|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import warnings | 
					
						
						|  | from typing import List, Optional, Tuple, Union | 
					
						
						|  |  | 
					
						
						|  | import torch.utils.checkpoint | 
					
						
						|  | import transformers | 
					
						
						|  | from torch import nn | 
					
						
						|  | from torch.nn import CrossEntropyLoss | 
					
						
						|  | from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM, | 
					
						
						|  | Qwen2ForCausalLM) | 
					
						
						|  | from transformers.modeling_outputs import CausalLMOutputWithPast | 
					
						
						|  | from transformers.modeling_utils import PreTrainedModel | 
					
						
						|  | from transformers.utils import ModelOutput, logging | 
					
						
						|  |  | 
					
						
						|  | from .configuration_internvl_chat import InternVLChatConfig | 
					
						
						|  | from .conversation import get_conv_template | 
					
						
						|  | from .modeling_intern_vit import InternVisionModel, has_flash_attn | 
					
						
						|  | from PIL import Image, ImageDraw, ImageFont | 
					
						
						|  | import numpy as np | 
					
						
						|  | import cv2 | 
					
						
						|  | import imageio | 
					
						
						|  | from scipy.ndimage import gaussian_filter | 
					
						
						|  | from PIL import Image, ImageDraw, ImageFont | 
					
						
						|  | import tqdm | 
					
						
						|  | import random | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  | def version_cmp(v1, v2, op='eq'): | 
					
						
						|  | import operator | 
					
						
						|  |  | 
					
						
						|  | from packaging import version | 
					
						
						|  | op_func = getattr(operator, op) | 
					
						
						|  | return op_func(version.parse(v1), version.parse(v2)) | 
					
						
						|  |  | 
					
						
						|  | def draw_text_to_image(text, font, image_width=500, min_height=500, bg_color=(255, 255, 255)): | 
					
						
						|  | paragraphs = text.split('\n') | 
					
						
						|  |  | 
					
						
						|  | lines = [] | 
					
						
						|  | total_height = 0 | 
					
						
						|  | for paragraph in paragraphs: | 
					
						
						|  | words = paragraph.split(' ') | 
					
						
						|  | current_line = "" | 
					
						
						|  | for word in words: | 
					
						
						|  | test_line = current_line + word + " " | 
					
						
						|  | bbox = font.getbbox(test_line) | 
					
						
						|  | width = bbox[2] - bbox[0] | 
					
						
						|  | if width <= image_width - 20: | 
					
						
						|  | current_line = test_line | 
					
						
						|  | else: | 
					
						
						|  | lines.append(current_line) | 
					
						
						|  | current_line = word + " " | 
					
						
						|  | total_height += font.getbbox(current_line)[3] | 
					
						
						|  | lines.append(current_line) | 
					
						
						|  | total_height += font.getbbox(current_line)[3] | 
					
						
						|  | total_height = int(total_height*1.25) | 
					
						
						|  | if total_height < min_height: | 
					
						
						|  | total_height = min_height | 
					
						
						|  | image = Image.new('RGB', (image_width, total_height), color=bg_color) | 
					
						
						|  | draw = ImageDraw.Draw(image) | 
					
						
						|  |  | 
					
						
						|  | text_color = tuple(random.randint(0, 1) for _ in range(3)) | 
					
						
						|  | y_text = 10 | 
					
						
						|  | for line in lines: | 
					
						
						|  | draw.text((10, y_text), line, font=font, fill=text_color) | 
					
						
						|  | y_text += font.getbbox(line)[3] * 1.2 | 
					
						
						|  | return image | 
					
						
						|  |  | 
					
						
						|  | def load_image_v2(image_file, input_size=448, max_num=12): | 
					
						
						|  | image = Image.open(image_file).convert('RGB') | 
					
						
						|  | transform = build_transform(input_size=input_size) | 
					
						
						|  | images, target_aspect_ratio = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) | 
					
						
						|  | pixel_values = [transform(image) for image in images] | 
					
						
						|  | pixel_values = torch.stack(pixel_values) | 
					
						
						|  | return pixel_values, target_aspect_ratio | 
					
						
						|  |  | 
					
						
						|  | def adjust_overlay(overlay, text_img): | 
					
						
						|  | h_o, w_o = overlay.shape[:2] | 
					
						
						|  | h_t, w_t = text_img.shape[:2] | 
					
						
						|  |  | 
					
						
						|  | if h_o > w_o: | 
					
						
						|  |  | 
					
						
						|  | new_h = h_t | 
					
						
						|  | new_w = int(w_o * (new_h / h_o)) | 
					
						
						|  | overlay_resized = cv2.resize(overlay, (new_w, new_h)) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | overlay_resized = overlay.copy() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if overlay_resized.shape[0] < h_t: | 
					
						
						|  | pad_h = h_t - overlay_resized.shape[0] | 
					
						
						|  | padding = np.ones((pad_h, overlay_resized.shape[1], 3), dtype=np.uint8) * 255 | 
					
						
						|  | overlay_resized = np.vstack((overlay_resized, padding)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if overlay_resized.shape[0] != h_t: | 
					
						
						|  | overlay_resized = cv2.resize(overlay_resized, (overlay_resized.shape[1], h_t)) | 
					
						
						|  |  | 
					
						
						|  | return overlay_resized | 
					
						
						|  |  | 
					
						
						|  | class InternVLChatModel(PreTrainedModel): | 
					
						
						|  | config_class = InternVLChatConfig | 
					
						
						|  | main_input_name = 'pixel_values' | 
					
						
						|  | base_model_prefix = 'language_model' | 
					
						
						|  | _supports_flash_attn_2 = True | 
					
						
						|  | _no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'Qwen2DecoderLayer'] | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None, use_flash_attn=True): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  |  | 
					
						
						|  | assert version_cmp(transformers.__version__, '4.37.0', 'ge') | 
					
						
						|  | image_size = config.force_image_size or config.vision_config.image_size | 
					
						
						|  | patch_size = config.vision_config.patch_size | 
					
						
						|  | self.patch_size = patch_size | 
					
						
						|  | self.select_layer = config.select_layer | 
					
						
						|  | self.template = config.template | 
					
						
						|  | self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2)) | 
					
						
						|  | self.downsample_ratio = config.downsample_ratio | 
					
						
						|  | self.ps_version = config.ps_version | 
					
						
						|  | use_flash_attn = use_flash_attn if has_flash_attn else False | 
					
						
						|  | config.vision_config.use_flash_attn = True if use_flash_attn else False | 
					
						
						|  | config.llm_config._attn_implementation = 'flash_attention_2' if use_flash_attn else 'eager' | 
					
						
						|  |  | 
					
						
						|  | logger.info(f'num_image_token: {self.num_image_token}') | 
					
						
						|  | logger.info(f'ps_version: {self.ps_version}') | 
					
						
						|  | if vision_model is not None: | 
					
						
						|  | self.vision_model = vision_model | 
					
						
						|  | else: | 
					
						
						|  | self.vision_model = InternVisionModel(config.vision_config) | 
					
						
						|  | if language_model is not None: | 
					
						
						|  | self.language_model = language_model | 
					
						
						|  | else: | 
					
						
						|  | if config.llm_config.architectures[0] == 'LlamaForCausalLM': | 
					
						
						|  | self.language_model = LlamaForCausalLM(config.llm_config) | 
					
						
						|  | elif config.llm_config.architectures[0] == 'Qwen2ForCausalLM': | 
					
						
						|  | self.language_model = Qwen2ForCausalLM(config.llm_config) | 
					
						
						|  | else: | 
					
						
						|  | raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.') | 
					
						
						|  |  | 
					
						
						|  | vit_hidden_size = config.vision_config.hidden_size | 
					
						
						|  | llm_hidden_size = config.llm_config.hidden_size | 
					
						
						|  |  | 
					
						
						|  | self.mlp1 = nn.Sequential( | 
					
						
						|  | nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2), | 
					
						
						|  | nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size), | 
					
						
						|  | nn.GELU(), | 
					
						
						|  | nn.Linear(llm_hidden_size, llm_hidden_size) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.img_context_token_id = None | 
					
						
						|  | self.conv_template = get_conv_template(self.template) | 
					
						
						|  | self.system_message = self.conv_template.system_message | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | pixel_values: torch.FloatTensor, | 
					
						
						|  | input_ids: torch.LongTensor = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | image_flags: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_values: Optional[List[torch.FloatTensor]] = None, | 
					
						
						|  | labels: Optional[torch.LongTensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | ) -> Union[Tuple, CausalLMOutputWithPast]: | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | image_flags = image_flags.squeeze(-1) | 
					
						
						|  | input_embeds = self.language_model.get_input_embeddings()(input_ids).clone() | 
					
						
						|  |  | 
					
						
						|  | vit_embeds = self.extract_feature(pixel_values) | 
					
						
						|  | vit_embeds = vit_embeds[image_flags == 1] | 
					
						
						|  | vit_batch_size = pixel_values.shape[0] | 
					
						
						|  |  | 
					
						
						|  | B, N, C = input_embeds.shape | 
					
						
						|  | input_embeds = input_embeds.reshape(B * N, C) | 
					
						
						|  |  | 
					
						
						|  | if torch.distributed.is_initialized() and torch.distributed.get_rank() == 0: | 
					
						
						|  | print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}') | 
					
						
						|  |  | 
					
						
						|  | input_ids = input_ids.reshape(B * N) | 
					
						
						|  | selected = (input_ids == self.img_context_token_id) | 
					
						
						|  | try: | 
					
						
						|  | input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C) | 
					
						
						|  | except Exception as e: | 
					
						
						|  | vit_embeds = vit_embeds.reshape(-1, C) | 
					
						
						|  | print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, ' | 
					
						
						|  | f'vit_embeds.shape={vit_embeds.shape}') | 
					
						
						|  | n_token = selected.sum() | 
					
						
						|  | input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token] | 
					
						
						|  |  | 
					
						
						|  | input_embeds = input_embeds.reshape(B, N, C) | 
					
						
						|  |  | 
					
						
						|  | outputs = self.language_model( | 
					
						
						|  | inputs_embeds=input_embeds, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  | logits = outputs.logits | 
					
						
						|  |  | 
					
						
						|  | loss = None | 
					
						
						|  | if labels is not None: | 
					
						
						|  |  | 
					
						
						|  | shift_logits = logits[..., :-1, :].contiguous() | 
					
						
						|  | shift_labels = labels[..., 1:].contiguous() | 
					
						
						|  |  | 
					
						
						|  | loss_fct = CrossEntropyLoss() | 
					
						
						|  | shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size) | 
					
						
						|  | shift_labels = shift_labels.view(-1) | 
					
						
						|  |  | 
					
						
						|  | shift_labels = shift_labels.to(shift_logits.device) | 
					
						
						|  | loss = loss_fct(shift_logits, shift_labels) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (logits,) + outputs[1:] | 
					
						
						|  | return (loss,) + output if loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | return CausalLMOutputWithPast( | 
					
						
						|  | loss=loss, | 
					
						
						|  | logits=logits, | 
					
						
						|  | past_key_values=outputs.past_key_values, | 
					
						
						|  | hidden_states=outputs.hidden_states, | 
					
						
						|  | attentions=outputs.attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def pixel_shuffle(self, x, scale_factor=0.5): | 
					
						
						|  | n, w, h, c = x.size() | 
					
						
						|  |  | 
					
						
						|  | x = x.view(n, w, int(h * scale_factor), int(c / scale_factor)) | 
					
						
						|  |  | 
					
						
						|  | x = x.permute(0, 2, 1, 3).contiguous() | 
					
						
						|  |  | 
					
						
						|  | x = x.view(n, int(h * scale_factor), int(w * scale_factor), | 
					
						
						|  | int(c / (scale_factor * scale_factor))) | 
					
						
						|  | if self.ps_version == 'v1': | 
					
						
						|  | warnings.warn("In ps_version 'v1', the height and width have not been swapped back, " | 
					
						
						|  | 'which results in a transposed image.') | 
					
						
						|  | else: | 
					
						
						|  | x = x.permute(0, 2, 1, 3).contiguous() | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  | def extract_feature(self, pixel_values): | 
					
						
						|  | if self.select_layer == -1: | 
					
						
						|  | vit_embeds = self.vision_model( | 
					
						
						|  | pixel_values=pixel_values, | 
					
						
						|  | output_hidden_states=False, | 
					
						
						|  | return_dict=True).last_hidden_state | 
					
						
						|  | else: | 
					
						
						|  | vit_embeds = self.vision_model( | 
					
						
						|  | pixel_values=pixel_values, | 
					
						
						|  | output_hidden_states=True, | 
					
						
						|  | return_dict=True).hidden_states[self.select_layer] | 
					
						
						|  | vit_embeds = vit_embeds[:, 1:, :] | 
					
						
						|  |  | 
					
						
						|  | h = w = int(vit_embeds.shape[1] ** 0.5) | 
					
						
						|  | vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1) | 
					
						
						|  | vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio) | 
					
						
						|  | vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1]) | 
					
						
						|  | vit_embeds = self.mlp1(vit_embeds) | 
					
						
						|  | return vit_embeds | 
					
						
						|  |  | 
					
						
						|  | def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None, | 
					
						
						|  | history=None, return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', | 
					
						
						|  | IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False, image_counts=None): | 
					
						
						|  | if history is not None or return_history: | 
					
						
						|  | print('Now multi-turn chat is not supported in batch_chat.') | 
					
						
						|  | raise NotImplementedError | 
					
						
						|  |  | 
					
						
						|  | if image_counts is not None: | 
					
						
						|  | num_patches_list = image_counts | 
					
						
						|  | print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.') | 
					
						
						|  |  | 
					
						
						|  | img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN) | 
					
						
						|  | self.img_context_token_id = img_context_token_id | 
					
						
						|  |  | 
					
						
						|  | if verbose and pixel_values is not None: | 
					
						
						|  | image_bs = pixel_values.shape[0] | 
					
						
						|  | print(f'dynamic ViT batch size: {image_bs}') | 
					
						
						|  |  | 
					
						
						|  | queries = [] | 
					
						
						|  | for idx, num_patches in enumerate(num_patches_list): | 
					
						
						|  | question = questions[idx] | 
					
						
						|  | if pixel_values is not None and '<image>' not in question: | 
					
						
						|  | question = '<image>\n' + question | 
					
						
						|  | template = get_conv_template(self.template) | 
					
						
						|  | template.system_message = self.system_message | 
					
						
						|  | template.append_message(template.roles[0], question) | 
					
						
						|  | template.append_message(template.roles[1], None) | 
					
						
						|  | query = template.get_prompt() | 
					
						
						|  |  | 
					
						
						|  | image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN | 
					
						
						|  | query = query.replace('<image>', image_tokens, 1) | 
					
						
						|  | queries.append(query) | 
					
						
						|  |  | 
					
						
						|  | tokenizer.padding_side = 'left' | 
					
						
						|  | model_inputs = tokenizer(queries, return_tensors='pt', padding=True) | 
					
						
						|  | input_ids = model_inputs['input_ids'].to(self.device) | 
					
						
						|  | attention_mask = model_inputs['attention_mask'].to(self.device) | 
					
						
						|  | eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip()) | 
					
						
						|  | generation_config['eos_token_id'] = eos_token_id | 
					
						
						|  | generation_output = self.generate( | 
					
						
						|  | pixel_values=pixel_values, | 
					
						
						|  | input_ids=input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | **generation_config | 
					
						
						|  | ) | 
					
						
						|  | responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True) | 
					
						
						|  | responses = [response.split(template.sep.strip())[0].strip() for response in responses] | 
					
						
						|  | return responses | 
					
						
						|  |  | 
					
						
						|  | def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False, | 
					
						
						|  | num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', | 
					
						
						|  | verbose=False, attention_visualize=False,last_visualize_layers=7,raw_image_path="",target_aspect_ratio=(1,1)): | 
					
						
						|  |  | 
					
						
						|  | if history is None and pixel_values is not None and '<image>' not in question: | 
					
						
						|  | question = '<image>\n' + question | 
					
						
						|  |  | 
					
						
						|  | if num_patches_list is None: | 
					
						
						|  | num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else [] | 
					
						
						|  | assert pixel_values is None or len(pixel_values) == sum(num_patches_list) | 
					
						
						|  |  | 
					
						
						|  | img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN) | 
					
						
						|  | self.img_context_token_id = img_context_token_id | 
					
						
						|  |  | 
					
						
						|  | template = get_conv_template(self.template) | 
					
						
						|  | template.system_message = self.system_message | 
					
						
						|  | eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip()) | 
					
						
						|  |  | 
					
						
						|  | history = [] if history is None else history | 
					
						
						|  | for (old_question, old_answer) in history: | 
					
						
						|  | template.append_message(template.roles[0], old_question) | 
					
						
						|  | template.append_message(template.roles[1], old_answer) | 
					
						
						|  | template.append_message(template.roles[0], question) | 
					
						
						|  | template.append_message(template.roles[1], None) | 
					
						
						|  | query = template.get_prompt() | 
					
						
						|  |  | 
					
						
						|  | if verbose and pixel_values is not None: | 
					
						
						|  | image_bs = pixel_values.shape[0] | 
					
						
						|  | print(f'dynamic ViT batch size: {image_bs}') | 
					
						
						|  |  | 
					
						
						|  | for num_patches in num_patches_list: | 
					
						
						|  | image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN | 
					
						
						|  | query = query.replace('<image>', image_tokens, 1) | 
					
						
						|  |  | 
					
						
						|  | model_inputs = tokenizer(query, return_tensors='pt') | 
					
						
						|  | input_ids = model_inputs['input_ids'].to(self.device) | 
					
						
						|  | attention_mask = model_inputs['attention_mask'].to(self.device) | 
					
						
						|  | generation_config['eos_token_id'] = eos_token_id | 
					
						
						|  | if attention_visualize: | 
					
						
						|  | generation_output = self.generate( | 
					
						
						|  | pixel_values=pixel_values, | 
					
						
						|  | input_ids=input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | attention_visualize=attention_visualize, | 
					
						
						|  | output_hidden_states=True, | 
					
						
						|  | **generation_config | 
					
						
						|  | ) | 
					
						
						|  | return generation_output, query | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  | generation_output = self.generate( | 
					
						
						|  | pixel_values=pixel_values, | 
					
						
						|  | input_ids=input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | attention_visualize=attention_visualize, | 
					
						
						|  | **generation_config | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0] | 
					
						
						|  | response = response.split(template.sep.strip())[0].strip() | 
					
						
						|  | history.append((question, response)) | 
					
						
						|  | if return_history: | 
					
						
						|  | return response, history | 
					
						
						|  | else: | 
					
						
						|  | query_to_print = query.replace(IMG_CONTEXT_TOKEN, '') | 
					
						
						|  | query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>') | 
					
						
						|  | if verbose: | 
					
						
						|  | print(query_to_print, response) | 
					
						
						|  | return response | 
					
						
						|  |  | 
					
						
						|  | def visualize_attention(self, attention_tensor,layer=0, head=None, start_img_token_index=0, end_img_token_index=0, target_aspect_ratio=(0,0)): | 
					
						
						|  | """Vẽ heatmap của attention scores từ layer được chọn và có thể chọn head cụ thể hoặc trung bình.""" | 
					
						
						|  | selected_layer = attention_tensor[layer] | 
					
						
						|  | if head is None: | 
					
						
						|  | averaged_attention = selected_layer.mean(axis=1).squeeze() | 
					
						
						|  | else: | 
					
						
						|  | averaged_attention = selected_layer[:, head, :, :].squeeze() | 
					
						
						|  | averaged_attention =  np.power(averaged_attention, 0.9) | 
					
						
						|  | heat_maps = [] | 
					
						
						|  | for i in range(len(averaged_attention)): | 
					
						
						|  | h_target_aspect_ratio = target_aspect_ratio[1] | 
					
						
						|  | if h_target_aspect_ratio == 0 : | 
					
						
						|  | h_target_aspect_ratio = 1 | 
					
						
						|  | w_target_aspect_ratio = target_aspect_ratio[0] | 
					
						
						|  | if w_target_aspect_ratio == 0 : | 
					
						
						|  | w_target_aspect_ratio = 1 | 
					
						
						|  | img_atten_score = averaged_attention[i].reshape(-1)[start_img_token_index:end_img_token_index] | 
					
						
						|  | img_atten_score = img_atten_score.reshape(h_target_aspect_ratio,w_target_aspect_ratio,16,16) | 
					
						
						|  | img_atten_score = np.transpose(img_atten_score, (0, 2, 1, 3)).reshape(h_target_aspect_ratio*16,w_target_aspect_ratio*16) | 
					
						
						|  | heat_maps.append(img_atten_score) | 
					
						
						|  | return heat_maps | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | def generate( | 
					
						
						|  | self, | 
					
						
						|  | pixel_values: Optional[torch.FloatTensor] = None, | 
					
						
						|  | input_ids: Optional[torch.FloatTensor] = None, | 
					
						
						|  | attention_mask: Optional[torch.LongTensor] = None, | 
					
						
						|  | visual_features: Optional[torch.FloatTensor] = None, | 
					
						
						|  | generation_config: Optional[GenerationConfig] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | attention_visualize: Optional[bool] = False, | 
					
						
						|  | **generate_kwargs, | 
					
						
						|  | ) -> torch.LongTensor: | 
					
						
						|  |  | 
					
						
						|  | assert self.img_context_token_id is not None | 
					
						
						|  | if pixel_values is not None: | 
					
						
						|  | if visual_features is not None: | 
					
						
						|  | vit_embeds = visual_features | 
					
						
						|  | else: | 
					
						
						|  | vit_embeds = self.extract_feature(pixel_values) | 
					
						
						|  | input_embeds = self.language_model.get_input_embeddings()(input_ids) | 
					
						
						|  | B, N, C = input_embeds.shape | 
					
						
						|  | input_embeds = input_embeds.reshape(B * N, C) | 
					
						
						|  |  | 
					
						
						|  | input_ids = input_ids.reshape(B * N) | 
					
						
						|  | selected = (input_ids == self.img_context_token_id) | 
					
						
						|  | assert selected.sum() != 0 | 
					
						
						|  | input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device) | 
					
						
						|  |  | 
					
						
						|  | input_embeds = input_embeds.reshape(B, N, C) | 
					
						
						|  | else: | 
					
						
						|  | input_embeds = self.language_model.get_input_embeddings()(input_ids) | 
					
						
						|  | if attention_visualize: | 
					
						
						|  | output_attentions = True | 
					
						
						|  | return_dict_in_generate = True | 
					
						
						|  | else: | 
					
						
						|  | output_attentions = False | 
					
						
						|  | return_dict_in_generate = False | 
					
						
						|  |  | 
					
						
						|  | outputs = self.language_model.generate( | 
					
						
						|  | inputs_embeds=input_embeds, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | generation_config=generation_config, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | use_cache=True, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | return_dict_in_generate=return_dict_in_generate, | 
					
						
						|  | **generate_kwargs, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return outputs | 
					
						
						|  |  | 
					
						
						|  |  |