Update README.md
Browse files
README.md
CHANGED
|
@@ -90,10 +90,10 @@ import requests
|
|
| 90 |
from PIL import Image
|
| 91 |
|
| 92 |
import torch
|
| 93 |
-
from transformers import AutoProcessor,
|
| 94 |
|
| 95 |
model_id = "llava-hf/llava-onevision-qwen2-0.5b-ov-hf"
|
| 96 |
-
model =
|
| 97 |
model_id,
|
| 98 |
torch_dtype=torch.float16,
|
| 99 |
low_cpu_mem_usage=True,
|
|
@@ -130,7 +130,7 @@ print(processor.decode(output[0][2:], skip_special_tokens=True))
|
|
| 130 |
First make sure to install `bitsandbytes`, `pip install bitsandbytes` and make sure to have access to a CUDA compatible GPU device. Simply change the snippet above with:
|
| 131 |
|
| 132 |
```diff
|
| 133 |
-
model =
|
| 134 |
model_id,
|
| 135 |
torch_dtype=torch.float16,
|
| 136 |
low_cpu_mem_usage=True,
|
|
@@ -143,7 +143,7 @@ model = LlavaNextForConditionalGeneration.from_pretrained(
|
|
| 143 |
First make sure to install `flash-attn`. Refer to the [original repository of Flash Attention](https://github.com/Dao-AILab/flash-attention) regarding that package installation. Simply change the snippet above with:
|
| 144 |
|
| 145 |
```diff
|
| 146 |
-
model =
|
| 147 |
model_id,
|
| 148 |
torch_dtype=torch.float16,
|
| 149 |
low_cpu_mem_usage=True,
|
|
|
|
| 90 |
from PIL import Image
|
| 91 |
|
| 92 |
import torch
|
| 93 |
+
from transformers import AutoProcessor, LlavaOnevisionForConditionalGeneration
|
| 94 |
|
| 95 |
model_id = "llava-hf/llava-onevision-qwen2-0.5b-ov-hf"
|
| 96 |
+
model = LlavaOnevisionForConditionalGeneration.from_pretrained(
|
| 97 |
model_id,
|
| 98 |
torch_dtype=torch.float16,
|
| 99 |
low_cpu_mem_usage=True,
|
|
|
|
| 130 |
First make sure to install `bitsandbytes`, `pip install bitsandbytes` and make sure to have access to a CUDA compatible GPU device. Simply change the snippet above with:
|
| 131 |
|
| 132 |
```diff
|
| 133 |
+
model = LlavaOnevisionForConditionalGeneration.from_pretrained(
|
| 134 |
model_id,
|
| 135 |
torch_dtype=torch.float16,
|
| 136 |
low_cpu_mem_usage=True,
|
|
|
|
| 143 |
First make sure to install `flash-attn`. Refer to the [original repository of Flash Attention](https://github.com/Dao-AILab/flash-attention) regarding that package installation. Simply change the snippet above with:
|
| 144 |
|
| 145 |
```diff
|
| 146 |
+
model = LlavaOnevisionForConditionalGeneration.from_pretrained(
|
| 147 |
model_id,
|
| 148 |
torch_dtype=torch.float16,
|
| 149 |
low_cpu_mem_usage=True,
|