Upload pipeline.py
Browse files- pipeline.py +78 -0
pipeline.py
ADDED
|
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
from typing import Any, Dict, List
|
| 3 |
+
|
| 4 |
+
import tensorflow as tf
|
| 5 |
+
from tensorflow import keras
|
| 6 |
+
from app.pipelines import Pipeline
|
| 7 |
+
from huggingface_hub import from_pretrained_keras, hf_hub_download
|
| 8 |
+
from PIL import Image
|
| 9 |
+
import base64
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
MODEL_FILENAME = "saved_model.pb"
|
| 13 |
+
CONFIG_FILENAME = "config.json"
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class PreTrainedPipeline(Pipeline):
|
| 17 |
+
def __init__(self, model_id: str):
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
# Reload Keras SavedModel
|
| 21 |
+
self.model = from_pretrained_keras(model_id)
|
| 22 |
+
|
| 23 |
+
# Number of labels
|
| 24 |
+
self.num_labels = self.model.output_shape[1]
|
| 25 |
+
|
| 26 |
+
# Config is required to know the mapping to label.
|
| 27 |
+
config_file = hf_hub_download(model_id, filename=CONFIG_FILENAME)
|
| 28 |
+
with open(config_file) as config:
|
| 29 |
+
config = json.load(config)
|
| 30 |
+
|
| 31 |
+
self.id2label = config.get(
|
| 32 |
+
"id2label", {str(i): f"LABEL_{i}" for i in range(self.num_labels)}
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
def __call__(self, inputs: "Image.Image") -> List[Dict[str, Any]]:
|
| 36 |
+
"""
|
| 37 |
+
Args:
|
| 38 |
+
inputs (:obj:`PIL.Image`):
|
| 39 |
+
The raw image representation as PIL.
|
| 40 |
+
No transformation made whatsoever from the input. Make all necessary transformations here.
|
| 41 |
+
Return:
|
| 42 |
+
A :obj:`list`:. The list contains items that are dicts should be liked {"label": "XXX" (str), mask: "base64 encoding of the mask" (str), "score": float}
|
| 43 |
+
It is preferred if the returned list is in decreasing `score` order
|
| 44 |
+
"""
|
| 45 |
+
# Resize image to expected size
|
| 46 |
+
|
| 47 |
+
expected_input_size = self.model.input_shape
|
| 48 |
+
if expected_input_size[-1] == 1:
|
| 49 |
+
inputs = inputs.convert("L")
|
| 50 |
+
|
| 51 |
+
target_size = (expected_input_size[1], expected_input_size[2])
|
| 52 |
+
img = tf.image.resize(inputs, target_size)
|
| 53 |
+
|
| 54 |
+
img_array = tf.keras.preprocessing.image.img_to_array(img)
|
| 55 |
+
img_array = img_array[tf.newaxis, ...]
|
| 56 |
+
|
| 57 |
+
predictions = self.model.predict(img_array, axis=-1)
|
| 58 |
+
|
| 59 |
+
self.single_output_unit = (
|
| 60 |
+
self.model.output_shape[1] == 1
|
| 61 |
+
) # if there are two classes
|
| 62 |
+
|
| 63 |
+
if self.single_output_unit:
|
| 64 |
+
score = predictions[0][0]
|
| 65 |
+
labels = [
|
| 66 |
+
{"label": str(self.id2label["1"]), "score": float(score)},
|
| 67 |
+
{"label": str(self.id2label["0"]), "score": float(1 - score)},
|
| 68 |
+
]
|
| 69 |
+
else:
|
| 70 |
+
labels = [
|
| 71 |
+
{
|
| 72 |
+
"label": str(self.id2label[str(i)]),
|
| 73 |
+
"mask": base64.b64encode(predictions[0][i]),
|
| 74 |
+
"score": float(score),
|
| 75 |
+
}
|
| 76 |
+
for i, score in enumerate(predictions[0])
|
| 77 |
+
]
|
| 78 |
+
return sorted(labels, key=lambda tup: tup["score"], reverse=True)[: self.top_k]
|