answerai-colbert-small-v1
Browse files- 1_Dense/config.json +1 -0
- 1_Dense/model.safetensors +3 -0
- README.md +238 -0
- config.json +31 -0
- config_sentence_transformers.json +49 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +31 -0
- tokenizer.json +0 -0
- tokenizer_config.json +74 -0
- vocab.txt +0 -0
1_Dense/config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"in_features": 384, "out_features": 96, "bias": false, "activation_function": "torch.nn.modules.linear.Identity"}
|
1_Dense/model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:47d2690e7c1612c84b7b941e69a883e99190b9b44ebb0be00152f68966c6eb11
|
| 3 |
+
size 147544
|
README.md
ADDED
|
@@ -0,0 +1,238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- ColBERT
|
| 4 |
+
- PyLate
|
| 5 |
+
- sentence-transformers
|
| 6 |
+
- sentence-similarity
|
| 7 |
+
- feature-extraction
|
| 8 |
+
base_model: answerdotai/answerai-colbert-small-v1
|
| 9 |
+
pipeline_tag: sentence-similarity
|
| 10 |
+
library_name: PyLate
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
# PyLate model based on answerdotai/answerai-colbert-small-v1
|
| 14 |
+
|
| 15 |
+
This is a [PyLate](https://github.com/lightonai/pylate) model finetuned from [answerdotai/answerai-colbert-small-v1](https://huggingface.co/answerdotai/answerai-colbert-small-v1). It maps sentences & paragraphs to sequences of 96-dimensional dense vectors and can be used for semantic textual similarity using the MaxSim operator.
|
| 16 |
+
|
| 17 |
+
## Model Details
|
| 18 |
+
|
| 19 |
+
### Model Description
|
| 20 |
+
- **Model Type:** PyLate model
|
| 21 |
+
- **Base model:** [answerdotai/answerai-colbert-small-v1](https://huggingface.co/answerdotai/answerai-colbert-small-v1) <!-- at revision be1703c55532145a844da800eea4c9a692d7e267 -->
|
| 22 |
+
- **Document Length:** 300 tokens
|
| 23 |
+
- **Query Length:** 32 tokens
|
| 24 |
+
- **Output Dimensionality:** 96 tokens
|
| 25 |
+
- **Similarity Function:** MaxSim
|
| 26 |
+
<!-- - **Training Dataset:** Unknown -->
|
| 27 |
+
<!-- - **Language:** Unknown -->
|
| 28 |
+
<!-- - **License:** Unknown -->
|
| 29 |
+
|
| 30 |
+
### Model Sources
|
| 31 |
+
|
| 32 |
+
- **Documentation:** [PyLate Documentation](https://lightonai.github.io/pylate/)
|
| 33 |
+
- **Repository:** [PyLate on GitHub](https://github.com/lightonai/pylate)
|
| 34 |
+
- **Hugging Face:** [PyLate models on Hugging Face](https://huggingface.co/models?library=PyLate)
|
| 35 |
+
|
| 36 |
+
### Full Model Architecture
|
| 37 |
+
|
| 38 |
+
```
|
| 39 |
+
ColBERT(
|
| 40 |
+
(0): Transformer({'max_seq_length': 299, 'do_lower_case': False}) with Transformer model: BertModel
|
| 41 |
+
(1): Dense({'in_features': 384, 'out_features': 96, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
|
| 42 |
+
)
|
| 43 |
+
```
|
| 44 |
+
|
| 45 |
+
## Usage
|
| 46 |
+
First install the PyLate library:
|
| 47 |
+
|
| 48 |
+
```bash
|
| 49 |
+
pip install -U pylate
|
| 50 |
+
```
|
| 51 |
+
|
| 52 |
+
### Retrieval
|
| 53 |
+
|
| 54 |
+
PyLate provides a streamlined interface to index and retrieve documents using ColBERT models. The index leverages the Voyager HNSW index to efficiently handle document embeddings and enable fast retrieval.
|
| 55 |
+
|
| 56 |
+
#### Indexing documents
|
| 57 |
+
|
| 58 |
+
First, load the ColBERT model and initialize the Voyager index, then encode and index your documents:
|
| 59 |
+
|
| 60 |
+
```python
|
| 61 |
+
from pylate import indexes, models, retrieve
|
| 62 |
+
|
| 63 |
+
# Step 1: Load the ColBERT model
|
| 64 |
+
model = models.ColBERT(
|
| 65 |
+
model_name_or_path=lightonai/answerai-colbert-small-v1,
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
# Step 2: Initialize the Voyager index
|
| 69 |
+
index = indexes.Voyager(
|
| 70 |
+
index_folder="pylate-index",
|
| 71 |
+
index_name="index",
|
| 72 |
+
override=True, # This overwrites the existing index if any
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
# Step 3: Encode the documents
|
| 76 |
+
documents_ids = ["1", "2", "3"]
|
| 77 |
+
documents = ["document 1 text", "document 2 text", "document 3 text"]
|
| 78 |
+
|
| 79 |
+
documents_embeddings = model.encode(
|
| 80 |
+
documents,
|
| 81 |
+
batch_size=32,
|
| 82 |
+
is_query=False, # Ensure that it is set to False to indicate that these are documents, not queries
|
| 83 |
+
show_progress_bar=True,
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
# Step 4: Add document embeddings to the index by providing embeddings and corresponding ids
|
| 87 |
+
index.add_documents(
|
| 88 |
+
documents_ids=documents_ids,
|
| 89 |
+
documents_embeddings=documents_embeddings,
|
| 90 |
+
)
|
| 91 |
+
```
|
| 92 |
+
|
| 93 |
+
Note that you do not have to recreate the index and encode the documents every time. Once you have created an index and added the documents, you can re-use the index later by loading it:
|
| 94 |
+
|
| 95 |
+
```python
|
| 96 |
+
# To load an index, simply instantiate it with the correct folder/name and without overriding it
|
| 97 |
+
index = indexes.Voyager(
|
| 98 |
+
index_folder="pylate-index",
|
| 99 |
+
index_name="index",
|
| 100 |
+
)
|
| 101 |
+
```
|
| 102 |
+
|
| 103 |
+
#### Retrieving top-k documents for queries
|
| 104 |
+
|
| 105 |
+
Once the documents are indexed, you can retrieve the top-k most relevant documents for a given set of queries.
|
| 106 |
+
To do so, initialize the ColBERT retriever with the index you want to search in, encode the queries and then retrieve the top-k documents to get the top matches ids and relevance scores:
|
| 107 |
+
|
| 108 |
+
```python
|
| 109 |
+
# Step 1: Initialize the ColBERT retriever
|
| 110 |
+
retriever = retrieve.ColBERT(index=index)
|
| 111 |
+
|
| 112 |
+
# Step 2: Encode the queries
|
| 113 |
+
queries_embeddings = model.encode(
|
| 114 |
+
["query for document 3", "query for document 1"],
|
| 115 |
+
batch_size=32,
|
| 116 |
+
is_query=True, # # Ensure that it is set to False to indicate that these are queries
|
| 117 |
+
show_progress_bar=True,
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
# Step 3: Retrieve top-k documents
|
| 121 |
+
scores = retriever.retrieve(
|
| 122 |
+
queries_embeddings=queries_embeddings,
|
| 123 |
+
k=10, # Retrieve the top 10 matches for each query
|
| 124 |
+
)
|
| 125 |
+
```
|
| 126 |
+
|
| 127 |
+
### Reranking
|
| 128 |
+
If you only want to use the ColBERT model to perform reranking on top of your first-stage retrieval pipeline without building an index, you can simply use rank function and pass the queries and documents to rerank:
|
| 129 |
+
|
| 130 |
+
```python
|
| 131 |
+
from pylate import rank, models
|
| 132 |
+
|
| 133 |
+
queries = [
|
| 134 |
+
"query A",
|
| 135 |
+
"query B",
|
| 136 |
+
]
|
| 137 |
+
|
| 138 |
+
documents = [
|
| 139 |
+
["document A", "document B"],
|
| 140 |
+
["document 1", "document C", "document B"],
|
| 141 |
+
]
|
| 142 |
+
|
| 143 |
+
documents_ids = [
|
| 144 |
+
[1, 2],
|
| 145 |
+
[1, 3, 2],
|
| 146 |
+
]
|
| 147 |
+
|
| 148 |
+
model = models.ColBERT(
|
| 149 |
+
model_name_or_path=lightonai/answerai-colbert-small-v1,
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
+
queries_embeddings = model.encode(
|
| 153 |
+
queries,
|
| 154 |
+
is_query=True,
|
| 155 |
+
)
|
| 156 |
+
|
| 157 |
+
documents_embeddings = model.encode(
|
| 158 |
+
documents,
|
| 159 |
+
is_query=False,
|
| 160 |
+
)
|
| 161 |
+
|
| 162 |
+
reranked_documents = rank.rerank(
|
| 163 |
+
documents_ids=documents_ids,
|
| 164 |
+
queries_embeddings=queries_embeddings,
|
| 165 |
+
documents_embeddings=documents_embeddings,
|
| 166 |
+
)
|
| 167 |
+
```
|
| 168 |
+
|
| 169 |
+
<!--
|
| 170 |
+
### Direct Usage (Transformers)
|
| 171 |
+
|
| 172 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 173 |
+
|
| 174 |
+
</details>
|
| 175 |
+
-->
|
| 176 |
+
|
| 177 |
+
<!--
|
| 178 |
+
### Downstream Usage (Sentence Transformers)
|
| 179 |
+
|
| 180 |
+
You can finetune this model on your own dataset.
|
| 181 |
+
|
| 182 |
+
<details><summary>Click to expand</summary>
|
| 183 |
+
|
| 184 |
+
</details>
|
| 185 |
+
-->
|
| 186 |
+
|
| 187 |
+
<!--
|
| 188 |
+
### Out-of-Scope Use
|
| 189 |
+
|
| 190 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 191 |
+
-->
|
| 192 |
+
|
| 193 |
+
<!--
|
| 194 |
+
## Bias, Risks and Limitations
|
| 195 |
+
|
| 196 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 197 |
+
-->
|
| 198 |
+
|
| 199 |
+
<!--
|
| 200 |
+
### Recommendations
|
| 201 |
+
|
| 202 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 203 |
+
-->
|
| 204 |
+
|
| 205 |
+
## Training Details
|
| 206 |
+
|
| 207 |
+
### Framework Versions
|
| 208 |
+
- Python: 3.12.0
|
| 209 |
+
- Sentence Transformers: 4.0.2
|
| 210 |
+
- PyLate: 1.2.0
|
| 211 |
+
- Transformers: 4.48.2
|
| 212 |
+
- PyTorch: 2.6.0
|
| 213 |
+
- Accelerate: 1.6.0
|
| 214 |
+
- Datasets: 3.5.0
|
| 215 |
+
- Tokenizers: 0.21.1
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
## Citation
|
| 219 |
+
|
| 220 |
+
### BibTeX
|
| 221 |
+
|
| 222 |
+
<!--
|
| 223 |
+
## Glossary
|
| 224 |
+
|
| 225 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 226 |
+
-->
|
| 227 |
+
|
| 228 |
+
<!--
|
| 229 |
+
## Model Card Authors
|
| 230 |
+
|
| 231 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 232 |
+
-->
|
| 233 |
+
|
| 234 |
+
<!--
|
| 235 |
+
## Model Card Contact
|
| 236 |
+
|
| 237 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 238 |
+
-->
|
config.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "answerdotai/answerai-colbert-small-v1",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"BertModel"
|
| 5 |
+
],
|
| 6 |
+
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"classifier_dropout": null,
|
| 8 |
+
"hidden_act": "gelu",
|
| 9 |
+
"hidden_dropout_prob": 0.1,
|
| 10 |
+
"hidden_size": 384,
|
| 11 |
+
"id2label": {
|
| 12 |
+
"0": "LABEL_0"
|
| 13 |
+
},
|
| 14 |
+
"initializer_range": 0.02,
|
| 15 |
+
"intermediate_size": 1536,
|
| 16 |
+
"label2id": {
|
| 17 |
+
"LABEL_0": 0
|
| 18 |
+
},
|
| 19 |
+
"layer_norm_eps": 1e-12,
|
| 20 |
+
"max_position_embeddings": 512,
|
| 21 |
+
"model_type": "bert",
|
| 22 |
+
"num_attention_heads": 12,
|
| 23 |
+
"num_hidden_layers": 12,
|
| 24 |
+
"pad_token_id": 0,
|
| 25 |
+
"position_embedding_type": "absolute",
|
| 26 |
+
"torch_dtype": "float32",
|
| 27 |
+
"transformers_version": "4.48.2",
|
| 28 |
+
"type_vocab_size": 2,
|
| 29 |
+
"use_cache": true,
|
| 30 |
+
"vocab_size": 30522
|
| 31 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "4.0.2",
|
| 4 |
+
"transformers": "4.48.2",
|
| 5 |
+
"pytorch": "2.6.0"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {},
|
| 8 |
+
"default_prompt_name": null,
|
| 9 |
+
"similarity_fn_name": "MaxSim",
|
| 10 |
+
"query_prefix": "[unused0]",
|
| 11 |
+
"document_prefix": "[unused1]",
|
| 12 |
+
"query_length": 32,
|
| 13 |
+
"document_length": 300,
|
| 14 |
+
"attend_to_expansion_tokens": false,
|
| 15 |
+
"skiplist_words": [
|
| 16 |
+
"!",
|
| 17 |
+
"\"",
|
| 18 |
+
"#",
|
| 19 |
+
"$",
|
| 20 |
+
"%",
|
| 21 |
+
"&",
|
| 22 |
+
"'",
|
| 23 |
+
"(",
|
| 24 |
+
")",
|
| 25 |
+
"*",
|
| 26 |
+
"+",
|
| 27 |
+
",",
|
| 28 |
+
"-",
|
| 29 |
+
".",
|
| 30 |
+
"/",
|
| 31 |
+
":",
|
| 32 |
+
";",
|
| 33 |
+
"<",
|
| 34 |
+
"=",
|
| 35 |
+
">",
|
| 36 |
+
"?",
|
| 37 |
+
"@",
|
| 38 |
+
"[",
|
| 39 |
+
"\\",
|
| 40 |
+
"]",
|
| 41 |
+
"^",
|
| 42 |
+
"_",
|
| 43 |
+
"`",
|
| 44 |
+
"{",
|
| 45 |
+
"|",
|
| 46 |
+
"}",
|
| 47 |
+
"~"
|
| 48 |
+
]
|
| 49 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a995fb9115761c01540f2987629d393d5e058146ad847426f81dab50f7815330
|
| 3 |
+
size 133462128
|
modules.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Dense",
|
| 12 |
+
"type": "pylate.models.Dense.Dense"
|
| 13 |
+
}
|
| 14 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 299,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": {
|
| 3 |
+
"content": "[CLS]",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"mask_token": {
|
| 10 |
+
"content": "[MASK]",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": "[MASK]",
|
| 17 |
+
"sep_token": {
|
| 18 |
+
"content": "[SEP]",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
},
|
| 24 |
+
"unk_token": {
|
| 25 |
+
"content": "[UNK]",
|
| 26 |
+
"lstrip": false,
|
| 27 |
+
"normalized": false,
|
| 28 |
+
"rstrip": false,
|
| 29 |
+
"single_word": false
|
| 30 |
+
}
|
| 31 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "[unused0]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": true,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": false
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "[unused1]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": true,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": false
|
| 26 |
+
},
|
| 27 |
+
"100": {
|
| 28 |
+
"content": "[UNK]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"101": {
|
| 36 |
+
"content": "[CLS]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
},
|
| 43 |
+
"102": {
|
| 44 |
+
"content": "[SEP]",
|
| 45 |
+
"lstrip": false,
|
| 46 |
+
"normalized": false,
|
| 47 |
+
"rstrip": false,
|
| 48 |
+
"single_word": false,
|
| 49 |
+
"special": true
|
| 50 |
+
},
|
| 51 |
+
"103": {
|
| 52 |
+
"content": "[MASK]",
|
| 53 |
+
"lstrip": false,
|
| 54 |
+
"normalized": false,
|
| 55 |
+
"rstrip": false,
|
| 56 |
+
"single_word": false,
|
| 57 |
+
"special": true
|
| 58 |
+
}
|
| 59 |
+
},
|
| 60 |
+
"clean_up_tokenization_spaces": true,
|
| 61 |
+
"cls_token": "[CLS]",
|
| 62 |
+
"do_basic_tokenize": true,
|
| 63 |
+
"do_lower_case": true,
|
| 64 |
+
"extra_special_tokens": {},
|
| 65 |
+
"mask_token": "[MASK]",
|
| 66 |
+
"model_max_length": 512,
|
| 67 |
+
"never_split": null,
|
| 68 |
+
"pad_token": "[MASK]",
|
| 69 |
+
"sep_token": "[SEP]",
|
| 70 |
+
"strip_accents": null,
|
| 71 |
+
"tokenize_chinese_chars": true,
|
| 72 |
+
"tokenizer_class": "BertTokenizer",
|
| 73 |
+
"unk_token": "[UNK]"
|
| 74 |
+
}
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|