|  | from triton_kernels.routing import routing_torch | 
					
						
						|  | from triton_kernels.swiglu import swiglu, swiglu_torch, PrecisionConfig | 
					
						
						|  | from triton_kernels.testing import assert_close | 
					
						
						|  | import torch | 
					
						
						|  | import pytest | 
					
						
						|  |  | 
					
						
						|  | from .test_routing import init_data as init_routing_data | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def alloc_rand(shape, device, dtype, requires_grad=True): | 
					
						
						|  | if dtype.itemsize == 1: | 
					
						
						|  | tmp = 2**-(torch.randint(4, 8, shape, device=device, dtype=torch.float16)) | 
					
						
						|  | return tmp.to(dtype).requires_grad_(requires_grad) | 
					
						
						|  | return torch.randn(shape, device=device, dtype=dtype, requires_grad=requires_grad) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @pytest.mark.parametrize("M, N", [(1311, 4352)]) | 
					
						
						|  | @pytest.mark.parametrize("limit", [1e-2, 10]) | 
					
						
						|  | def test_op(M, N, limit, device, alpha=0.5): | 
					
						
						|  | torch.manual_seed(2) | 
					
						
						|  |  | 
					
						
						|  | n_expts_tot = 6 | 
					
						
						|  | n_expts_act = 2 | 
					
						
						|  | logits = init_routing_data(M, n_expts_tot).detach() | 
					
						
						|  | routing_data, _, _ = routing_torch(logits, n_expts_act) | 
					
						
						|  | n_tokens = routing_data.expt_hist.sum() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | x = alloc_rand([n_tokens, N], device=device, dtype=torch.bfloat16) | 
					
						
						|  | precision_config = PrecisionConfig(limit=limit) | 
					
						
						|  | tri_y = swiglu(x, alpha, precision_config, routing_data) | 
					
						
						|  | ref_y = swiglu_torch(x, alpha, precision_config) | 
					
						
						|  | assert_close(tri_y, ref_y) | 
					
						
						|  |  |