| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						from typing import List, Union | 
					
					
						
						| 
							 | 
						import numpy as np | 
					
					
						
						| 
							 | 
						import torch | 
					
					
						
						| 
							 | 
						from transformers.feature_extraction_utils import BatchFeature | 
					
					
						
						| 
							 | 
						from transformers.processing_utils import ( | 
					
					
						
						| 
							 | 
						    ProcessingKwargs, | 
					
					
						
						| 
							 | 
						    ProcessorMixin, | 
					
					
						
						| 
							 | 
						    Unpack, | 
					
					
						
						| 
							 | 
						    VideosKwargs, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						from transformers.tokenization_utils_base import PreTokenizedInput, TextInput | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						ImageInput = Union[ | 
					
					
						
						| 
							 | 
						    "PIL.Image.Image", | 
					
					
						
						| 
							 | 
						    np.ndarray, | 
					
					
						
						| 
							 | 
						    "torch.Tensor", | 
					
					
						
						| 
							 | 
						    List["PIL.Image.Image"], | 
					
					
						
						| 
							 | 
						    List[np.ndarray], | 
					
					
						
						| 
							 | 
						    List["torch.Tensor"], | 
					
					
						
						| 
							 | 
						]   | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						VideoInput = Union[ | 
					
					
						
						| 
							 | 
						    List["PIL.Image.Image"], | 
					
					
						
						| 
							 | 
						    "np.ndarray", | 
					
					
						
						| 
							 | 
						    "torch.Tensor", | 
					
					
						
						| 
							 | 
						    List["np.ndarray"], | 
					
					
						
						| 
							 | 
						    List["torch.Tensor"], | 
					
					
						
						| 
							 | 
						    List[List["PIL.Image.Image"]], | 
					
					
						
						| 
							 | 
						    List[List["np.ndarrray"]], | 
					
					
						
						| 
							 | 
						    List[List["torch.Tensor"]], | 
					
					
						
						| 
							 | 
						]   | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class PaddleOCRVLVideosProcessorKwargs(VideosKwargs, total=False): | 
					
					
						
						| 
							 | 
						    fps: Union[List[float], float] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class PaddleOCRVLProcessorKwargs(ProcessingKwargs, total=False): | 
					
					
						
						| 
							 | 
						    videos_kwargs: PaddleOCRVLVideosProcessorKwargs | 
					
					
						
						| 
							 | 
						    _defaults = { | 
					
					
						
						| 
							 | 
						        "text_kwargs": { | 
					
					
						
						| 
							 | 
						            "padding": False, | 
					
					
						
						| 
							 | 
						        }, | 
					
					
						
						| 
							 | 
						        "videos_kwargs": {"fps": 2.0}, | 
					
					
						
						| 
							 | 
						    } | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class PaddleOCRVLProcessor(ProcessorMixin): | 
					
					
						
						| 
							 | 
						    r""" | 
					
					
						
						| 
							 | 
						    [`PaddleOCRVLProcessor`] offers all the functionalities of [`SiglipImageProcessor`] and [`Qwen2TokenizerFast`]. See the | 
					
					
						
						| 
							 | 
						    [`~PaddleOCRVLProcessor.__call__`] and [`~PaddleOCRVLProcessor.decode`] for more information. | 
					
					
						
						| 
							 | 
						    Args: | 
					
					
						
						| 
							 | 
						        image_processor ([`SiglipImageProcessor`], *optional*): | 
					
					
						
						| 
							 | 
						            The image processor is a required input. | 
					
					
						
						| 
							 | 
						        tokenizer ([`Qwen2TokenizerFast`], *optional*): | 
					
					
						
						| 
							 | 
						            The tokenizer is a required input. | 
					
					
						
						| 
							 | 
						        chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages | 
					
					
						
						| 
							 | 
						            in a chat into a tokenizable string. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    attributes = ["image_processor", "tokenizer"] | 
					
					
						
						| 
							 | 
						    valid_kwargs = [ | 
					
					
						
						| 
							 | 
						        "chat_template", | 
					
					
						
						| 
							 | 
						        "image_std", | 
					
					
						
						| 
							 | 
						        "min_pixels", | 
					
					
						
						| 
							 | 
						        "image_mean", | 
					
					
						
						| 
							 | 
						        "merge_size", | 
					
					
						
						| 
							 | 
						        "image_processor_type", | 
					
					
						
						| 
							 | 
						        "temporal_patch_size", | 
					
					
						
						| 
							 | 
						        "patch_size", | 
					
					
						
						| 
							 | 
						        "max_pixels", | 
					
					
						
						| 
							 | 
						    ] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    image_processor_class = "AutoImageProcessor" | 
					
					
						
						| 
							 | 
						    tokenizer_class = "AutoTokenizer" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__( | 
					
					
						
						| 
							 | 
						        self, image_processor=None, tokenizer=None, chat_template=None, **kwargs | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        self.image_token = ( | 
					
					
						
						| 
							 | 
						            "<|IMAGE_PLACEHOLDER|>" | 
					
					
						
						| 
							 | 
						            if not hasattr(tokenizer, "image_token") | 
					
					
						
						| 
							 | 
						            else tokenizer.image_token | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        self.video_token = ( | 
					
					
						
						| 
							 | 
						            "<|video_pad|>" | 
					
					
						
						| 
							 | 
						            if not hasattr(tokenizer, "video_token") | 
					
					
						
						| 
							 | 
						            else tokenizer.video_token | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        super().__init__(image_processor, tokenizer, chat_template=chat_template) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __call__( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        images: ImageInput = None, | 
					
					
						
						| 
							 | 
						        text: Union[ | 
					
					
						
						| 
							 | 
						            TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput] | 
					
					
						
						| 
							 | 
						        ] = None, | 
					
					
						
						| 
							 | 
						        videos: VideoInput = None, | 
					
					
						
						| 
							 | 
						        **kwargs: Unpack[PaddleOCRVLProcessorKwargs], | 
					
					
						
						| 
							 | 
						    ) -> BatchFeature: | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` | 
					
					
						
						| 
							 | 
						        and `kwargs` arguments to Qwen2TokenizerFast's [`~Qwen2TokenizerFast.__call__`] if `text` is not `None` to encode | 
					
					
						
						| 
							 | 
						        the text. To prepare the vision inputs, this method forwards the `vision_infos` and `kwrags` arguments to | 
					
					
						
						| 
							 | 
						        SiglipImageProcessor's [`~SiglipImageProcessor.__call__`] if `vision_infos` is not `None`. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Args: | 
					
					
						
						| 
							 | 
						            images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): | 
					
					
						
						| 
							 | 
						                The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch | 
					
					
						
						| 
							 | 
						                tensor. Both channels-first and channels-last formats are supported. | 
					
					
						
						| 
							 | 
						            text (`str`, `List[str]`, `List[List[str]]`): | 
					
					
						
						| 
							 | 
						                The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings | 
					
					
						
						| 
							 | 
						                (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set | 
					
					
						
						| 
							 | 
						                `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). | 
					
					
						
						| 
							 | 
						            videos (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`): | 
					
					
						
						| 
							 | 
						                The image or batch of videos to be prepared. Each video can be a 4D NumPy array or PyTorch | 
					
					
						
						| 
							 | 
						                tensor, or a nested list of 3D frames. Both channels-first and channels-last formats are supported. | 
					
					
						
						| 
							 | 
						            return_tensors (`str` or [`~utils.TensorType`], *optional*): | 
					
					
						
						| 
							 | 
						                If set, will return tensors of a particular framework. Acceptable values are: | 
					
					
						
						| 
							 | 
						                - `'tf'`: Return TensorFlow `tf.constant` objects. | 
					
					
						
						| 
							 | 
						                - `'pt'`: Return PyTorch `torch.Tensor` objects. | 
					
					
						
						| 
							 | 
						                - `'np'`: Return NumPy `np.ndarray` objects. | 
					
					
						
						| 
							 | 
						                - `'jax'`: Return JAX `jnp.ndarray` objects. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Returns: | 
					
					
						
						| 
							 | 
						            [`BatchFeature`]: A [`BatchFeature`] with the following fields: | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. | 
					
					
						
						| 
							 | 
						            - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when | 
					
					
						
						| 
							 | 
						              `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not | 
					
					
						
						| 
							 | 
						              `None`). | 
					
					
						
						| 
							 | 
						            - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. | 
					
					
						
						| 
							 | 
						            - **pixel_values_videos** -- Pixel values of videos to be fed to a model. Returned when `videos` is not `None`. | 
					
					
						
						| 
							 | 
						            - **image_grid_thw** -- List of image 3D grid in LLM. Returned when `images` is not `None`. | 
					
					
						
						| 
							 | 
						            - **video_grid_thw** -- List of video 3D grid in LLM. Returned when `videos` is not `None`. | 
					
					
						
						| 
							 | 
						            - **second_per_grid_ts** -- List of video seconds per time grid. Returned when `videos` is not `None`. | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        output_kwargs = self._merge_kwargs( | 
					
					
						
						| 
							 | 
						            PaddleOCRVLProcessorKwargs, | 
					
					
						
						| 
							 | 
						            tokenizer_init_kwargs=self.tokenizer.init_kwargs, | 
					
					
						
						| 
							 | 
						            **kwargs, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if images is not None: | 
					
					
						
						| 
							 | 
						            image_inputs = self.image_processor(images=images, return_tensors="pt") | 
					
					
						
						| 
							 | 
						            image_inputs["pixel_values"] = image_inputs["pixel_values"] | 
					
					
						
						| 
							 | 
						            image_grid_thw = image_inputs["image_grid_thw"] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            image_inputs = {} | 
					
					
						
						| 
							 | 
						            image_grid_thw = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if videos is not None: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            videos_inputs = self.image_processor( | 
					
					
						
						| 
							 | 
						                images=None, videos=videos, **output_kwargs["images_kwargs"] | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            video_grid_thw = videos_inputs["video_grid_thw"] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            fps = output_kwargs["videos_kwargs"].pop("fps", 2.0) | 
					
					
						
						| 
							 | 
						            if isinstance(fps, (int, float)): | 
					
					
						
						| 
							 | 
						                second_per_grid_ts = [ | 
					
					
						
						| 
							 | 
						                    self.image_processor.temporal_patch_size / fps | 
					
					
						
						| 
							 | 
						                ] * len(video_grid_thw) | 
					
					
						
						| 
							 | 
						            elif hasattr(fps, "__len__") and len(fps) == len(video_grid_thw): | 
					
					
						
						| 
							 | 
						                second_per_grid_ts = [ | 
					
					
						
						| 
							 | 
						                    self.image_processor.temporal_patch_size / tmp for tmp in fps | 
					
					
						
						| 
							 | 
						                ] | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                raise ValueError( | 
					
					
						
						| 
							 | 
						                    f"The length of fps ({len(fps) if hasattr(fps, '__len__') else fps}) must be equal to the length of video_grid_thw ({len(video_grid_thw)}) or fps should be a single number." | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						            videos_inputs.update( | 
					
					
						
						| 
							 | 
						                {"second_per_grid_ts": torch.tensor(second_per_grid_ts)} | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            videos_inputs = {} | 
					
					
						
						| 
							 | 
						            video_grid_thw = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if not isinstance(text, list): | 
					
					
						
						| 
							 | 
						            text = [text] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if image_grid_thw is not None: | 
					
					
						
						| 
							 | 
						            index = 0 | 
					
					
						
						| 
							 | 
						            for i in range(len(text)): | 
					
					
						
						| 
							 | 
						                while self.image_token in text[i]: | 
					
					
						
						| 
							 | 
						                    text[i] = text[i].replace( | 
					
					
						
						| 
							 | 
						                        self.image_token, | 
					
					
						
						| 
							 | 
						                        "<|placeholder|>" | 
					
					
						
						| 
							 | 
						                        * ( | 
					
					
						
						| 
							 | 
						                            image_grid_thw[index].prod() | 
					
					
						
						| 
							 | 
						                            // self.image_processor.merge_size | 
					
					
						
						| 
							 | 
						                            // self.image_processor.merge_size | 
					
					
						
						| 
							 | 
						                        ), | 
					
					
						
						| 
							 | 
						                        1, | 
					
					
						
						| 
							 | 
						                    ) | 
					
					
						
						| 
							 | 
						                    index += 1 | 
					
					
						
						| 
							 | 
						                text[i] = text[i].replace("<|placeholder|>", self.image_token) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if video_grid_thw is not None: | 
					
					
						
						| 
							 | 
						            index = 0 | 
					
					
						
						| 
							 | 
						            for i in range(len(text)): | 
					
					
						
						| 
							 | 
						                while self.video_token in text[i]: | 
					
					
						
						| 
							 | 
						                    text[i] = text[i].replace( | 
					
					
						
						| 
							 | 
						                        self.video_token, | 
					
					
						
						| 
							 | 
						                        "<|placeholder|>" | 
					
					
						
						| 
							 | 
						                        * ( | 
					
					
						
						| 
							 | 
						                            video_grid_thw[index].prod() | 
					
					
						
						| 
							 | 
						                            // self.image_processor.merge_size | 
					
					
						
						| 
							 | 
						                            // self.image_processor.merge_size | 
					
					
						
						| 
							 | 
						                        ), | 
					
					
						
						| 
							 | 
						                        1, | 
					
					
						
						| 
							 | 
						                    ) | 
					
					
						
						| 
							 | 
						                    index += 1 | 
					
					
						
						| 
							 | 
						                text[i] = text[i].replace("<|placeholder|>", self.video_token) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return BatchFeature(data={**text_inputs, **image_inputs, **videos_inputs}) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def batch_decode(self, *args, **kwargs): | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please | 
					
					
						
						| 
							 | 
						        refer to the docstring of this method for more information. | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        return self.tokenizer.batch_decode(*args, **kwargs) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def decode(self, *args, **kwargs): | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to | 
					
					
						
						| 
							 | 
						        the docstring of this method for more information. | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        return self.tokenizer.decode(*args, **kwargs) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def post_process_image_text_to_text( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        generated_outputs, | 
					
					
						
						| 
							 | 
						        skip_special_tokens=True, | 
					
					
						
						| 
							 | 
						        clean_up_tokenization_spaces=False, | 
					
					
						
						| 
							 | 
						        **kwargs, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        Post-process the output of the model to decode the text. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Args: | 
					
					
						
						| 
							 | 
						            generated_outputs (`torch.Tensor` or `np.ndarray`): | 
					
					
						
						| 
							 | 
						                The output of the model `generate` function. The output is expected to be a tensor of shape `(batch_size, sequence_length)` | 
					
					
						
						| 
							 | 
						                or `(sequence_length,)`. | 
					
					
						
						| 
							 | 
						            skip_special_tokens (`bool`, *optional*, defaults to `True`): | 
					
					
						
						| 
							 | 
						                Whether or not to remove special tokens in the output. Argument passed to the tokenizer's `batch_decode` method. | 
					
					
						
						| 
							 | 
						            Clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`): | 
					
					
						
						| 
							 | 
						                Whether or not to clean up the tokenization spaces. Argument passed to the tokenizer's `batch_decode` method. | 
					
					
						
						| 
							 | 
						            **kwargs: | 
					
					
						
						| 
							 | 
						                Additional arguments to be passed to the tokenizer's `batch_decode method`. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Returns: | 
					
					
						
						| 
							 | 
						            `List[str]`: The decoded text. | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        return self.tokenizer.batch_decode( | 
					
					
						
						| 
							 | 
						            generated_outputs, | 
					
					
						
						| 
							 | 
						            skip_special_tokens=skip_special_tokens, | 
					
					
						
						| 
							 | 
						            clean_up_tokenization_spaces=clean_up_tokenization_spaces, | 
					
					
						
						| 
							 | 
						            **kwargs, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @property | 
					
					
						
						| 
							 | 
						    def model_input_names(self): | 
					
					
						
						| 
							 | 
						        tokenizer_input_names = self.tokenizer.model_input_names | 
					
					
						
						| 
							 | 
						        image_processor_input_names = self.image_processor.model_input_names | 
					
					
						
						| 
							 | 
						        names_from_processor = list( | 
					
					
						
						| 
							 | 
						            dict.fromkeys(tokenizer_input_names + image_processor_input_names) | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        return names_from_processor + ["second_per_grid_ts"] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						__all__ = ["PaddleOCRVLProcessor", "PaddleOCRVLProcessor"] | 
					
					
						
						| 
							 | 
						
 |