,
|
| 29 |
+
model_path: str = "model.onnx",
|
| 30 |
+
labels_path: str = "BirdNET_GLOBAL_6K_V2.4_Labels.txt",
|
| 31 |
+
sample_rate: int = 48000,
|
| 32 |
+
window_duration: float = 3.0,
|
| 33 |
+
confidence_threshold: float = 0.1,
|
| 34 |
+
top_k: int = 5,
|
| 35 |
+
update_interval: float = 1.0,
|
| 36 |
+
):
|
| 37 |
+
"""
|
| 38 |
+
Initialize the real-time bird detector.
|
| 39 |
+
|
| 40 |
+
Args:
|
| 41 |
+
model_path: Path to the ONNX model file
|
| 42 |
+
labels_path: Path to the species labels file
|
| 43 |
+
sample_rate: Audio sample rate (48kHz for BirdNET)
|
| 44 |
+
window_duration: Duration of each analysis window in seconds
|
| 45 |
+
confidence_threshold: Minimum confidence for detections
|
| 46 |
+
top_k: Number of top predictions to display
|
| 47 |
+
update_interval: How often to update predictions (seconds)
|
| 48 |
+
"""
|
| 49 |
+
self.model_path = model_path
|
| 50 |
+
self.labels_path = labels_path
|
| 51 |
+
self.sample_rate = sample_rate
|
| 52 |
+
self.window_duration = window_duration
|
| 53 |
+
self.window_size = int(sample_rate * window_duration)
|
| 54 |
+
self.confidence_threshold = confidence_threshold
|
| 55 |
+
self.top_k = top_k
|
| 56 |
+
self.update_interval = update_interval
|
| 57 |
+
|
| 58 |
+
# Audio buffer for continuous recording
|
| 59 |
+
self.audio_buffer = deque(maxlen=self.window_size * 2) # 6 seconds buffer
|
| 60 |
+
self.audio_queue = queue.Queue()
|
| 61 |
+
|
| 62 |
+
# Detection results
|
| 63 |
+
self.current_detections = []
|
| 64 |
+
self.detection_history = deque(maxlen=100) # Keep last 100 detections
|
| 65 |
+
self.running = False
|
| 66 |
+
|
| 67 |
+
# Load model and labels
|
| 68 |
+
self._load_model()
|
| 69 |
+
self._load_labels()
|
| 70 |
+
|
| 71 |
+
def _load_model(self) -> None:
|
| 72 |
+
"""Load the ONNX model."""
|
| 73 |
+
try:
|
| 74 |
+
print(f"Loading ONNX model: {self.model_path}")
|
| 75 |
+
self.session = ort.InferenceSession(self.model_path)
|
| 76 |
+
|
| 77 |
+
# Get model info
|
| 78 |
+
input_info = self.session.get_inputs()[0]
|
| 79 |
+
output_info = self.session.get_outputs()[0]
|
| 80 |
+
print(f"Model input: {input_info.name}, shape: {input_info.shape}")
|
| 81 |
+
print(f"Model output: {output_info.name}, shape: {output_info.shape}")
|
| 82 |
+
|
| 83 |
+
except Exception as e:
|
| 84 |
+
raise RuntimeError(f"Error loading ONNX model {self.model_path}: {str(e)}")
|
| 85 |
+
|
| 86 |
+
def _load_labels(self) -> None:
|
| 87 |
+
"""Load species labels from file."""
|
| 88 |
+
try:
|
| 89 |
+
print(f"Loading labels from: {self.labels_path}")
|
| 90 |
+
self.labels = []
|
| 91 |
+
with open(self.labels_path, "r", encoding="utf-8") as f:
|
| 92 |
+
for line in f:
|
| 93 |
+
line = line.strip()
|
| 94 |
+
if line:
|
| 95 |
+
# Format: "Scientific_name_Common Name"
|
| 96 |
+
if "_" in line:
|
| 97 |
+
common_name = line.split("_", 1)[1]
|
| 98 |
+
self.labels.append(common_name)
|
| 99 |
+
else:
|
| 100 |
+
self.labels.append(line)
|
| 101 |
+
print(f"Loaded {len(self.labels)} species labels")
|
| 102 |
+
|
| 103 |
+
except Exception as e:
|
| 104 |
+
raise RuntimeError(
|
| 105 |
+
f"Error loading labels file {self.labels_path}: {str(e)}"
|
| 106 |
+
)
|
| 107 |
+
|
| 108 |
+
def _audio_callback(
|
| 109 |
+
self, indata: np.ndarray, frames: int, time_info, status
|
| 110 |
+
) -> None:
|
| 111 |
+
"""Callback function for audio input."""
|
| 112 |
+
if status:
|
| 113 |
+
print(f"Audio status: {status}")
|
| 114 |
+
|
| 115 |
+
# Convert stereo to mono if needed
|
| 116 |
+
if len(indata.shape) > 1:
|
| 117 |
+
audio_data = np.mean(indata, axis=1)
|
| 118 |
+
else:
|
| 119 |
+
audio_data = indata.flatten()
|
| 120 |
+
|
| 121 |
+
# Add to queue for processing
|
| 122 |
+
self.audio_queue.put(audio_data.copy())
|
| 123 |
+
|
| 124 |
+
def _process_audio_buffer(self) -> None:
|
| 125 |
+
"""Process audio data from the queue."""
|
| 126 |
+
while self.running:
|
| 127 |
+
try:
|
| 128 |
+
# Get audio data from queue (with timeout)
|
| 129 |
+
audio_chunk = self.audio_queue.get(timeout=0.1)
|
| 130 |
+
|
| 131 |
+
# Add to rolling buffer
|
| 132 |
+
self.audio_buffer.extend(audio_chunk)
|
| 133 |
+
|
| 134 |
+
# Process if we have enough data
|
| 135 |
+
if len(self.audio_buffer) >= self.window_size:
|
| 136 |
+
# Get the most recent window
|
| 137 |
+
window_data = np.array(list(self.audio_buffer)[-self.window_size :])
|
| 138 |
+
|
| 139 |
+
# Run inference
|
| 140 |
+
self._analyze_audio_window(window_data)
|
| 141 |
+
|
| 142 |
+
except queue.Empty:
|
| 143 |
+
continue
|
| 144 |
+
except Exception as e:
|
| 145 |
+
print(f"Error processing audio: {e}")
|
| 146 |
+
|
| 147 |
+
def _analyze_audio_window(self, audio_data: np.ndarray) -> None:
|
| 148 |
+
"""Analyze a single audio window."""
|
| 149 |
+
try:
|
| 150 |
+
# Ensure correct format
|
| 151 |
+
audio_data = audio_data.astype(np.float32)
|
| 152 |
+
|
| 153 |
+
# Add batch dimension
|
| 154 |
+
input_data = np.expand_dims(audio_data, axis=0)
|
| 155 |
+
|
| 156 |
+
# Get input name from the model
|
| 157 |
+
input_name = self.session.get_inputs()[0].name
|
| 158 |
+
|
| 159 |
+
# Run inference
|
| 160 |
+
outputs = self.session.run(None, {input_name: input_data})
|
| 161 |
+
predictions = outputs[0]
|
| 162 |
+
|
| 163 |
+
# Get scores for this window
|
| 164 |
+
predictions = np.array(predictions)
|
| 165 |
+
if len(predictions.shape) > 1:
|
| 166 |
+
scores = predictions[0]
|
| 167 |
+
else:
|
| 168 |
+
scores = predictions
|
| 169 |
+
|
| 170 |
+
# Find detections above threshold
|
| 171 |
+
above_threshold = np.where(scores > self.confidence_threshold)[0]
|
| 172 |
+
|
| 173 |
+
# Create detection results
|
| 174 |
+
detections = []
|
| 175 |
+
for idx in above_threshold:
|
| 176 |
+
confidence = float(scores[idx])
|
| 177 |
+
species_name = (
|
| 178 |
+
self.labels[idx] if idx < len(self.labels) else f"Class {idx}"
|
| 179 |
+
)
|
| 180 |
+
detections.append(
|
| 181 |
+
{
|
| 182 |
+
"species": species_name,
|
| 183 |
+
"confidence": confidence,
|
| 184 |
+
"timestamp": datetime.now(),
|
| 185 |
+
}
|
| 186 |
+
)
|
| 187 |
+
|
| 188 |
+
# Sort by confidence
|
| 189 |
+
detections.sort(key=lambda x: x["confidence"], reverse=True)
|
| 190 |
+
|
| 191 |
+
# Update current detections
|
| 192 |
+
self.current_detections = detections[: self.top_k]
|
| 193 |
+
|
| 194 |
+
# Add to history
|
| 195 |
+
if detections:
|
| 196 |
+
self.detection_history.extend(detections[: self.top_k])
|
| 197 |
+
|
| 198 |
+
except Exception as e:
|
| 199 |
+
print(f"Error during inference: {e}")
|
| 200 |
+
|
| 201 |
+
def _display_results(self) -> None:
|
| 202 |
+
"""Continuously display detection results."""
|
| 203 |
+
while self.running:
|
| 204 |
+
try:
|
| 205 |
+
# Clear screen (works on most terminals)
|
| 206 |
+
os.system("clear" if os.name == "posix" else "cls")
|
| 207 |
+
|
| 208 |
+
# Display header
|
| 209 |
+
print("π€ BirdNET Real-Time Detection")
|
| 210 |
+
print("=" * 50)
|
| 211 |
+
print(f"Listening... (Confidence > {self.confidence_threshold:.2f})")
|
| 212 |
+
print(f"Time: {datetime.now().strftime('%H:%M:%S')}")
|
| 213 |
+
print()
|
| 214 |
+
|
| 215 |
+
# Display current detections
|
| 216 |
+
if self.current_detections:
|
| 217 |
+
print(
|
| 218 |
+
f"π¦ Current Detections (Top {len(self.current_detections)}):"
|
| 219 |
+
)
|
| 220 |
+
print("-" * 40)
|
| 221 |
+
for i, detection in enumerate(self.current_detections, 1):
|
| 222 |
+
confidence = detection["confidence"]
|
| 223 |
+
species = detection["species"]
|
| 224 |
+
# Add confidence bars
|
| 225 |
+
bar_length = int(confidence * 20) # Scale to 20 chars
|
| 226 |
+
bar = "β" * bar_length + "β" * (20 - bar_length)
|
| 227 |
+
print(f"{i:2d}. {species}")
|
| 228 |
+
print(f" {bar} {confidence:.4f}")
|
| 229 |
+
else:
|
| 230 |
+
print("π No detections above threshold...")
|
| 231 |
+
|
| 232 |
+
print()
|
| 233 |
+
|
| 234 |
+
# Display recent activity
|
| 235 |
+
if self.detection_history:
|
| 236 |
+
print("π Recent Activity (Last 10):")
|
| 237 |
+
print("-" * 40)
|
| 238 |
+
recent = list(self.detection_history)[-10:]
|
| 239 |
+
for detection in reversed(recent):
|
| 240 |
+
timestamp = detection["timestamp"].strftime("%H:%M:%S")
|
| 241 |
+
species = detection["species"]
|
| 242 |
+
confidence = detection["confidence"]
|
| 243 |
+
print(f"{timestamp} - {species} ({confidence:.3f})")
|
| 244 |
+
|
| 245 |
+
print()
|
| 246 |
+
print("Press Ctrl+C to stop")
|
| 247 |
+
|
| 248 |
+
# Wait before next update
|
| 249 |
+
time.sleep(self.update_interval)
|
| 250 |
+
|
| 251 |
+
except KeyboardInterrupt:
|
| 252 |
+
break
|
| 253 |
+
except Exception as e:
|
| 254 |
+
print(f"Display error: {e}")
|
| 255 |
+
|
| 256 |
+
def start_detection(self) -> None:
|
| 257 |
+
"""Start real-time detection."""
|
| 258 |
+
try:
|
| 259 |
+
print("Starting real-time bird detection...")
|
| 260 |
+
print(f"Sample rate: {self.sample_rate} Hz")
|
| 261 |
+
print(f"Window size: {self.window_duration} seconds")
|
| 262 |
+
print(f"Confidence threshold: {self.confidence_threshold}")
|
| 263 |
+
print("Press Ctrl+C to stop\n")
|
| 264 |
+
|
| 265 |
+
self.running = True
|
| 266 |
+
|
| 267 |
+
# Start audio processing thread
|
| 268 |
+
audio_thread = threading.Thread(
|
| 269 |
+
target=self._process_audio_buffer, daemon=True
|
| 270 |
+
)
|
| 271 |
+
audio_thread.start()
|
| 272 |
+
|
| 273 |
+
# Start display thread
|
| 274 |
+
display_thread = threading.Thread(target=self._display_results, daemon=True)
|
| 275 |
+
display_thread.start()
|
| 276 |
+
|
| 277 |
+
# Start audio input stream
|
| 278 |
+
with sd.InputStream(
|
| 279 |
+
callback=self._audio_callback,
|
| 280 |
+
channels=1,
|
| 281 |
+
samplerate=self.sample_rate,
|
| 282 |
+
blocksize=int(self.sample_rate * 0.1), # 100ms blocks
|
| 283 |
+
dtype=np.float32,
|
| 284 |
+
):
|
| 285 |
+
print("π€ Microphone active - listening for birds...")
|
| 286 |
+
|
| 287 |
+
# Keep main thread alive
|
| 288 |
+
try:
|
| 289 |
+
while self.running:
|
| 290 |
+
time.sleep(0.1)
|
| 291 |
+
except KeyboardInterrupt:
|
| 292 |
+
pass
|
| 293 |
+
|
| 294 |
+
except Exception as e:
|
| 295 |
+
print(f"Error during detection: {e}")
|
| 296 |
+
finally:
|
| 297 |
+
self.running = False
|
| 298 |
+
print("\nπ Detection stopped.")
|
| 299 |
+
|
| 300 |
+
def stop_detection(self) -> None:
|
| 301 |
+
"""Stop detection."""
|
| 302 |
+
self.running = False
|
| 303 |
+
|
| 304 |
+
|
| 305 |
+
def main() -> int:
|
| 306 |
+
"""Main function for real-time detection."""
|
| 307 |
+
parser = argparse.ArgumentParser(
|
| 308 |
+
description="BirdNET Real-Time Audio Classification"
|
| 309 |
+
)
|
| 310 |
+
parser.add_argument(
|
| 311 |
+
"--model", default="model.onnx", help="Path to the ONNX model file"
|
| 312 |
+
)
|
| 313 |
+
parser.add_argument(
|
| 314 |
+
"--labels",
|
| 315 |
+
default="BirdNET_GLOBAL_6K_V2.4_Labels.txt",
|
| 316 |
+
help="Path to the labels file",
|
| 317 |
+
)
|
| 318 |
+
parser.add_argument(
|
| 319 |
+
"--confidence",
|
| 320 |
+
type=float,
|
| 321 |
+
default=0.1,
|
| 322 |
+
help="Minimum confidence threshold for detections (default: 0.1)",
|
| 323 |
+
)
|
| 324 |
+
parser.add_argument(
|
| 325 |
+
"--top-k",
|
| 326 |
+
type=int,
|
| 327 |
+
default=5,
|
| 328 |
+
help="Number of top predictions to show (default: 5)",
|
| 329 |
+
)
|
| 330 |
+
parser.add_argument(
|
| 331 |
+
"--update-interval",
|
| 332 |
+
type=float,
|
| 333 |
+
default=1.0,
|
| 334 |
+
help="Display update interval in seconds (default: 1.0)",
|
| 335 |
+
)
|
| 336 |
+
parser.add_argument(
|
| 337 |
+
"--list-devices", action="store_true", help="List available audio input devices"
|
| 338 |
+
)
|
| 339 |
+
|
| 340 |
+
args = parser.parse_args()
|
| 341 |
+
|
| 342 |
+
# List audio devices if requested
|
| 343 |
+
if args.list_devices:
|
| 344 |
+
print("Available audio input devices:")
|
| 345 |
+
print(sd.query_devices())
|
| 346 |
+
return 0
|
| 347 |
+
|
| 348 |
+
# Check if files exist
|
| 349 |
+
if not os.path.exists(args.model):
|
| 350 |
+
print(f"Error: Model file '{args.model}' not found.")
|
| 351 |
+
return 1
|
| 352 |
+
|
| 353 |
+
if not os.path.exists(args.labels):
|
| 354 |
+
print(f"Error: Labels file '{args.labels}' not found.")
|
| 355 |
+
return 1
|
| 356 |
+
|
| 357 |
+
try:
|
| 358 |
+
# Create detector
|
| 359 |
+
detector = RealTimeBirdDetector(
|
| 360 |
+
model_path=args.model,
|
| 361 |
+
labels_path=args.labels,
|
| 362 |
+
confidence_threshold=args.confidence,
|
| 363 |
+
top_k=args.top_k,
|
| 364 |
+
update_interval=args.update_interval,
|
| 365 |
+
)
|
| 366 |
+
|
| 367 |
+
# Start detection
|
| 368 |
+
detector.start_detection()
|
| 369 |
+
|
| 370 |
+
return 0
|
| 371 |
+
|
| 372 |
+
except Exception as e:
|
| 373 |
+
print(f"Error: {str(e)}")
|
| 374 |
+
return 1
|
| 375 |
+
|
| 376 |
+
|
| 377 |
+
if __name__ == "__main__":
|
| 378 |
+
exit(main())
|
requirements.txt
CHANGED
|
@@ -1,3 +1,5 @@
|
|
| 1 |
numpy>=1.21.0
|
| 2 |
librosa>=0.9.0
|
| 3 |
onnxruntime>=1.20.0
|
|
|
|
|
|
|
|
|
| 1 |
numpy>=1.21.0
|
| 2 |
librosa>=0.9.0
|
| 3 |
onnxruntime>=1.20.0
|
| 4 |
+
sounddevice>=0.4.0
|
| 5 |
+
soundfile>=0.10.0
|