Update pipeline.py
Browse files- pipeline.py +22 -10
pipeline.py
CHANGED
|
@@ -13,31 +13,43 @@ from PIL import Image
|
|
| 13 |
|
| 14 |
class PreTrainedPipeline():
|
| 15 |
def __init__(self, path: str):
|
| 16 |
-
|
| 17 |
self.model = keras.models.load_model(os.path.join(path, "tf_model.h5"))
|
| 18 |
|
| 19 |
def __call__(self, inputs: "Image.Image")-> List[Dict[str, Any]]:
|
| 20 |
|
|
|
|
| 21 |
with Image.open(inputs) as img:
|
| 22 |
img = np.array(img)
|
| 23 |
|
| 24 |
im = tf.image.resize(img, (128, 128))
|
| 25 |
im = tf.cast(im, tf.float32) / 255.0
|
| 26 |
pred_mask = model.predict(im[tf.newaxis, ...])
|
|
|
|
|
|
|
|
|
|
| 27 |
pred_mask_arg = tf.argmax(pred_mask, axis=-1)
|
| 28 |
|
| 29 |
labels = []
|
| 30 |
-
|
|
|
|
| 31 |
binary_masks = {}
|
| 32 |
mask_codes = {}
|
| 33 |
-
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
for cls in range(pred_mask.shape[-1]):
|
| 36 |
|
| 37 |
-
binary_masks[f"mask_{cls}"] = np.zeros(shape = (pred_mask.shape[1], pred_mask.shape[2]))
|
| 38 |
-
|
|
|
|
| 39 |
|
| 40 |
-
for col in range(
|
| 41 |
|
| 42 |
if pred_mask_arg[0][row][col] == cls:
|
| 43 |
|
|
@@ -48,7 +60,8 @@ class PreTrainedPipeline():
|
|
| 48 |
mask = binary_masks[f"mask_{cls}"]
|
| 49 |
mask *= 255
|
| 50 |
img = Image.fromarray(mask.astype(np.int8), mode="L")
|
| 51 |
-
|
|
|
|
| 52 |
with io.BytesIO() as out:
|
| 53 |
img.save(out, format="PNG")
|
| 54 |
png_string = out.getvalue()
|
|
@@ -56,9 +69,8 @@ class PreTrainedPipeline():
|
|
| 56 |
|
| 57 |
mask_codes[f"mask_{cls}"] = mask
|
| 58 |
|
| 59 |
-
|
| 60 |
|
| 61 |
-
|
| 62 |
labels.append({
|
| 63 |
"label": f"LABEL_{cls}",
|
| 64 |
"mask": mask_codes[f"mask_{cls}"],
|
|
|
|
| 13 |
|
| 14 |
class PreTrainedPipeline():
|
| 15 |
def __init__(self, path: str):
|
| 16 |
+
# load the model
|
| 17 |
self.model = keras.models.load_model(os.path.join(path, "tf_model.h5"))
|
| 18 |
|
| 19 |
def __call__(self, inputs: "Image.Image")-> List[Dict[str, Any]]:
|
| 20 |
|
| 21 |
+
# convert img to numpy array, resize and normalize to make the prediction
|
| 22 |
with Image.open(inputs) as img:
|
| 23 |
img = np.array(img)
|
| 24 |
|
| 25 |
im = tf.image.resize(img, (128, 128))
|
| 26 |
im = tf.cast(im, tf.float32) / 255.0
|
| 27 |
pred_mask = model.predict(im[tf.newaxis, ...])
|
| 28 |
+
|
| 29 |
+
# take the best performing class for each pixel
|
| 30 |
+
# the output of argmax looks like this [[1, 2, 0], ...]
|
| 31 |
pred_mask_arg = tf.argmax(pred_mask, axis=-1)
|
| 32 |
|
| 33 |
labels = []
|
| 34 |
+
|
| 35 |
+
# convert the prediction mask into binary masks for each class
|
| 36 |
binary_masks = {}
|
| 37 |
mask_codes = {}
|
| 38 |
+
|
| 39 |
+
# when we take tf.argmax() over pred_mask, it becomes a tensor object
|
| 40 |
+
# the shape becomes TensorShape object, looking like this TensorShape([128])
|
| 41 |
+
# we need to take get shape, convert to list and take the best one
|
| 42 |
+
|
| 43 |
+
rows = pred_mask_arg[0][1].get_shape().as_list()[0]
|
| 44 |
+
cols = pred_mask_arg[0][2].get_shape().as_list()[0]
|
| 45 |
+
|
| 46 |
for cls in range(pred_mask.shape[-1]):
|
| 47 |
|
| 48 |
+
binary_masks[f"mask_{cls}"] = np.zeros(shape = (pred_mask.shape[1], pred_mask.shape[2])) #create masks for each class
|
| 49 |
+
|
| 50 |
+
for row in range(rows):
|
| 51 |
|
| 52 |
+
for col in range(cols):
|
| 53 |
|
| 54 |
if pred_mask_arg[0][row][col] == cls:
|
| 55 |
|
|
|
|
| 60 |
mask = binary_masks[f"mask_{cls}"]
|
| 61 |
mask *= 255
|
| 62 |
img = Image.fromarray(mask.astype(np.int8), mode="L")
|
| 63 |
+
|
| 64 |
+
# we need to make it readable for the widget
|
| 65 |
with io.BytesIO() as out:
|
| 66 |
img.save(out, format="PNG")
|
| 67 |
png_string = out.getvalue()
|
|
|
|
| 69 |
|
| 70 |
mask_codes[f"mask_{cls}"] = mask
|
| 71 |
|
|
|
|
| 72 |
|
| 73 |
+
# widget needs the below format, for each class we return label and mask string
|
| 74 |
labels.append({
|
| 75 |
"label": f"LABEL_{cls}",
|
| 76 |
"mask": mask_codes[f"mask_{cls}"],
|