Upload 9 files
Browse files- BiRefNet_config.py +11 -0
 - README.md +227 -3
 - birefnet.py +2249 -0
 - config.json +20 -0
 - gitattributes +35 -0
 - gitignore +142 -0
 - handler.py +139 -0
 - model.safetensors +3 -0
 - requirements.txt +16 -0
 
    	
        BiRefNet_config.py
    ADDED
    
    | 
         @@ -0,0 +1,11 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            from transformers import PretrainedConfig
         
     | 
| 2 | 
         
            +
             
     | 
| 3 | 
         
            +
            class BiRefNetConfig(PretrainedConfig):
         
     | 
| 4 | 
         
            +
                model_type = "SegformerForSemanticSegmentation"
         
     | 
| 5 | 
         
            +
                def __init__(
         
     | 
| 6 | 
         
            +
                    self,
         
     | 
| 7 | 
         
            +
                    bb_pretrained=False,
         
     | 
| 8 | 
         
            +
                    **kwargs
         
     | 
| 9 | 
         
            +
                ):
         
     | 
| 10 | 
         
            +
                    self.bb_pretrained = bb_pretrained
         
     | 
| 11 | 
         
            +
                    super().__init__(**kwargs)
         
     | 
    	
        README.md
    CHANGED
    
    | 
         @@ -1,3 +1,227 @@ 
     | 
|
| 1 | 
         
            -
            ---
         
     | 
| 2 | 
         
            -
             
     | 
| 3 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            ---
         
     | 
| 2 | 
         
            +
            library_name: birefnet
         
     | 
| 3 | 
         
            +
            tags:
         
     | 
| 4 | 
         
            +
            - background-removal
         
     | 
| 5 | 
         
            +
            - mask-generation
         
     | 
| 6 | 
         
            +
            - Dichotomous Image Segmentation
         
     | 
| 7 | 
         
            +
            - Camouflaged Object Detection
         
     | 
| 8 | 
         
            +
            - Salient Object Detection
         
     | 
| 9 | 
         
            +
            - pytorch_model_hub_mixin
         
     | 
| 10 | 
         
            +
            - model_hub_mixin
         
     | 
| 11 | 
         
            +
            - transformers
         
     | 
| 12 | 
         
            +
            - transformers.js
         
     | 
| 13 | 
         
            +
            repo_url: https://github.com/ZhengPeng7/BiRefNet
         
     | 
| 14 | 
         
            +
            pipeline_tag: image-segmentation
         
     | 
| 15 | 
         
            +
            license: mit
         
     | 
| 16 | 
         
            +
            ---
         
     | 
| 17 | 
         
            +
            <h1 align="center">Bilateral Reference for High-Resolution Dichotomous Image Segmentation</h1>
         
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
            <div align='center'>
         
     | 
| 20 | 
         
            +
                <a href='https://scholar.google.com/citations?user=TZRzWOsAAAAJ' target='_blank'><strong>Peng Zheng</strong></a><sup> 1,4,5,6</sup>, 
         
     | 
| 21 | 
         
            +
                <a href='https://scholar.google.com/citations?user=0uPb8MMAAAAJ' target='_blank'><strong>Dehong Gao</strong></a><sup> 2</sup>, 
         
     | 
| 22 | 
         
            +
                <a href='https://scholar.google.com/citations?user=kakwJ5QAAAAJ' target='_blank'><strong>Deng-Ping Fan</strong></a><sup> 1*</sup>, 
         
     | 
| 23 | 
         
            +
                <a href='https://scholar.google.com/citations?user=9cMQrVsAAAAJ' target='_blank'><strong>Li Liu</strong></a><sup> 3</sup>, 
         
     | 
| 24 | 
         
            +
                <a href='https://scholar.google.com/citations?user=qQP6WXIAAAAJ' target='_blank'><strong>Jorma Laaksonen</strong></a><sup> 4</sup>, 
         
     | 
| 25 | 
         
            +
                <a href='https://scholar.google.com/citations?user=pw_0Z_UAAAAJ' target='_blank'><strong>Wanli Ouyang</strong></a><sup> 5</sup>, 
         
     | 
| 26 | 
         
            +
                <a href='https://scholar.google.com/citations?user=stFCYOAAAAAJ' target='_blank'><strong>Nicu Sebe</strong></a><sup> 6</sup>
         
     | 
| 27 | 
         
            +
            </div>
         
     | 
| 28 | 
         
            +
             
     | 
| 29 | 
         
            +
            <div align='center'>
         
     | 
| 30 | 
         
            +
                <sup>1 </sup>Nankai University   <sup>2 </sup>Northwestern Polytechnical University   <sup>3 </sup>National University of Defense Technology  <sup>4 </sup>Aalto University   <sup>5 </sup>Shanghai AI Laboratory   <sup>6 </sup>University of Trento  
         
     | 
| 31 | 
         
            +
            </div>
         
     | 
| 32 | 
         
            +
             
     | 
| 33 | 
         
            +
            <div align="center" style="display: flex; justify-content: center; flex-wrap: wrap;">
         
     | 
| 34 | 
         
            +
              <a href='https://www.sciopen.com/article/pdf/10.26599/AIR.2024.9150038.pdf'><img src='https://img.shields.io/badge/Journal-Paper-red'></a>  
         
     | 
| 35 | 
         
            +
              <a href='https://arxiv.org/pdf/2401.03407'><img src='https://img.shields.io/badge/arXiv-BiRefNet-red'></a>  
         
     | 
| 36 | 
         
            +
              <a href='https://drive.google.com/file/d/1aBnJ_R9lbnC2dm8dqD0-pzP2Cu-U1Xpt/view?usp=drive_link'><img src='https://img.shields.io/badge/中文版-BiRefNet-red'></a>  
         
     | 
| 37 | 
         
            +
              <a href='https://www.birefnet.top'><img src='https://img.shields.io/badge/Page-BiRefNet-red'></a>  
         
     | 
| 38 | 
         
            +
              <a href='https://drive.google.com/drive/folders/1s2Xe0cjq-2ctnJBR24563yMSCOu4CcxM'><img src='https://img.shields.io/badge/Drive-Stuff-green'></a>  
         
     | 
| 39 | 
         
            +
              <a href='LICENSE'><img src='https://img.shields.io/badge/License-MIT-yellow'></a>  
         
     | 
| 40 | 
         
            +
              <a href='https://huggingface.co/spaces/ZhengPeng7/BiRefNet_demo'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20HF%20Spaces-BiRefNet-blue'></a>  
         
     | 
| 41 | 
         
            +
              <a href='https://huggingface.co/ZhengPeng7/BiRefNet'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20HF%20Models-BiRefNet-blue'></a>  
         
     | 
| 42 | 
         
            +
              <a href='https://colab.research.google.com/drive/14Dqg7oeBkFEtchaHLNpig2BcdkZEogba?usp=drive_link'><img src='https://img.shields.io/badge/Single_Image_Inference-F9AB00?style=for-the-badge&logo=googlecolab&color=525252'></a>  
         
     | 
| 43 | 
         
            +
              <a href='https://colab.research.google.com/drive/1MaEiBfJ4xIaZZn0DqKrhydHB8X97hNXl#scrollTo=DJ4meUYjia6S'><img src='https://img.shields.io/badge/Inference_&_Evaluation-F9AB00?style=for-the-badge&logo=googlecolab&color=525252'></a>  
         
     | 
| 44 | 
         
            +
            </div>
         
     | 
| 45 | 
         
            +
             
     | 
| 46 | 
         
            +
             
     | 
| 47 | 
         
            +
            |            *DIS-Sample_1*        |             *DIS-Sample_2*        |
         
     | 
| 48 | 
         
            +
            | :------------------------------: | :-------------------------------: |
         
     | 
| 49 | 
         
            +
            | <img src="https://drive.google.com/thumbnail?id=1ItXaA26iYnE8XQ_GgNLy71MOWePoS2-g&sz=w400" /> |  <img src="https://drive.google.com/thumbnail?id=1Z-esCujQF_uEa_YJjkibc3NUrW4aR_d4&sz=w400" /> |
         
     | 
| 50 | 
         
            +
             
     | 
| 51 | 
         
            +
            This repo is the official implementation of "[**Bilateral Reference for High-Resolution Dichotomous Image Segmentation**](https://arxiv.org/pdf/2401.03407.pdf)" (___CAAI AIR 2024___). 
         
     | 
| 52 | 
         
            +
             
     | 
| 53 | 
         
            +
            Visit our GitHub repo: [https://github.com/ZhengPeng7/BiRefNet](https://github.com/ZhengPeng7/BiRefNet) for more details -- **codes**, **docs**, and **model zoo**!
         
     | 
| 54 | 
         
            +
             
     | 
| 55 | 
         
            +
            ## How to use
         
     | 
| 56 | 
         
            +
             
     | 
| 57 | 
         
            +
            ### 0. Install Packages:
         
     | 
| 58 | 
         
            +
            ```
         
     | 
| 59 | 
         
            +
            pip install -qr https://raw.githubusercontent.com/ZhengPeng7/BiRefNet/main/requirements.txt
         
     | 
| 60 | 
         
            +
            ```
         
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
            ### 1. Load BiRefNet:
         
     | 
| 63 | 
         
            +
             
     | 
| 64 | 
         
            +
            #### Use codes + weights from HuggingFace
         
     | 
| 65 | 
         
            +
            > Only use the weights on HuggingFace -- Pro: No need to download BiRefNet codes manually; Con: Codes on HuggingFace might not be latest version (I'll try to keep them always latest).
         
     | 
| 66 | 
         
            +
             
     | 
| 67 | 
         
            +
            ```python
         
     | 
| 68 | 
         
            +
            # Load BiRefNet with weights
         
     | 
| 69 | 
         
            +
            from transformers import AutoModelForImageSegmentation
         
     | 
| 70 | 
         
            +
            birefnet = AutoModelForImageSegmentation.from_pretrained('ZhengPeng7/BiRefNet', trust_remote_code=True)
         
     | 
| 71 | 
         
            +
            ```
         
     | 
| 72 | 
         
            +
             
     | 
| 73 | 
         
            +
            #### Use codes from GitHub + weights from HuggingFace
         
     | 
| 74 | 
         
            +
            > Only use the weights on HuggingFace -- Pro: codes are always latest; Con: Need to clone the BiRefNet repo from my GitHub.
         
     | 
| 75 | 
         
            +
             
     | 
| 76 | 
         
            +
            ```shell
         
     | 
| 77 | 
         
            +
            # Download codes
         
     | 
| 78 | 
         
            +
            git clone https://github.com/ZhengPeng7/BiRefNet.git
         
     | 
| 79 | 
         
            +
            cd BiRefNet
         
     | 
| 80 | 
         
            +
            ```
         
     | 
| 81 | 
         
            +
             
     | 
| 82 | 
         
            +
            ```python
         
     | 
| 83 | 
         
            +
            # Use codes locally
         
     | 
| 84 | 
         
            +
            from models.birefnet import BiRefNet
         
     | 
| 85 | 
         
            +
             
     | 
| 86 | 
         
            +
            # Load weights from Hugging Face Models
         
     | 
| 87 | 
         
            +
            birefnet = BiRefNet.from_pretrained('ZhengPeng7/BiRefNet')
         
     | 
| 88 | 
         
            +
            ```
         
     | 
| 89 | 
         
            +
             
     | 
| 90 | 
         
            +
            #### Use codes from GitHub + weights from local space
         
     | 
| 91 | 
         
            +
            > Only use the weights and codes both locally.
         
     | 
| 92 | 
         
            +
             
     | 
| 93 | 
         
            +
            ```python
         
     | 
| 94 | 
         
            +
            # Use codes and weights locally
         
     | 
| 95 | 
         
            +
            import torch
         
     | 
| 96 | 
         
            +
            from utils import check_state_dict
         
     | 
| 97 | 
         
            +
             
     | 
| 98 | 
         
            +
            birefnet = BiRefNet(bb_pretrained=False)
         
     | 
| 99 | 
         
            +
            state_dict = torch.load(PATH_TO_WEIGHT, map_location='cpu')
         
     | 
| 100 | 
         
            +
            state_dict = check_state_dict(state_dict)
         
     | 
| 101 | 
         
            +
            birefnet.load_state_dict(state_dict)
         
     | 
| 102 | 
         
            +
            ```
         
     | 
| 103 | 
         
            +
             
     | 
| 104 | 
         
            +
            #### Use the loaded BiRefNet for inference
         
     | 
| 105 | 
         
            +
            ```python
         
     | 
| 106 | 
         
            +
            # Imports
         
     | 
| 107 | 
         
            +
            from PIL import Image
         
     | 
| 108 | 
         
            +
            import matplotlib.pyplot as plt
         
     | 
| 109 | 
         
            +
            import torch
         
     | 
| 110 | 
         
            +
            from torchvision import transforms
         
     | 
| 111 | 
         
            +
            from models.birefnet import BiRefNet
         
     | 
| 112 | 
         
            +
             
     | 
| 113 | 
         
            +
            birefnet = ... # -- BiRefNet should be loaded with codes above, either way.
         
     | 
| 114 | 
         
            +
            torch.set_float32_matmul_precision(['high', 'highest'][0])
         
     | 
| 115 | 
         
            +
            birefnet.to('cuda')
         
     | 
| 116 | 
         
            +
            birefnet.eval()
         
     | 
| 117 | 
         
            +
            birefnet.half()
         
     | 
| 118 | 
         
            +
             
     | 
| 119 | 
         
            +
            def extract_object(birefnet, imagepath):
         
     | 
| 120 | 
         
            +
                # Data settings
         
     | 
| 121 | 
         
            +
                image_size = (1024, 1024)
         
     | 
| 122 | 
         
            +
                transform_image = transforms.Compose([
         
     | 
| 123 | 
         
            +
                    transforms.Resize(image_size),
         
     | 
| 124 | 
         
            +
                    transforms.ToTensor(),
         
     | 
| 125 | 
         
            +
                    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
         
     | 
| 126 | 
         
            +
                ])
         
     | 
| 127 | 
         
            +
             
     | 
| 128 | 
         
            +
                image = Image.open(imagepath)
         
     | 
| 129 | 
         
            +
                input_images = transform_image(image).unsqueeze(0).to('cuda').half()
         
     | 
| 130 | 
         
            +
             
     | 
| 131 | 
         
            +
                # Prediction
         
     | 
| 132 | 
         
            +
                with torch.no_grad():
         
     | 
| 133 | 
         
            +
                    preds = birefnet(input_images)[-1].sigmoid().cpu()
         
     | 
| 134 | 
         
            +
                pred = preds[0].squeeze()
         
     | 
| 135 | 
         
            +
                pred_pil = transforms.ToPILImage()(pred)
         
     | 
| 136 | 
         
            +
                mask = pred_pil.resize(image.size)
         
     | 
| 137 | 
         
            +
                image.putalpha(mask)
         
     | 
| 138 | 
         
            +
                return image, mask
         
     | 
| 139 | 
         
            +
             
     | 
| 140 | 
         
            +
            # Visualization
         
     | 
| 141 | 
         
            +
            plt.axis("off")
         
     | 
| 142 | 
         
            +
            plt.imshow(extract_object(birefnet, imagepath='PATH-TO-YOUR_IMAGE.jpg')[0])
         
     | 
| 143 | 
         
            +
            plt.show()
         
     | 
| 144 | 
         
            +
             
     | 
| 145 | 
         
            +
            ```
         
     | 
| 146 | 
         
            +
             
     | 
| 147 | 
         
            +
            ### 2. Use inference endpoint locally:
         
     | 
| 148 | 
         
            +
            > You may need to click the *deploy* and set up the endpoint by yourself, which would make some costs.
         
     | 
| 149 | 
         
            +
            ```
         
     | 
| 150 | 
         
            +
            import requests
         
     | 
| 151 | 
         
            +
            import base64
         
     | 
| 152 | 
         
            +
            from io import BytesIO
         
     | 
| 153 | 
         
            +
            from PIL import Image
         
     | 
| 154 | 
         
            +
             
     | 
| 155 | 
         
            +
             
     | 
| 156 | 
         
            +
            YOUR_HF_TOKEN = 'xxx'
         
     | 
| 157 | 
         
            +
            API_URL = "xxx"
         
     | 
| 158 | 
         
            +
            headers = {
         
     | 
| 159 | 
         
            +
            	"Authorization": "Bearer {}".format(YOUR_HF_TOKEN)
         
     | 
| 160 | 
         
            +
            }
         
     | 
| 161 | 
         
            +
             
     | 
| 162 | 
         
            +
            def base64_to_bytes(base64_string):
         
     | 
| 163 | 
         
            +
                # Remove the data URI prefix if present
         
     | 
| 164 | 
         
            +
                if "data:image" in base64_string:
         
     | 
| 165 | 
         
            +
                    base64_string = base64_string.split(",")[1]
         
     | 
| 166 | 
         
            +
             
     | 
| 167 | 
         
            +
                # Decode the Base64 string into bytes
         
     | 
| 168 | 
         
            +
                image_bytes = base64.b64decode(base64_string)
         
     | 
| 169 | 
         
            +
                return image_bytes
         
     | 
| 170 | 
         
            +
             
     | 
| 171 | 
         
            +
            def bytes_to_base64(image_bytes):
         
     | 
| 172 | 
         
            +
                # Create a BytesIO object to handle the image data
         
     | 
| 173 | 
         
            +
                image_stream = BytesIO(image_bytes)
         
     | 
| 174 | 
         
            +
             
     | 
| 175 | 
         
            +
                # Open the image using Pillow (PIL)
         
     | 
| 176 | 
         
            +
                image = Image.open(image_stream)
         
     | 
| 177 | 
         
            +
                return image
         
     | 
| 178 | 
         
            +
             
     | 
| 179 | 
         
            +
            def query(payload):
         
     | 
| 180 | 
         
            +
            	response = requests.post(API_URL, headers=headers, json=payload)
         
     | 
| 181 | 
         
            +
            	return response.json()
         
     | 
| 182 | 
         
            +
             
     | 
| 183 | 
         
            +
            output = query({
         
     | 
| 184 | 
         
            +
            	"inputs": "https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg",
         
     | 
| 185 | 
         
            +
            	"parameters": {}
         
     | 
| 186 | 
         
            +
            })
         
     | 
| 187 | 
         
            +
             
     | 
| 188 | 
         
            +
            output_image = bytes_to_base64(base64_to_bytes(output))
         
     | 
| 189 | 
         
            +
            output_image
         
     | 
| 190 | 
         
            +
            ```
         
     | 
| 191 | 
         
            +
             
     | 
| 192 | 
         
            +
             
     | 
| 193 | 
         
            +
            > This BiRefNet for standard dichotomous image segmentation (DIS) is trained on **DIS-TR** and validated on **DIS-TEs and DIS-VD**.
         
     | 
| 194 | 
         
            +
             
     | 
| 195 | 
         
            +
            ## This repo holds the official model weights of "[<ins>Bilateral Reference for High-Resolution Dichotomous Image Segmentation</ins>](https://arxiv.org/pdf/2401.03407)" (_CAAI AIR 2024_).
         
     | 
| 196 | 
         
            +
             
     | 
| 197 | 
         
            +
            This repo contains the weights of BiRefNet proposed in our paper, which has achieved the SOTA performance on three tasks (DIS, HRSOD, and COD).
         
     | 
| 198 | 
         
            +
             
     | 
| 199 | 
         
            +
            Go to my GitHub page for BiRefNet codes and the latest updates: https://github.com/ZhengPeng7/BiRefNet :)
         
     | 
| 200 | 
         
            +
             
     | 
| 201 | 
         
            +
             
     | 
| 202 | 
         
            +
            #### Try our online demos for inference:
         
     | 
| 203 | 
         
            +
             
     | 
| 204 | 
         
            +
            + Online **Image Inference** on Colab: [](https://colab.research.google.com/drive/14Dqg7oeBkFEtchaHLNpig2BcdkZEogba?usp=drive_link)
         
     | 
| 205 | 
         
            +
            + **Online Inference with GUI on Hugging Face** with adjustable resolutions: [](https://huggingface.co/spaces/ZhengPeng7/BiRefNet_demo)  
         
     | 
| 206 | 
         
            +
            + **Inference and evaluation** of your given weights: [](https://colab.research.google.com/drive/1MaEiBfJ4xIaZZn0DqKrhydHB8X97hNXl#scrollTo=DJ4meUYjia6S)
         
     | 
| 207 | 
         
            +
            <img src="https://drive.google.com/thumbnail?id=12XmDhKtO1o2fEvBu4OE4ULVB2BK0ecWi&sz=w1080" />
         
     | 
| 208 | 
         
            +
             
     | 
| 209 | 
         
            +
            ## Acknowledgement:
         
     | 
| 210 | 
         
            +
             
     | 
| 211 | 
         
            +
            + Many thanks to @Freepik for their generous support on GPU resources for training higher resolution BiRefNet models and more of my explorations.
         
     | 
| 212 | 
         
            +
            + Many thanks to @fal for their generous support on GPU resources for training better general BiRefNet models.
         
     | 
| 213 | 
         
            +
            + Many thanks to @not-lain for his help on the better deployment of our BiRefNet model on HuggingFace.
         
     | 
| 214 | 
         
            +
             
     | 
| 215 | 
         
            +
             
     | 
| 216 | 
         
            +
            ## Citation
         
     | 
| 217 | 
         
            +
             
     | 
| 218 | 
         
            +
            ```
         
     | 
| 219 | 
         
            +
            @article{zheng2024birefnet,
         
     | 
| 220 | 
         
            +
              title={Bilateral Reference for High-Resolution Dichotomous Image Segmentation},
         
     | 
| 221 | 
         
            +
              author={Zheng, Peng and Gao, Dehong and Fan, Deng-Ping and Liu, Li and Laaksonen, Jorma and Ouyang, Wanli and Sebe, Nicu},
         
     | 
| 222 | 
         
            +
              journal={CAAI Artificial Intelligence Research},
         
     | 
| 223 | 
         
            +
              volume = {3},
         
     | 
| 224 | 
         
            +
              pages = {9150038},
         
     | 
| 225 | 
         
            +
              year={2024}
         
     | 
| 226 | 
         
            +
            }
         
     | 
| 227 | 
         
            +
            ```
         
     | 
    	
        birefnet.py
    ADDED
    
    | 
         @@ -0,0 +1,2249 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            ### config.py
         
     | 
| 2 | 
         
            +
             
     | 
| 3 | 
         
            +
            import os
         
     | 
| 4 | 
         
            +
            import math
         
     | 
| 5 | 
         
            +
            from transformers import PretrainedConfig
         
     | 
| 6 | 
         
            +
             
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            class Config(PretrainedConfig):
         
     | 
| 9 | 
         
            +
                def __init__(self) -> None:
         
     | 
| 10 | 
         
            +
                    # PATH settings
         
     | 
| 11 | 
         
            +
                    self.sys_home_dir = os.path.expanduser('~')     # Make up your file system as: SYS_HOME_DIR/codes/dis/BiRefNet, SYS_HOME_DIR/datasets/dis/xx, SYS_HOME_DIR/weights/xx
         
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
                    # TASK settings
         
     | 
| 14 | 
         
            +
                    self.task = ['DIS5K', 'COD', 'HRSOD', 'DIS5K+HRSOD+HRS10K', 'P3M-10k'][0]
         
     | 
| 15 | 
         
            +
                    self.training_set = {
         
     | 
| 16 | 
         
            +
                        'DIS5K': ['DIS-TR', 'DIS-TR+DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4'][0],
         
     | 
| 17 | 
         
            +
                        'COD': 'TR-COD10K+TR-CAMO',
         
     | 
| 18 | 
         
            +
                        'HRSOD': ['TR-DUTS', 'TR-HRSOD', 'TR-UHRSD', 'TR-DUTS+TR-HRSOD', 'TR-DUTS+TR-UHRSD', 'TR-HRSOD+TR-UHRSD', 'TR-DUTS+TR-HRSOD+TR-UHRSD'][5],
         
     | 
| 19 | 
         
            +
                        'DIS5K+HRSOD+HRS10K': 'DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4+DIS-TR+TE-HRS10K+TE-HRSOD+TE-UHRSD+TR-HRS10K+TR-HRSOD+TR-UHRSD',     # leave DIS-VD for evaluation.
         
     | 
| 20 | 
         
            +
                        'P3M-10k': 'TR-P3M-10k',
         
     | 
| 21 | 
         
            +
                    }[self.task]
         
     | 
| 22 | 
         
            +
                    self.prompt4loc = ['dense', 'sparse'][0]
         
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
                    # Faster-Training settings
         
     | 
| 25 | 
         
            +
                    self.load_all = True
         
     | 
| 26 | 
         
            +
                    self.compile = True     # 1. Trigger CPU memory leak in some extend, which is an inherent problem of PyTorch.
         
     | 
| 27 | 
         
            +
                                            #   Machines with > 70GB CPU memory can run the whole training on DIS5K with default setting.
         
     | 
| 28 | 
         
            +
                                            # 2. Higher PyTorch version may fix it: https://github.com/pytorch/pytorch/issues/119607.
         
     | 
| 29 | 
         
            +
                                            # 3. But compile in Pytorch > 2.0.1 seems to bring no acceleration for training.
         
     | 
| 30 | 
         
            +
                    self.precisionHigh = True
         
     | 
| 31 | 
         
            +
             
     | 
| 32 | 
         
            +
                    # MODEL settings
         
     | 
| 33 | 
         
            +
                    self.ms_supervision = True
         
     | 
| 34 | 
         
            +
                    self.out_ref = self.ms_supervision and True
         
     | 
| 35 | 
         
            +
                    self.dec_ipt = True
         
     | 
| 36 | 
         
            +
                    self.dec_ipt_split = True
         
     | 
| 37 | 
         
            +
                    self.cxt_num = [0, 3][1]    # multi-scale skip connections from encoder
         
     | 
| 38 | 
         
            +
                    self.mul_scl_ipt = ['', 'add', 'cat'][2]
         
     | 
| 39 | 
         
            +
                    self.dec_att = ['', 'ASPP', 'ASPPDeformable'][2]
         
     | 
| 40 | 
         
            +
                    self.squeeze_block = ['', 'BasicDecBlk_x1', 'ResBlk_x4', 'ASPP_x3', 'ASPPDeformable_x3'][1]
         
     | 
| 41 | 
         
            +
                    self.dec_blk = ['BasicDecBlk', 'ResBlk', 'HierarAttDecBlk'][0]
         
     | 
| 42 | 
         
            +
             
     | 
| 43 | 
         
            +
                    # TRAINING settings
         
     | 
| 44 | 
         
            +
                    self.batch_size = 4
         
     | 
| 45 | 
         
            +
                    self.IoU_finetune_last_epochs = [
         
     | 
| 46 | 
         
            +
                        0,
         
     | 
| 47 | 
         
            +
                        {
         
     | 
| 48 | 
         
            +
                            'DIS5K': -50,
         
     | 
| 49 | 
         
            +
                            'COD': -20,
         
     | 
| 50 | 
         
            +
                            'HRSOD': -20,
         
     | 
| 51 | 
         
            +
                            'DIS5K+HRSOD+HRS10K': -20,
         
     | 
| 52 | 
         
            +
                            'P3M-10k': -20,
         
     | 
| 53 | 
         
            +
                        }[self.task]
         
     | 
| 54 | 
         
            +
                    ][1]    # choose 0 to skip
         
     | 
| 55 | 
         
            +
                    self.lr = (1e-4 if 'DIS5K' in self.task else 1e-5) * math.sqrt(self.batch_size / 4)     # DIS needs high lr to converge faster. Adapt the lr linearly
         
     | 
| 56 | 
         
            +
                    self.size = 1024
         
     | 
| 57 | 
         
            +
                    self.num_workers = max(4, self.batch_size)          # will be decrease to min(it, batch_size) at the initialization of the data_loader
         
     | 
| 58 | 
         
            +
             
     | 
| 59 | 
         
            +
                    # Backbone settings
         
     | 
| 60 | 
         
            +
                    self.bb = [
         
     | 
| 61 | 
         
            +
                        'vgg16', 'vgg16bn', 'resnet50',         # 0, 1, 2
         
     | 
| 62 | 
         
            +
                        'swin_v1_t', 'swin_v1_s',               # 3, 4
         
     | 
| 63 | 
         
            +
                        'swin_v1_b', 'swin_v1_l',               # 5-bs9, 6-bs4
         
     | 
| 64 | 
         
            +
                        'pvt_v2_b0', 'pvt_v2_b1',               # 7, 8
         
     | 
| 65 | 
         
            +
                        'pvt_v2_b2', 'pvt_v2_b5',               # 9-bs10, 10-bs5
         
     | 
| 66 | 
         
            +
                    ][6]
         
     | 
| 67 | 
         
            +
                    self.lateral_channels_in_collection = {
         
     | 
| 68 | 
         
            +
                        'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64],
         
     | 
| 69 | 
         
            +
                        'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64],
         
     | 
| 70 | 
         
            +
                        'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192],
         
     | 
| 71 | 
         
            +
                        'swin_v1_t': [768, 384, 192, 96], 'swin_v1_s': [768, 384, 192, 96],
         
     | 
| 72 | 
         
            +
                        'pvt_v2_b0': [256, 160, 64, 32], 'pvt_v2_b1': [512, 320, 128, 64],
         
     | 
| 73 | 
         
            +
                    }[self.bb]
         
     | 
| 74 | 
         
            +
                    if self.mul_scl_ipt == 'cat':
         
     | 
| 75 | 
         
            +
                        self.lateral_channels_in_collection = [channel * 2 for channel in self.lateral_channels_in_collection]
         
     | 
| 76 | 
         
            +
                    self.cxt = self.lateral_channels_in_collection[1:][::-1][-self.cxt_num:] if self.cxt_num else []
         
     | 
| 77 | 
         
            +
             
     | 
| 78 | 
         
            +
                    # MODEL settings - inactive
         
     | 
| 79 | 
         
            +
                    self.lat_blk = ['BasicLatBlk'][0]
         
     | 
| 80 | 
         
            +
                    self.dec_channels_inter = ['fixed', 'adap'][0]
         
     | 
| 81 | 
         
            +
                    self.refine = ['', 'itself', 'RefUNet', 'Refiner', 'RefinerPVTInChannels4'][0]
         
     | 
| 82 | 
         
            +
                    self.progressive_ref = self.refine and True
         
     | 
| 83 | 
         
            +
                    self.ender = self.progressive_ref and False
         
     | 
| 84 | 
         
            +
                    self.scale = self.progressive_ref and 2
         
     | 
| 85 | 
         
            +
                    self.auxiliary_classification = False       # Only for DIS5K, where class labels are saved in `dataset.py`.
         
     | 
| 86 | 
         
            +
                    self.refine_iteration = 1
         
     | 
| 87 | 
         
            +
                    self.freeze_bb = False
         
     | 
| 88 | 
         
            +
                    self.model = [
         
     | 
| 89 | 
         
            +
                        'BiRefNet',
         
     | 
| 90 | 
         
            +
                    ][0]
         
     | 
| 91 | 
         
            +
                    if self.dec_blk == 'HierarAttDecBlk':
         
     | 
| 92 | 
         
            +
                        self.batch_size = 2 ** [0, 1, 2, 3, 4][2]
         
     | 
| 93 | 
         
            +
             
     | 
| 94 | 
         
            +
                    # TRAINING settings - inactive
         
     | 
| 95 | 
         
            +
                    self.preproc_methods = ['flip', 'enhance', 'rotate', 'pepper', 'crop'][:4]
         
     | 
| 96 | 
         
            +
                    self.optimizer = ['Adam', 'AdamW'][1]
         
     | 
| 97 | 
         
            +
                    self.lr_decay_epochs = [1e5]    # Set to negative N to decay the lr in the last N-th epoch.
         
     | 
| 98 | 
         
            +
                    self.lr_decay_rate = 0.5
         
     | 
| 99 | 
         
            +
                    # Loss
         
     | 
| 100 | 
         
            +
                    self.lambdas_pix_last = {
         
     | 
| 101 | 
         
            +
                        # not 0 means opening this loss
         
     | 
| 102 | 
         
            +
                        # original rate -- 1 : 30 : 1.5 : 0.2, bce x 30
         
     | 
| 103 | 
         
            +
                        'bce': 30 * 1,          # high performance
         
     | 
| 104 | 
         
            +
                        'iou': 0.5 * 1,         # 0 / 255
         
     | 
| 105 | 
         
            +
                        'iou_patch': 0.5 * 0,   # 0 / 255, win_size = (64, 64)
         
     | 
| 106 | 
         
            +
                        'mse': 150 * 0,         # can smooth the saliency map
         
     | 
| 107 | 
         
            +
                        'triplet': 3 * 0,
         
     | 
| 108 | 
         
            +
                        'reg': 100 * 0,
         
     | 
| 109 | 
         
            +
                        'ssim': 10 * 1,          # help contours,
         
     | 
| 110 | 
         
            +
                        'cnt': 5 * 0,          # help contours
         
     | 
| 111 | 
         
            +
                        'structure': 5 * 0,    # structure loss from codes of MVANet. A little improvement on DIS-TE[1,2,3], a bit more decrease on DIS-TE4.
         
     | 
| 112 | 
         
            +
                    }
         
     | 
| 113 | 
         
            +
                    self.lambdas_cls = {
         
     | 
| 114 | 
         
            +
                        'ce': 5.0
         
     | 
| 115 | 
         
            +
                    }
         
     | 
| 116 | 
         
            +
                    # Adv
         
     | 
| 117 | 
         
            +
                    self.lambda_adv_g = 10. * 0        # turn to 0 to avoid adv training
         
     | 
| 118 | 
         
            +
                    self.lambda_adv_d = 3. * (self.lambda_adv_g > 0)
         
     | 
| 119 | 
         
            +
             
     | 
| 120 | 
         
            +
                    # PATH settings - inactive
         
     | 
| 121 | 
         
            +
                    self.data_root_dir = os.path.join(self.sys_home_dir, 'datasets/dis')
         
     | 
| 122 | 
         
            +
                    self.weights_root_dir = os.path.join(self.sys_home_dir, 'weights')
         
     | 
| 123 | 
         
            +
                    self.weights = {
         
     | 
| 124 | 
         
            +
                        'pvt_v2_b2': os.path.join(self.weights_root_dir, 'pvt_v2_b2.pth'),
         
     | 
| 125 | 
         
            +
                        'pvt_v2_b5': os.path.join(self.weights_root_dir, ['pvt_v2_b5.pth', 'pvt_v2_b5_22k.pth'][0]),
         
     | 
| 126 | 
         
            +
                        'swin_v1_b': os.path.join(self.weights_root_dir, ['swin_base_patch4_window12_384_22kto1k.pth', 'swin_base_patch4_window12_384_22k.pth'][0]),
         
     | 
| 127 | 
         
            +
                        'swin_v1_l': os.path.join(self.weights_root_dir, ['swin_large_patch4_window12_384_22kto1k.pth', 'swin_large_patch4_window12_384_22k.pth'][0]),
         
     | 
| 128 | 
         
            +
                        'swin_v1_t': os.path.join(self.weights_root_dir, ['swin_tiny_patch4_window7_224_22kto1k_finetune.pth'][0]),
         
     | 
| 129 | 
         
            +
                        'swin_v1_s': os.path.join(self.weights_root_dir, ['swin_small_patch4_window7_224_22kto1k_finetune.pth'][0]),
         
     | 
| 130 | 
         
            +
                        'pvt_v2_b0': os.path.join(self.weights_root_dir, ['pvt_v2_b0.pth'][0]),
         
     | 
| 131 | 
         
            +
                        'pvt_v2_b1': os.path.join(self.weights_root_dir, ['pvt_v2_b1.pth'][0]),
         
     | 
| 132 | 
         
            +
                    }
         
     | 
| 133 | 
         
            +
             
     | 
| 134 | 
         
            +
                    # Callbacks - inactive
         
     | 
| 135 | 
         
            +
                    self.verbose_eval = True
         
     | 
| 136 | 
         
            +
                    self.only_S_MAE = False
         
     | 
| 137 | 
         
            +
                    self.use_fp16 = False   # Bugs. It may cause nan in training.
         
     | 
| 138 | 
         
            +
                    self.SDPA_enabled = False    # Bugs. Slower and errors occur in multi-GPUs
         
     | 
| 139 | 
         
            +
             
     | 
| 140 | 
         
            +
                    # others
         
     | 
| 141 | 
         
            +
                    self.device = [0, 'cpu'][0]     # .to(0) == .to('cuda:0')
         
     | 
| 142 | 
         
            +
             
     | 
| 143 | 
         
            +
                    self.batch_size_valid = 1
         
     | 
| 144 | 
         
            +
                    self.rand_seed = 7
         
     | 
| 145 | 
         
            +
                    # run_sh_file = [f for f in os.listdir('.') if 'train.sh' == f] + [os.path.join('..', f) for f in os.listdir('..') if 'train.sh' == f]
         
     | 
| 146 | 
         
            +
                    # with open(run_sh_file[0], 'r') as f:
         
     | 
| 147 | 
         
            +
                    #     lines = f.readlines()
         
     | 
| 148 | 
         
            +
                    #     self.save_last = int([l.strip() for l in lines if '"{}")'.format(self.task) in l and 'val_last=' in l][0].split('val_last=')[-1].split()[0])
         
     | 
| 149 | 
         
            +
                    #     self.save_step = int([l.strip() for l in lines if '"{}")'.format(self.task) in l and 'step=' in l][0].split('step=')[-1].split()[0])
         
     | 
| 150 | 
         
            +
                    # self.val_step = [0, self.save_step][0]
         
     | 
| 151 | 
         
            +
             
     | 
| 152 | 
         
            +
                def print_task(self) -> None:
         
     | 
| 153 | 
         
            +
                    # Return task for choosing settings in shell scripts.
         
     | 
| 154 | 
         
            +
                    print(self.task)
         
     | 
| 155 | 
         
            +
             
     | 
| 156 | 
         
            +
             
     | 
| 157 | 
         
            +
             
     | 
| 158 | 
         
            +
            ### models/backbones/pvt_v2.py
         
     | 
| 159 | 
         
            +
             
     | 
| 160 | 
         
            +
            import torch
         
     | 
| 161 | 
         
            +
            import torch.nn as nn
         
     | 
| 162 | 
         
            +
            from functools import partial
         
     | 
| 163 | 
         
            +
             
     | 
| 164 | 
         
            +
            from timm.models.layers import DropPath, to_2tuple, trunc_normal_
         
     | 
| 165 | 
         
            +
            from timm.models.registry import register_model
         
     | 
| 166 | 
         
            +
             
     | 
| 167 | 
         
            +
            import math
         
     | 
| 168 | 
         
            +
             
     | 
| 169 | 
         
            +
            # from config import Config
         
     | 
| 170 | 
         
            +
             
     | 
| 171 | 
         
            +
            # config = Config()
         
     | 
| 172 | 
         
            +
             
     | 
| 173 | 
         
            +
            class Mlp(nn.Module):
         
     | 
| 174 | 
         
            +
                def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
         
     | 
| 175 | 
         
            +
                    super().__init__()
         
     | 
| 176 | 
         
            +
                    out_features = out_features or in_features
         
     | 
| 177 | 
         
            +
                    hidden_features = hidden_features or in_features
         
     | 
| 178 | 
         
            +
                    self.fc1 = nn.Linear(in_features, hidden_features)
         
     | 
| 179 | 
         
            +
                    self.dwconv = DWConv(hidden_features)
         
     | 
| 180 | 
         
            +
                    self.act = act_layer()
         
     | 
| 181 | 
         
            +
                    self.fc2 = nn.Linear(hidden_features, out_features)
         
     | 
| 182 | 
         
            +
                    self.drop = nn.Dropout(drop)
         
     | 
| 183 | 
         
            +
             
     | 
| 184 | 
         
            +
                    self.apply(self._init_weights)
         
     | 
| 185 | 
         
            +
             
     | 
| 186 | 
         
            +
                def _init_weights(self, m):
         
     | 
| 187 | 
         
            +
                    if isinstance(m, nn.Linear):
         
     | 
| 188 | 
         
            +
                        trunc_normal_(m.weight, std=.02)
         
     | 
| 189 | 
         
            +
                        if isinstance(m, nn.Linear) and m.bias is not None:
         
     | 
| 190 | 
         
            +
                            nn.init.constant_(m.bias, 0)
         
     | 
| 191 | 
         
            +
                    elif isinstance(m, nn.LayerNorm):
         
     | 
| 192 | 
         
            +
                        nn.init.constant_(m.bias, 0)
         
     | 
| 193 | 
         
            +
                        nn.init.constant_(m.weight, 1.0)
         
     | 
| 194 | 
         
            +
                    elif isinstance(m, nn.Conv2d):
         
     | 
| 195 | 
         
            +
                        fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
         
     | 
| 196 | 
         
            +
                        fan_out //= m.groups
         
     | 
| 197 | 
         
            +
                        m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
         
     | 
| 198 | 
         
            +
                        if m.bias is not None:
         
     | 
| 199 | 
         
            +
                            m.bias.data.zero_()
         
     | 
| 200 | 
         
            +
             
     | 
| 201 | 
         
            +
                def forward(self, x, H, W):
         
     | 
| 202 | 
         
            +
                    x = self.fc1(x)
         
     | 
| 203 | 
         
            +
                    x = self.dwconv(x, H, W)
         
     | 
| 204 | 
         
            +
                    x = self.act(x)
         
     | 
| 205 | 
         
            +
                    x = self.drop(x)
         
     | 
| 206 | 
         
            +
                    x = self.fc2(x)
         
     | 
| 207 | 
         
            +
                    x = self.drop(x)
         
     | 
| 208 | 
         
            +
                    return x
         
     | 
| 209 | 
         
            +
             
     | 
| 210 | 
         
            +
             
     | 
| 211 | 
         
            +
            class Attention(nn.Module):
         
     | 
| 212 | 
         
            +
                def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1):
         
     | 
| 213 | 
         
            +
                    super().__init__()
         
     | 
| 214 | 
         
            +
                    assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
         
     | 
| 215 | 
         
            +
             
     | 
| 216 | 
         
            +
                    self.dim = dim
         
     | 
| 217 | 
         
            +
                    self.num_heads = num_heads
         
     | 
| 218 | 
         
            +
                    head_dim = dim // num_heads
         
     | 
| 219 | 
         
            +
                    self.scale = qk_scale or head_dim ** -0.5
         
     | 
| 220 | 
         
            +
             
     | 
| 221 | 
         
            +
                    self.q = nn.Linear(dim, dim, bias=qkv_bias)
         
     | 
| 222 | 
         
            +
                    self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
         
     | 
| 223 | 
         
            +
                    self.attn_drop_prob = attn_drop
         
     | 
| 224 | 
         
            +
                    self.attn_drop = nn.Dropout(attn_drop)
         
     | 
| 225 | 
         
            +
                    self.proj = nn.Linear(dim, dim)
         
     | 
| 226 | 
         
            +
                    self.proj_drop = nn.Dropout(proj_drop)
         
     | 
| 227 | 
         
            +
             
     | 
| 228 | 
         
            +
                    self.sr_ratio = sr_ratio
         
     | 
| 229 | 
         
            +
                    if sr_ratio > 1:
         
     | 
| 230 | 
         
            +
                        self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
         
     | 
| 231 | 
         
            +
                        self.norm = nn.LayerNorm(dim)
         
     | 
| 232 | 
         
            +
             
     | 
| 233 | 
         
            +
                    self.apply(self._init_weights)
         
     | 
| 234 | 
         
            +
             
     | 
| 235 | 
         
            +
                def _init_weights(self, m):
         
     | 
| 236 | 
         
            +
                    if isinstance(m, nn.Linear):
         
     | 
| 237 | 
         
            +
                        trunc_normal_(m.weight, std=.02)
         
     | 
| 238 | 
         
            +
                        if isinstance(m, nn.Linear) and m.bias is not None:
         
     | 
| 239 | 
         
            +
                            nn.init.constant_(m.bias, 0)
         
     | 
| 240 | 
         
            +
                    elif isinstance(m, nn.LayerNorm):
         
     | 
| 241 | 
         
            +
                        nn.init.constant_(m.bias, 0)
         
     | 
| 242 | 
         
            +
                        nn.init.constant_(m.weight, 1.0)
         
     | 
| 243 | 
         
            +
                    elif isinstance(m, nn.Conv2d):
         
     | 
| 244 | 
         
            +
                        fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
         
     | 
| 245 | 
         
            +
                        fan_out //= m.groups
         
     | 
| 246 | 
         
            +
                        m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
         
     | 
| 247 | 
         
            +
                        if m.bias is not None:
         
     | 
| 248 | 
         
            +
                            m.bias.data.zero_()
         
     | 
| 249 | 
         
            +
             
     | 
| 250 | 
         
            +
                def forward(self, x, H, W):
         
     | 
| 251 | 
         
            +
                    B, N, C = x.shape
         
     | 
| 252 | 
         
            +
                    q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
         
     | 
| 253 | 
         
            +
             
     | 
| 254 | 
         
            +
                    if self.sr_ratio > 1:
         
     | 
| 255 | 
         
            +
                        x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
         
     | 
| 256 | 
         
            +
                        x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)
         
     | 
| 257 | 
         
            +
                        x_ = self.norm(x_)
         
     | 
| 258 | 
         
            +
                        kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
         
     | 
| 259 | 
         
            +
                    else:
         
     | 
| 260 | 
         
            +
                        kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
         
     | 
| 261 | 
         
            +
                    k, v = kv[0], kv[1]
         
     | 
| 262 | 
         
            +
             
     | 
| 263 | 
         
            +
                    if config.SDPA_enabled:
         
     | 
| 264 | 
         
            +
                        x = torch.nn.functional.scaled_dot_product_attention(
         
     | 
| 265 | 
         
            +
                            q, k, v,
         
     | 
| 266 | 
         
            +
                            attn_mask=None, dropout_p=self.attn_drop_prob, is_causal=False
         
     | 
| 267 | 
         
            +
                        ).transpose(1, 2).reshape(B, N, C)
         
     | 
| 268 | 
         
            +
                    else:
         
     | 
| 269 | 
         
            +
                        attn = (q @ k.transpose(-2, -1)) * self.scale
         
     | 
| 270 | 
         
            +
                        attn = attn.softmax(dim=-1)
         
     | 
| 271 | 
         
            +
                        attn = self.attn_drop(attn)
         
     | 
| 272 | 
         
            +
             
     | 
| 273 | 
         
            +
                        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
         
     | 
| 274 | 
         
            +
                    x = self.proj(x)
         
     | 
| 275 | 
         
            +
                    x = self.proj_drop(x)
         
     | 
| 276 | 
         
            +
             
     | 
| 277 | 
         
            +
                    return x
         
     | 
| 278 | 
         
            +
             
     | 
| 279 | 
         
            +
             
     | 
| 280 | 
         
            +
            class Block(nn.Module):
         
     | 
| 281 | 
         
            +
             
     | 
| 282 | 
         
            +
                def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
         
     | 
| 283 | 
         
            +
                             drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1):
         
     | 
| 284 | 
         
            +
                    super().__init__()
         
     | 
| 285 | 
         
            +
                    self.norm1 = norm_layer(dim)
         
     | 
| 286 | 
         
            +
                    self.attn = Attention(
         
     | 
| 287 | 
         
            +
                        dim,
         
     | 
| 288 | 
         
            +
                        num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
         
     | 
| 289 | 
         
            +
                        attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio)
         
     | 
| 290 | 
         
            +
                    # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
         
     | 
| 291 | 
         
            +
                    self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
         
     | 
| 292 | 
         
            +
                    self.norm2 = norm_layer(dim)
         
     | 
| 293 | 
         
            +
                    mlp_hidden_dim = int(dim * mlp_ratio)
         
     | 
| 294 | 
         
            +
                    self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
         
     | 
| 295 | 
         
            +
             
     | 
| 296 | 
         
            +
                    self.apply(self._init_weights)
         
     | 
| 297 | 
         
            +
             
     | 
| 298 | 
         
            +
                def _init_weights(self, m):
         
     | 
| 299 | 
         
            +
                    if isinstance(m, nn.Linear):
         
     | 
| 300 | 
         
            +
                        trunc_normal_(m.weight, std=.02)
         
     | 
| 301 | 
         
            +
                        if isinstance(m, nn.Linear) and m.bias is not None:
         
     | 
| 302 | 
         
            +
                            nn.init.constant_(m.bias, 0)
         
     | 
| 303 | 
         
            +
                    elif isinstance(m, nn.LayerNorm):
         
     | 
| 304 | 
         
            +
                        nn.init.constant_(m.bias, 0)
         
     | 
| 305 | 
         
            +
                        nn.init.constant_(m.weight, 1.0)
         
     | 
| 306 | 
         
            +
                    elif isinstance(m, nn.Conv2d):
         
     | 
| 307 | 
         
            +
                        fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
         
     | 
| 308 | 
         
            +
                        fan_out //= m.groups
         
     | 
| 309 | 
         
            +
                        m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
         
     | 
| 310 | 
         
            +
                        if m.bias is not None:
         
     | 
| 311 | 
         
            +
                            m.bias.data.zero_()
         
     | 
| 312 | 
         
            +
             
     | 
| 313 | 
         
            +
                def forward(self, x, H, W):
         
     | 
| 314 | 
         
            +
                    x = x + self.drop_path(self.attn(self.norm1(x), H, W))
         
     | 
| 315 | 
         
            +
                    x = x + self.drop_path(self.mlp(self.norm2(x), H, W))
         
     | 
| 316 | 
         
            +
             
     | 
| 317 | 
         
            +
                    return x
         
     | 
| 318 | 
         
            +
             
     | 
| 319 | 
         
            +
             
     | 
| 320 | 
         
            +
            class OverlapPatchEmbed(nn.Module):
         
     | 
| 321 | 
         
            +
                """ Image to Patch Embedding
         
     | 
| 322 | 
         
            +
                """
         
     | 
| 323 | 
         
            +
             
     | 
| 324 | 
         
            +
                def __init__(self, img_size=224, patch_size=7, stride=4, in_channels=3, embed_dim=768):
         
     | 
| 325 | 
         
            +
                    super().__init__()
         
     | 
| 326 | 
         
            +
                    img_size = to_2tuple(img_size)
         
     | 
| 327 | 
         
            +
                    patch_size = to_2tuple(patch_size)
         
     | 
| 328 | 
         
            +
             
     | 
| 329 | 
         
            +
                    self.img_size = img_size
         
     | 
| 330 | 
         
            +
                    self.patch_size = patch_size
         
     | 
| 331 | 
         
            +
                    self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1]
         
     | 
| 332 | 
         
            +
                    self.num_patches = self.H * self.W
         
     | 
| 333 | 
         
            +
                    self.proj = nn.Conv2d(in_channels, embed_dim, kernel_size=patch_size, stride=stride,
         
     | 
| 334 | 
         
            +
                                          padding=(patch_size[0] // 2, patch_size[1] // 2))
         
     | 
| 335 | 
         
            +
                    self.norm = nn.LayerNorm(embed_dim)
         
     | 
| 336 | 
         
            +
             
     | 
| 337 | 
         
            +
                    self.apply(self._init_weights)
         
     | 
| 338 | 
         
            +
             
     | 
| 339 | 
         
            +
                def _init_weights(self, m):
         
     | 
| 340 | 
         
            +
                    if isinstance(m, nn.Linear):
         
     | 
| 341 | 
         
            +
                        trunc_normal_(m.weight, std=.02)
         
     | 
| 342 | 
         
            +
                        if isinstance(m, nn.Linear) and m.bias is not None:
         
     | 
| 343 | 
         
            +
                            nn.init.constant_(m.bias, 0)
         
     | 
| 344 | 
         
            +
                    elif isinstance(m, nn.LayerNorm):
         
     | 
| 345 | 
         
            +
                        nn.init.constant_(m.bias, 0)
         
     | 
| 346 | 
         
            +
                        nn.init.constant_(m.weight, 1.0)
         
     | 
| 347 | 
         
            +
                    elif isinstance(m, nn.Conv2d):
         
     | 
| 348 | 
         
            +
                        fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
         
     | 
| 349 | 
         
            +
                        fan_out //= m.groups
         
     | 
| 350 | 
         
            +
                        m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
         
     | 
| 351 | 
         
            +
                        if m.bias is not None:
         
     | 
| 352 | 
         
            +
                            m.bias.data.zero_()
         
     | 
| 353 | 
         
            +
             
     | 
| 354 | 
         
            +
                def forward(self, x):
         
     | 
| 355 | 
         
            +
                    x = self.proj(x)
         
     | 
| 356 | 
         
            +
                    _, _, H, W = x.shape
         
     | 
| 357 | 
         
            +
                    x = x.flatten(2).transpose(1, 2)
         
     | 
| 358 | 
         
            +
                    x = self.norm(x)
         
     | 
| 359 | 
         
            +
             
     | 
| 360 | 
         
            +
                    return x, H, W
         
     | 
| 361 | 
         
            +
             
     | 
| 362 | 
         
            +
             
     | 
| 363 | 
         
            +
            class PyramidVisionTransformerImpr(nn.Module):
         
     | 
| 364 | 
         
            +
                def __init__(self, img_size=224, patch_size=16, in_channels=3, num_classes=1000, embed_dims=[64, 128, 256, 512],
         
     | 
| 365 | 
         
            +
                             num_heads=[1, 2, 4, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0.,
         
     | 
| 366 | 
         
            +
                             attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm,
         
     | 
| 367 | 
         
            +
                             depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1]):
         
     | 
| 368 | 
         
            +
                    super().__init__()
         
     | 
| 369 | 
         
            +
                    self.num_classes = num_classes
         
     | 
| 370 | 
         
            +
                    self.depths = depths
         
     | 
| 371 | 
         
            +
             
     | 
| 372 | 
         
            +
                    # patch_embed
         
     | 
| 373 | 
         
            +
                    self.patch_embed1 = OverlapPatchEmbed(img_size=img_size, patch_size=7, stride=4, in_channels=in_channels,
         
     | 
| 374 | 
         
            +
                                                          embed_dim=embed_dims[0])
         
     | 
| 375 | 
         
            +
                    self.patch_embed2 = OverlapPatchEmbed(img_size=img_size // 4, patch_size=3, stride=2, in_channels=embed_dims[0],
         
     | 
| 376 | 
         
            +
                                                          embed_dim=embed_dims[1])
         
     | 
| 377 | 
         
            +
                    self.patch_embed3 = OverlapPatchEmbed(img_size=img_size // 8, patch_size=3, stride=2, in_channels=embed_dims[1],
         
     | 
| 378 | 
         
            +
                                                          embed_dim=embed_dims[2])
         
     | 
| 379 | 
         
            +
                    self.patch_embed4 = OverlapPatchEmbed(img_size=img_size // 16, patch_size=3, stride=2, in_channels=embed_dims[2],
         
     | 
| 380 | 
         
            +
                                                          embed_dim=embed_dims[3])
         
     | 
| 381 | 
         
            +
             
     | 
| 382 | 
         
            +
                    # transformer encoder
         
     | 
| 383 | 
         
            +
                    dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule
         
     | 
| 384 | 
         
            +
                    cur = 0
         
     | 
| 385 | 
         
            +
                    self.block1 = nn.ModuleList([Block(
         
     | 
| 386 | 
         
            +
                        dim=embed_dims[0], num_heads=num_heads[0], mlp_ratio=mlp_ratios[0], qkv_bias=qkv_bias, qk_scale=qk_scale,
         
     | 
| 387 | 
         
            +
                        drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
         
     | 
| 388 | 
         
            +
                        sr_ratio=sr_ratios[0])
         
     | 
| 389 | 
         
            +
                        for i in range(depths[0])])
         
     | 
| 390 | 
         
            +
                    self.norm1 = norm_layer(embed_dims[0])
         
     | 
| 391 | 
         
            +
             
     | 
| 392 | 
         
            +
                    cur += depths[0]
         
     | 
| 393 | 
         
            +
                    self.block2 = nn.ModuleList([Block(
         
     | 
| 394 | 
         
            +
                        dim=embed_dims[1], num_heads=num_heads[1], mlp_ratio=mlp_ratios[1], qkv_bias=qkv_bias, qk_scale=qk_scale,
         
     | 
| 395 | 
         
            +
                        drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
         
     | 
| 396 | 
         
            +
                        sr_ratio=sr_ratios[1])
         
     | 
| 397 | 
         
            +
                        for i in range(depths[1])])
         
     | 
| 398 | 
         
            +
                    self.norm2 = norm_layer(embed_dims[1])
         
     | 
| 399 | 
         
            +
             
     | 
| 400 | 
         
            +
                    cur += depths[1]
         
     | 
| 401 | 
         
            +
                    self.block3 = nn.ModuleList([Block(
         
     | 
| 402 | 
         
            +
                        dim=embed_dims[2], num_heads=num_heads[2], mlp_ratio=mlp_ratios[2], qkv_bias=qkv_bias, qk_scale=qk_scale,
         
     | 
| 403 | 
         
            +
                        drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
         
     | 
| 404 | 
         
            +
                        sr_ratio=sr_ratios[2])
         
     | 
| 405 | 
         
            +
                        for i in range(depths[2])])
         
     | 
| 406 | 
         
            +
                    self.norm3 = norm_layer(embed_dims[2])
         
     | 
| 407 | 
         
            +
             
     | 
| 408 | 
         
            +
                    cur += depths[2]
         
     | 
| 409 | 
         
            +
                    self.block4 = nn.ModuleList([Block(
         
     | 
| 410 | 
         
            +
                        dim=embed_dims[3], num_heads=num_heads[3], mlp_ratio=mlp_ratios[3], qkv_bias=qkv_bias, qk_scale=qk_scale,
         
     | 
| 411 | 
         
            +
                        drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
         
     | 
| 412 | 
         
            +
                        sr_ratio=sr_ratios[3])
         
     | 
| 413 | 
         
            +
                        for i in range(depths[3])])
         
     | 
| 414 | 
         
            +
                    self.norm4 = norm_layer(embed_dims[3])
         
     | 
| 415 | 
         
            +
             
     | 
| 416 | 
         
            +
                    # classification head
         
     | 
| 417 | 
         
            +
                    # self.head = nn.Linear(embed_dims[3], num_classes) if num_classes > 0 else nn.Identity()
         
     | 
| 418 | 
         
            +
             
     | 
| 419 | 
         
            +
                    self.apply(self._init_weights)
         
     | 
| 420 | 
         
            +
             
     | 
| 421 | 
         
            +
                def _init_weights(self, m):
         
     | 
| 422 | 
         
            +
                    if isinstance(m, nn.Linear):
         
     | 
| 423 | 
         
            +
                        trunc_normal_(m.weight, std=.02)
         
     | 
| 424 | 
         
            +
                        if isinstance(m, nn.Linear) and m.bias is not None:
         
     | 
| 425 | 
         
            +
                            nn.init.constant_(m.bias, 0)
         
     | 
| 426 | 
         
            +
                    elif isinstance(m, nn.LayerNorm):
         
     | 
| 427 | 
         
            +
                        nn.init.constant_(m.bias, 0)
         
     | 
| 428 | 
         
            +
                        nn.init.constant_(m.weight, 1.0)
         
     | 
| 429 | 
         
            +
                    elif isinstance(m, nn.Conv2d):
         
     | 
| 430 | 
         
            +
                        fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
         
     | 
| 431 | 
         
            +
                        fan_out //= m.groups
         
     | 
| 432 | 
         
            +
                        m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
         
     | 
| 433 | 
         
            +
                        if m.bias is not None:
         
     | 
| 434 | 
         
            +
                            m.bias.data.zero_()
         
     | 
| 435 | 
         
            +
             
     | 
| 436 | 
         
            +
                def init_weights(self, pretrained=None):
         
     | 
| 437 | 
         
            +
                    if isinstance(pretrained, str):
         
     | 
| 438 | 
         
            +
                        logger = 1
         
     | 
| 439 | 
         
            +
                        #load_checkpoint(self, pretrained, map_location='cpu', strict=False, logger=logger)
         
     | 
| 440 | 
         
            +
             
     | 
| 441 | 
         
            +
                def reset_drop_path(self, drop_path_rate):
         
     | 
| 442 | 
         
            +
                    dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(self.depths))]
         
     | 
| 443 | 
         
            +
                    cur = 0
         
     | 
| 444 | 
         
            +
                    for i in range(self.depths[0]):
         
     | 
| 445 | 
         
            +
                        self.block1[i].drop_path.drop_prob = dpr[cur + i]
         
     | 
| 446 | 
         
            +
             
     | 
| 447 | 
         
            +
                    cur += self.depths[0]
         
     | 
| 448 | 
         
            +
                    for i in range(self.depths[1]):
         
     | 
| 449 | 
         
            +
                        self.block2[i].drop_path.drop_prob = dpr[cur + i]
         
     | 
| 450 | 
         
            +
             
     | 
| 451 | 
         
            +
                    cur += self.depths[1]
         
     | 
| 452 | 
         
            +
                    for i in range(self.depths[2]):
         
     | 
| 453 | 
         
            +
                        self.block3[i].drop_path.drop_prob = dpr[cur + i]
         
     | 
| 454 | 
         
            +
             
     | 
| 455 | 
         
            +
                    cur += self.depths[2]
         
     | 
| 456 | 
         
            +
                    for i in range(self.depths[3]):
         
     | 
| 457 | 
         
            +
                        self.block4[i].drop_path.drop_prob = dpr[cur + i]
         
     | 
| 458 | 
         
            +
             
     | 
| 459 | 
         
            +
                def freeze_patch_emb(self):
         
     | 
| 460 | 
         
            +
                    self.patch_embed1.requires_grad = False
         
     | 
| 461 | 
         
            +
             
     | 
| 462 | 
         
            +
                @torch.jit.ignore
         
     | 
| 463 | 
         
            +
                def no_weight_decay(self):
         
     | 
| 464 | 
         
            +
                    return {'pos_embed1', 'pos_embed2', 'pos_embed3', 'pos_embed4', 'cls_token'}  # has pos_embed may be better
         
     | 
| 465 | 
         
            +
             
     | 
| 466 | 
         
            +
                def get_classifier(self):
         
     | 
| 467 | 
         
            +
                    return self.head
         
     | 
| 468 | 
         
            +
             
     | 
| 469 | 
         
            +
                def reset_classifier(self, num_classes, global_pool=''):
         
     | 
| 470 | 
         
            +
                    self.num_classes = num_classes
         
     | 
| 471 | 
         
            +
                    self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
         
     | 
| 472 | 
         
            +
             
     | 
| 473 | 
         
            +
                def forward_features(self, x):
         
     | 
| 474 | 
         
            +
                    B = x.shape[0]
         
     | 
| 475 | 
         
            +
                    outs = []
         
     | 
| 476 | 
         
            +
             
     | 
| 477 | 
         
            +
                    # stage 1
         
     | 
| 478 | 
         
            +
                    x, H, W = self.patch_embed1(x)
         
     | 
| 479 | 
         
            +
                    for i, blk in enumerate(self.block1):
         
     | 
| 480 | 
         
            +
                        x = blk(x, H, W)
         
     | 
| 481 | 
         
            +
                    x = self.norm1(x)
         
     | 
| 482 | 
         
            +
                    x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
         
     | 
| 483 | 
         
            +
                    outs.append(x)
         
     | 
| 484 | 
         
            +
             
     | 
| 485 | 
         
            +
                    # stage 2
         
     | 
| 486 | 
         
            +
                    x, H, W = self.patch_embed2(x)
         
     | 
| 487 | 
         
            +
                    for i, blk in enumerate(self.block2):
         
     | 
| 488 | 
         
            +
                        x = blk(x, H, W)
         
     | 
| 489 | 
         
            +
                    x = self.norm2(x)
         
     | 
| 490 | 
         
            +
                    x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
         
     | 
| 491 | 
         
            +
                    outs.append(x)
         
     | 
| 492 | 
         
            +
             
     | 
| 493 | 
         
            +
                    # stage 3
         
     | 
| 494 | 
         
            +
                    x, H, W = self.patch_embed3(x)
         
     | 
| 495 | 
         
            +
                    for i, blk in enumerate(self.block3):
         
     | 
| 496 | 
         
            +
                        x = blk(x, H, W)
         
     | 
| 497 | 
         
            +
                    x = self.norm3(x)
         
     | 
| 498 | 
         
            +
                    x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
         
     | 
| 499 | 
         
            +
                    outs.append(x)
         
     | 
| 500 | 
         
            +
             
     | 
| 501 | 
         
            +
                    # stage 4
         
     | 
| 502 | 
         
            +
                    x, H, W = self.patch_embed4(x)
         
     | 
| 503 | 
         
            +
                    for i, blk in enumerate(self.block4):
         
     | 
| 504 | 
         
            +
                        x = blk(x, H, W)
         
     | 
| 505 | 
         
            +
                    x = self.norm4(x)
         
     | 
| 506 | 
         
            +
                    x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
         
     | 
| 507 | 
         
            +
                    outs.append(x)
         
     | 
| 508 | 
         
            +
             
     | 
| 509 | 
         
            +
                    return outs
         
     | 
| 510 | 
         
            +
             
     | 
| 511 | 
         
            +
                    # return x.mean(dim=1)
         
     | 
| 512 | 
         
            +
             
     | 
| 513 | 
         
            +
                def forward(self, x):
         
     | 
| 514 | 
         
            +
                    x = self.forward_features(x)
         
     | 
| 515 | 
         
            +
                    # x = self.head(x)
         
     | 
| 516 | 
         
            +
             
     | 
| 517 | 
         
            +
                    return x
         
     | 
| 518 | 
         
            +
             
     | 
| 519 | 
         
            +
             
     | 
| 520 | 
         
            +
            class DWConv(nn.Module):
         
     | 
| 521 | 
         
            +
                def __init__(self, dim=768):
         
     | 
| 522 | 
         
            +
                    super(DWConv, self).__init__()
         
     | 
| 523 | 
         
            +
                    self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim)
         
     | 
| 524 | 
         
            +
             
     | 
| 525 | 
         
            +
                def forward(self, x, H, W):
         
     | 
| 526 | 
         
            +
                    B, N, C = x.shape
         
     | 
| 527 | 
         
            +
                    x = x.transpose(1, 2).view(B, C, H, W).contiguous()
         
     | 
| 528 | 
         
            +
                    x = self.dwconv(x)
         
     | 
| 529 | 
         
            +
                    x = x.flatten(2).transpose(1, 2)
         
     | 
| 530 | 
         
            +
             
     | 
| 531 | 
         
            +
                    return x
         
     | 
| 532 | 
         
            +
             
     | 
| 533 | 
         
            +
             
     | 
| 534 | 
         
            +
            def _conv_filter(state_dict, patch_size=16):
         
     | 
| 535 | 
         
            +
                """ convert patch embedding weight from manual patchify + linear proj to conv"""
         
     | 
| 536 | 
         
            +
                out_dict = {}
         
     | 
| 537 | 
         
            +
                for k, v in state_dict.items():
         
     | 
| 538 | 
         
            +
                    if 'patch_embed.proj.weight' in k:
         
     | 
| 539 | 
         
            +
                        v = v.reshape((v.shape[0], 3, patch_size, patch_size))
         
     | 
| 540 | 
         
            +
                    out_dict[k] = v
         
     | 
| 541 | 
         
            +
             
     | 
| 542 | 
         
            +
                return out_dict
         
     | 
| 543 | 
         
            +
             
     | 
| 544 | 
         
            +
             
     | 
| 545 | 
         
            +
            ## @register_model
         
     | 
| 546 | 
         
            +
            class pvt_v2_b0(PyramidVisionTransformerImpr):
         
     | 
| 547 | 
         
            +
                def __init__(self, **kwargs):
         
     | 
| 548 | 
         
            +
                    super(pvt_v2_b0, self).__init__(
         
     | 
| 549 | 
         
            +
                        patch_size=4, embed_dims=[32, 64, 160, 256], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
         
     | 
| 550 | 
         
            +
                        qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
         
     | 
| 551 | 
         
            +
                        drop_rate=0.0, drop_path_rate=0.1)
         
     | 
| 552 | 
         
            +
             
     | 
| 553 | 
         
            +
             
     | 
| 554 | 
         
            +
             
     | 
| 555 | 
         
            +
            ## @register_model
         
     | 
| 556 | 
         
            +
            class pvt_v2_b1(PyramidVisionTransformerImpr):
         
     | 
| 557 | 
         
            +
                def __init__(self, **kwargs):
         
     | 
| 558 | 
         
            +
                    super(pvt_v2_b1, self).__init__(
         
     | 
| 559 | 
         
            +
                        patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
         
     | 
| 560 | 
         
            +
                        qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
         
     | 
| 561 | 
         
            +
                        drop_rate=0.0, drop_path_rate=0.1)
         
     | 
| 562 | 
         
            +
             
     | 
| 563 | 
         
            +
            ## @register_model
         
     | 
| 564 | 
         
            +
            class pvt_v2_b2(PyramidVisionTransformerImpr):
         
     | 
| 565 | 
         
            +
                def __init__(self, in_channels=3, **kwargs):
         
     | 
| 566 | 
         
            +
                    super(pvt_v2_b2, self).__init__(
         
     | 
| 567 | 
         
            +
                        patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
         
     | 
| 568 | 
         
            +
                        qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1],
         
     | 
| 569 | 
         
            +
                        drop_rate=0.0, drop_path_rate=0.1, in_channels=in_channels)
         
     | 
| 570 | 
         
            +
             
     | 
| 571 | 
         
            +
            ## @register_model
         
     | 
| 572 | 
         
            +
            class pvt_v2_b3(PyramidVisionTransformerImpr):
         
     | 
| 573 | 
         
            +
                def __init__(self, **kwargs):
         
     | 
| 574 | 
         
            +
                    super(pvt_v2_b3, self).__init__(
         
     | 
| 575 | 
         
            +
                        patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
         
     | 
| 576 | 
         
            +
                        qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1],
         
     | 
| 577 | 
         
            +
                        drop_rate=0.0, drop_path_rate=0.1)
         
     | 
| 578 | 
         
            +
             
     | 
| 579 | 
         
            +
            ## @register_model
         
     | 
| 580 | 
         
            +
            class pvt_v2_b4(PyramidVisionTransformerImpr):
         
     | 
| 581 | 
         
            +
                def __init__(self, **kwargs):
         
     | 
| 582 | 
         
            +
                    super(pvt_v2_b4, self).__init__(
         
     | 
| 583 | 
         
            +
                        patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
         
     | 
| 584 | 
         
            +
                        qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 8, 27, 3], sr_ratios=[8, 4, 2, 1],
         
     | 
| 585 | 
         
            +
                        drop_rate=0.0, drop_path_rate=0.1)
         
     | 
| 586 | 
         
            +
             
     | 
| 587 | 
         
            +
             
     | 
| 588 | 
         
            +
            ## @register_model
         
     | 
| 589 | 
         
            +
            class pvt_v2_b5(PyramidVisionTransformerImpr):
         
     | 
| 590 | 
         
            +
                def __init__(self, **kwargs):
         
     | 
| 591 | 
         
            +
                    super(pvt_v2_b5, self).__init__(
         
     | 
| 592 | 
         
            +
                        patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
         
     | 
| 593 | 
         
            +
                        qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 6, 40, 3], sr_ratios=[8, 4, 2, 1],
         
     | 
| 594 | 
         
            +
                        drop_rate=0.0, drop_path_rate=0.1)
         
     | 
| 595 | 
         
            +
             
     | 
| 596 | 
         
            +
             
     | 
| 597 | 
         
            +
             
     | 
| 598 | 
         
            +
            ### models/backbones/swin_v1.py
         
     | 
| 599 | 
         
            +
             
     | 
| 600 | 
         
            +
            # --------------------------------------------------------
         
     | 
| 601 | 
         
            +
            # Swin Transformer
         
     | 
| 602 | 
         
            +
            # Copyright (c) 2021 Microsoft
         
     | 
| 603 | 
         
            +
            # Licensed under The MIT License [see LICENSE for details]
         
     | 
| 604 | 
         
            +
            # Written by Ze Liu, Yutong Lin, Yixuan Wei
         
     | 
| 605 | 
         
            +
            # --------------------------------------------------------
         
     | 
| 606 | 
         
            +
             
     | 
| 607 | 
         
            +
            import torch
         
     | 
| 608 | 
         
            +
            import torch.nn as nn
         
     | 
| 609 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 610 | 
         
            +
            import torch.utils.checkpoint as checkpoint
         
     | 
| 611 | 
         
            +
            import numpy as np
         
     | 
| 612 | 
         
            +
            from timm.models.layers import DropPath, to_2tuple, trunc_normal_
         
     | 
| 613 | 
         
            +
             
     | 
| 614 | 
         
            +
            # from config import Config
         
     | 
| 615 | 
         
            +
             
     | 
| 616 | 
         
            +
             
     | 
| 617 | 
         
            +
            # config = Config()
         
     | 
| 618 | 
         
            +
             
     | 
| 619 | 
         
            +
             
     | 
| 620 | 
         
            +
            class Mlp(nn.Module):
         
     | 
| 621 | 
         
            +
                """ Multilayer perceptron."""
         
     | 
| 622 | 
         
            +
             
     | 
| 623 | 
         
            +
                def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
         
     | 
| 624 | 
         
            +
                    super().__init__()
         
     | 
| 625 | 
         
            +
                    out_features = out_features or in_features
         
     | 
| 626 | 
         
            +
                    hidden_features = hidden_features or in_features
         
     | 
| 627 | 
         
            +
                    self.fc1 = nn.Linear(in_features, hidden_features)
         
     | 
| 628 | 
         
            +
                    self.act = act_layer()
         
     | 
| 629 | 
         
            +
                    self.fc2 = nn.Linear(hidden_features, out_features)
         
     | 
| 630 | 
         
            +
                    self.drop = nn.Dropout(drop)
         
     | 
| 631 | 
         
            +
             
     | 
| 632 | 
         
            +
                def forward(self, x):
         
     | 
| 633 | 
         
            +
                    x = self.fc1(x)
         
     | 
| 634 | 
         
            +
                    x = self.act(x)
         
     | 
| 635 | 
         
            +
                    x = self.drop(x)
         
     | 
| 636 | 
         
            +
                    x = self.fc2(x)
         
     | 
| 637 | 
         
            +
                    x = self.drop(x)
         
     | 
| 638 | 
         
            +
                    return x
         
     | 
| 639 | 
         
            +
             
     | 
| 640 | 
         
            +
             
     | 
| 641 | 
         
            +
            def window_partition(x, window_size):
         
     | 
| 642 | 
         
            +
                """
         
     | 
| 643 | 
         
            +
                Args:
         
     | 
| 644 | 
         
            +
                    x: (B, H, W, C)
         
     | 
| 645 | 
         
            +
                    window_size (int): window size
         
     | 
| 646 | 
         
            +
             
     | 
| 647 | 
         
            +
                Returns:
         
     | 
| 648 | 
         
            +
                    windows: (num_windows*B, window_size, window_size, C)
         
     | 
| 649 | 
         
            +
                """
         
     | 
| 650 | 
         
            +
                B, H, W, C = x.shape
         
     | 
| 651 | 
         
            +
                x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
         
     | 
| 652 | 
         
            +
                windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
         
     | 
| 653 | 
         
            +
                return windows
         
     | 
| 654 | 
         
            +
             
     | 
| 655 | 
         
            +
             
     | 
| 656 | 
         
            +
            def window_reverse(windows, window_size, H, W):
         
     | 
| 657 | 
         
            +
                """
         
     | 
| 658 | 
         
            +
                Args:
         
     | 
| 659 | 
         
            +
                    windows: (num_windows*B, window_size, window_size, C)
         
     | 
| 660 | 
         
            +
                    window_size (int): Window size
         
     | 
| 661 | 
         
            +
                    H (int): Height of image
         
     | 
| 662 | 
         
            +
                    W (int): Width of image
         
     | 
| 663 | 
         
            +
             
     | 
| 664 | 
         
            +
                Returns:
         
     | 
| 665 | 
         
            +
                    x: (B, H, W, C)
         
     | 
| 666 | 
         
            +
                """
         
     | 
| 667 | 
         
            +
                B = int(windows.shape[0] / (H * W / window_size / window_size))
         
     | 
| 668 | 
         
            +
                x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
         
     | 
| 669 | 
         
            +
                x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
         
     | 
| 670 | 
         
            +
                return x
         
     | 
| 671 | 
         
            +
             
     | 
| 672 | 
         
            +
             
     | 
| 673 | 
         
            +
            class WindowAttention(nn.Module):
         
     | 
| 674 | 
         
            +
                """ Window based multi-head self attention (W-MSA) module with relative position bias.
         
     | 
| 675 | 
         
            +
                It supports both of shifted and non-shifted window.
         
     | 
| 676 | 
         
            +
             
     | 
| 677 | 
         
            +
                Args:
         
     | 
| 678 | 
         
            +
                    dim (int): Number of input channels.
         
     | 
| 679 | 
         
            +
                    window_size (tuple[int]): The height and width of the window.
         
     | 
| 680 | 
         
            +
                    num_heads (int): Number of attention heads.
         
     | 
| 681 | 
         
            +
                    qkv_bias (bool, optional):  If True, add a learnable bias to query, key, value. Default: True
         
     | 
| 682 | 
         
            +
                    qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
         
     | 
| 683 | 
         
            +
                    attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
         
     | 
| 684 | 
         
            +
                    proj_drop (float, optional): Dropout ratio of output. Default: 0.0
         
     | 
| 685 | 
         
            +
                """
         
     | 
| 686 | 
         
            +
             
     | 
| 687 | 
         
            +
                def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
         
     | 
| 688 | 
         
            +
             
     | 
| 689 | 
         
            +
                    super().__init__()
         
     | 
| 690 | 
         
            +
                    self.dim = dim
         
     | 
| 691 | 
         
            +
                    self.window_size = window_size  # Wh, Ww
         
     | 
| 692 | 
         
            +
                    self.num_heads = num_heads
         
     | 
| 693 | 
         
            +
                    head_dim = dim // num_heads
         
     | 
| 694 | 
         
            +
                    self.scale = qk_scale or head_dim ** -0.5
         
     | 
| 695 | 
         
            +
             
     | 
| 696 | 
         
            +
                    # define a parameter table of relative position bias
         
     | 
| 697 | 
         
            +
                    self.relative_position_bias_table = nn.Parameter(
         
     | 
| 698 | 
         
            +
                        torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads))  # 2*Wh-1 * 2*Ww-1, nH
         
     | 
| 699 | 
         
            +
             
     | 
| 700 | 
         
            +
                    # get pair-wise relative position index for each token inside the window
         
     | 
| 701 | 
         
            +
                    coords_h = torch.arange(self.window_size[0])
         
     | 
| 702 | 
         
            +
                    coords_w = torch.arange(self.window_size[1])
         
     | 
| 703 | 
         
            +
                    coords = torch.stack(torch.meshgrid([coords_h, coords_w], indexing='ij'))  # 2, Wh, Ww
         
     | 
| 704 | 
         
            +
                    coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww
         
     | 
| 705 | 
         
            +
                    relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Ww
         
     | 
| 706 | 
         
            +
                    relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2
         
     | 
| 707 | 
         
            +
                    relative_coords[:, :, 0] += self.window_size[0] - 1  # shift to start from 0
         
     | 
| 708 | 
         
            +
                    relative_coords[:, :, 1] += self.window_size[1] - 1
         
     | 
| 709 | 
         
            +
                    relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
         
     | 
| 710 | 
         
            +
                    relative_position_index = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww
         
     | 
| 711 | 
         
            +
                    self.register_buffer("relative_position_index", relative_position_index)
         
     | 
| 712 | 
         
            +
             
     | 
| 713 | 
         
            +
                    self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
         
     | 
| 714 | 
         
            +
                    self.attn_drop_prob = attn_drop
         
     | 
| 715 | 
         
            +
                    self.attn_drop = nn.Dropout(attn_drop)
         
     | 
| 716 | 
         
            +
                    self.proj = nn.Linear(dim, dim)
         
     | 
| 717 | 
         
            +
                    self.proj_drop = nn.Dropout(proj_drop)
         
     | 
| 718 | 
         
            +
             
     | 
| 719 | 
         
            +
                    trunc_normal_(self.relative_position_bias_table, std=.02)
         
     | 
| 720 | 
         
            +
                    self.softmax = nn.Softmax(dim=-1)
         
     | 
| 721 | 
         
            +
             
     | 
| 722 | 
         
            +
                def forward(self, x, mask=None):
         
     | 
| 723 | 
         
            +
                    """ Forward function.
         
     | 
| 724 | 
         
            +
             
     | 
| 725 | 
         
            +
                    Args:
         
     | 
| 726 | 
         
            +
                        x: input features with shape of (num_windows*B, N, C)
         
     | 
| 727 | 
         
            +
                        mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
         
     | 
| 728 | 
         
            +
                    """
         
     | 
| 729 | 
         
            +
                    B_, N, C = x.shape
         
     | 
| 730 | 
         
            +
                    qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
         
     | 
| 731 | 
         
            +
                    q, k, v = qkv[0], qkv[1], qkv[2]  # make torchscript happy (cannot use tensor as tuple)
         
     | 
| 732 | 
         
            +
             
     | 
| 733 | 
         
            +
                    q = q * self.scale
         
     | 
| 734 | 
         
            +
             
     | 
| 735 | 
         
            +
                    if config.SDPA_enabled:
         
     | 
| 736 | 
         
            +
                        x = torch.nn.functional.scaled_dot_product_attention(
         
     | 
| 737 | 
         
            +
                            q, k, v,
         
     | 
| 738 | 
         
            +
                            attn_mask=None, dropout_p=self.attn_drop_prob, is_causal=False
         
     | 
| 739 | 
         
            +
                        ).transpose(1, 2).reshape(B_, N, C)
         
     | 
| 740 | 
         
            +
                    else:
         
     | 
| 741 | 
         
            +
                        attn = (q @ k.transpose(-2, -1))
         
     | 
| 742 | 
         
            +
             
     | 
| 743 | 
         
            +
                        relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
         
     | 
| 744 | 
         
            +
                            self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1
         
     | 
| 745 | 
         
            +
                        )   # Wh*Ww, Wh*Ww, nH
         
     | 
| 746 | 
         
            +
                        relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww
         
     | 
| 747 | 
         
            +
                        attn = attn + relative_position_bias.unsqueeze(0)
         
     | 
| 748 | 
         
            +
             
     | 
| 749 | 
         
            +
                        if mask is not None:
         
     | 
| 750 | 
         
            +
                            nW = mask.shape[0]
         
     | 
| 751 | 
         
            +
                            attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
         
     | 
| 752 | 
         
            +
                            attn = attn.view(-1, self.num_heads, N, N)
         
     | 
| 753 | 
         
            +
                            attn = self.softmax(attn)
         
     | 
| 754 | 
         
            +
                        else:
         
     | 
| 755 | 
         
            +
                            attn = self.softmax(attn)
         
     | 
| 756 | 
         
            +
             
     | 
| 757 | 
         
            +
                        attn = self.attn_drop(attn)
         
     | 
| 758 | 
         
            +
             
     | 
| 759 | 
         
            +
                        x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
         
     | 
| 760 | 
         
            +
                    x = self.proj(x)
         
     | 
| 761 | 
         
            +
                    x = self.proj_drop(x)
         
     | 
| 762 | 
         
            +
                    return x
         
     | 
| 763 | 
         
            +
             
     | 
| 764 | 
         
            +
             
     | 
| 765 | 
         
            +
            class SwinTransformerBlock(nn.Module):
         
     | 
| 766 | 
         
            +
                """ Swin Transformer Block.
         
     | 
| 767 | 
         
            +
             
     | 
| 768 | 
         
            +
                Args:
         
     | 
| 769 | 
         
            +
                    dim (int): Number of input channels.
         
     | 
| 770 | 
         
            +
                    num_heads (int): Number of attention heads.
         
     | 
| 771 | 
         
            +
                    window_size (int): Window size.
         
     | 
| 772 | 
         
            +
                    shift_size (int): Shift size for SW-MSA.
         
     | 
| 773 | 
         
            +
                    mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
         
     | 
| 774 | 
         
            +
                    qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
         
     | 
| 775 | 
         
            +
                    qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
         
     | 
| 776 | 
         
            +
                    drop (float, optional): Dropout rate. Default: 0.0
         
     | 
| 777 | 
         
            +
                    attn_drop (float, optional): Attention dropout rate. Default: 0.0
         
     | 
| 778 | 
         
            +
                    drop_path (float, optional): Stochastic depth rate. Default: 0.0
         
     | 
| 779 | 
         
            +
                    act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
         
     | 
| 780 | 
         
            +
                    norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
         
     | 
| 781 | 
         
            +
                """
         
     | 
| 782 | 
         
            +
             
     | 
| 783 | 
         
            +
                def __init__(self, dim, num_heads, window_size=7, shift_size=0,
         
     | 
| 784 | 
         
            +
                             mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
         
     | 
| 785 | 
         
            +
                             act_layer=nn.GELU, norm_layer=nn.LayerNorm):
         
     | 
| 786 | 
         
            +
                    super().__init__()
         
     | 
| 787 | 
         
            +
                    self.dim = dim
         
     | 
| 788 | 
         
            +
                    self.num_heads = num_heads
         
     | 
| 789 | 
         
            +
                    self.window_size = window_size
         
     | 
| 790 | 
         
            +
                    self.shift_size = shift_size
         
     | 
| 791 | 
         
            +
                    self.mlp_ratio = mlp_ratio
         
     | 
| 792 | 
         
            +
                    assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
         
     | 
| 793 | 
         
            +
             
     | 
| 794 | 
         
            +
                    self.norm1 = norm_layer(dim)
         
     | 
| 795 | 
         
            +
                    self.attn = WindowAttention(
         
     | 
| 796 | 
         
            +
                        dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
         
     | 
| 797 | 
         
            +
                        qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
         
     | 
| 798 | 
         
            +
             
     | 
| 799 | 
         
            +
                    self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
         
     | 
| 800 | 
         
            +
                    self.norm2 = norm_layer(dim)
         
     | 
| 801 | 
         
            +
                    mlp_hidden_dim = int(dim * mlp_ratio)
         
     | 
| 802 | 
         
            +
                    self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
         
     | 
| 803 | 
         
            +
             
     | 
| 804 | 
         
            +
                    self.H = None
         
     | 
| 805 | 
         
            +
                    self.W = None
         
     | 
| 806 | 
         
            +
             
     | 
| 807 | 
         
            +
                def forward(self, x, mask_matrix):
         
     | 
| 808 | 
         
            +
                    """ Forward function.
         
     | 
| 809 | 
         
            +
             
     | 
| 810 | 
         
            +
                    Args:
         
     | 
| 811 | 
         
            +
                        x: Input feature, tensor size (B, H*W, C).
         
     | 
| 812 | 
         
            +
                        H, W: Spatial resolution of the input feature.
         
     | 
| 813 | 
         
            +
                        mask_matrix: Attention mask for cyclic shift.
         
     | 
| 814 | 
         
            +
                    """
         
     | 
| 815 | 
         
            +
                    B, L, C = x.shape
         
     | 
| 816 | 
         
            +
                    H, W = self.H, self.W
         
     | 
| 817 | 
         
            +
                    assert L == H * W, "input feature has wrong size"
         
     | 
| 818 | 
         
            +
             
     | 
| 819 | 
         
            +
                    shortcut = x
         
     | 
| 820 | 
         
            +
                    x = self.norm1(x)
         
     | 
| 821 | 
         
            +
                    x = x.view(B, H, W, C)
         
     | 
| 822 | 
         
            +
             
     | 
| 823 | 
         
            +
                    # pad feature maps to multiples of window size
         
     | 
| 824 | 
         
            +
                    pad_l = pad_t = 0
         
     | 
| 825 | 
         
            +
                    pad_r = (self.window_size - W % self.window_size) % self.window_size
         
     | 
| 826 | 
         
            +
                    pad_b = (self.window_size - H % self.window_size) % self.window_size
         
     | 
| 827 | 
         
            +
                    x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
         
     | 
| 828 | 
         
            +
                    _, Hp, Wp, _ = x.shape
         
     | 
| 829 | 
         
            +
             
     | 
| 830 | 
         
            +
                    # cyclic shift
         
     | 
| 831 | 
         
            +
                    if self.shift_size > 0:
         
     | 
| 832 | 
         
            +
                        shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
         
     | 
| 833 | 
         
            +
                        attn_mask = mask_matrix
         
     | 
| 834 | 
         
            +
                    else:
         
     | 
| 835 | 
         
            +
                        shifted_x = x
         
     | 
| 836 | 
         
            +
                        attn_mask = None
         
     | 
| 837 | 
         
            +
             
     | 
| 838 | 
         
            +
                    # partition windows
         
     | 
| 839 | 
         
            +
                    x_windows = window_partition(shifted_x, self.window_size)  # nW*B, window_size, window_size, C
         
     | 
| 840 | 
         
            +
                    x_windows = x_windows.view(-1, self.window_size * self.window_size, C)  # nW*B, window_size*window_size, C
         
     | 
| 841 | 
         
            +
             
     | 
| 842 | 
         
            +
                    # W-MSA/SW-MSA
         
     | 
| 843 | 
         
            +
                    attn_windows = self.attn(x_windows, mask=attn_mask)  # nW*B, window_size*window_size, C
         
     | 
| 844 | 
         
            +
             
     | 
| 845 | 
         
            +
                    # merge windows
         
     | 
| 846 | 
         
            +
                    attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
         
     | 
| 847 | 
         
            +
                    shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp)  # B H' W' C
         
     | 
| 848 | 
         
            +
             
     | 
| 849 | 
         
            +
                    # reverse cyclic shift
         
     | 
| 850 | 
         
            +
                    if self.shift_size > 0:
         
     | 
| 851 | 
         
            +
                        x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
         
     | 
| 852 | 
         
            +
                    else:
         
     | 
| 853 | 
         
            +
                        x = shifted_x
         
     | 
| 854 | 
         
            +
             
     | 
| 855 | 
         
            +
                    if pad_r > 0 or pad_b > 0:
         
     | 
| 856 | 
         
            +
                        x = x[:, :H, :W, :].contiguous()
         
     | 
| 857 | 
         
            +
             
     | 
| 858 | 
         
            +
                    x = x.view(B, H * W, C)
         
     | 
| 859 | 
         
            +
             
     | 
| 860 | 
         
            +
                    # FFN
         
     | 
| 861 | 
         
            +
                    x = shortcut + self.drop_path(x)
         
     | 
| 862 | 
         
            +
                    x = x + self.drop_path(self.mlp(self.norm2(x)))
         
     | 
| 863 | 
         
            +
             
     | 
| 864 | 
         
            +
                    return x
         
     | 
| 865 | 
         
            +
             
     | 
| 866 | 
         
            +
             
     | 
| 867 | 
         
            +
            class PatchMerging(nn.Module):
         
     | 
| 868 | 
         
            +
                """ Patch Merging Layer
         
     | 
| 869 | 
         
            +
             
     | 
| 870 | 
         
            +
                Args:
         
     | 
| 871 | 
         
            +
                    dim (int): Number of input channels.
         
     | 
| 872 | 
         
            +
                    norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
         
     | 
| 873 | 
         
            +
                """
         
     | 
| 874 | 
         
            +
                def __init__(self, dim, norm_layer=nn.LayerNorm):
         
     | 
| 875 | 
         
            +
                    super().__init__()
         
     | 
| 876 | 
         
            +
                    self.dim = dim
         
     | 
| 877 | 
         
            +
                    self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
         
     | 
| 878 | 
         
            +
                    self.norm = norm_layer(4 * dim)
         
     | 
| 879 | 
         
            +
             
     | 
| 880 | 
         
            +
                def forward(self, x, H, W):
         
     | 
| 881 | 
         
            +
                    """ Forward function.
         
     | 
| 882 | 
         
            +
             
     | 
| 883 | 
         
            +
                    Args:
         
     | 
| 884 | 
         
            +
                        x: Input feature, tensor size (B, H*W, C).
         
     | 
| 885 | 
         
            +
                        H, W: Spatial resolution of the input feature.
         
     | 
| 886 | 
         
            +
                    """
         
     | 
| 887 | 
         
            +
                    B, L, C = x.shape
         
     | 
| 888 | 
         
            +
                    assert L == H * W, "input feature has wrong size"
         
     | 
| 889 | 
         
            +
             
     | 
| 890 | 
         
            +
                    x = x.view(B, H, W, C)
         
     | 
| 891 | 
         
            +
             
     | 
| 892 | 
         
            +
                    # padding
         
     | 
| 893 | 
         
            +
                    pad_input = (H % 2 == 1) or (W % 2 == 1)
         
     | 
| 894 | 
         
            +
                    if pad_input:
         
     | 
| 895 | 
         
            +
                        x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
         
     | 
| 896 | 
         
            +
             
     | 
| 897 | 
         
            +
                    x0 = x[:, 0::2, 0::2, :]  # B H/2 W/2 C
         
     | 
| 898 | 
         
            +
                    x1 = x[:, 1::2, 0::2, :]  # B H/2 W/2 C
         
     | 
| 899 | 
         
            +
                    x2 = x[:, 0::2, 1::2, :]  # B H/2 W/2 C
         
     | 
| 900 | 
         
            +
                    x3 = x[:, 1::2, 1::2, :]  # B H/2 W/2 C
         
     | 
| 901 | 
         
            +
                    x = torch.cat([x0, x1, x2, x3], -1)  # B H/2 W/2 4*C
         
     | 
| 902 | 
         
            +
                    x = x.view(B, -1, 4 * C)  # B H/2*W/2 4*C
         
     | 
| 903 | 
         
            +
             
     | 
| 904 | 
         
            +
                    x = self.norm(x)
         
     | 
| 905 | 
         
            +
                    x = self.reduction(x)
         
     | 
| 906 | 
         
            +
             
     | 
| 907 | 
         
            +
                    return x
         
     | 
| 908 | 
         
            +
             
     | 
| 909 | 
         
            +
             
     | 
| 910 | 
         
            +
            class BasicLayer(nn.Module):
         
     | 
| 911 | 
         
            +
                """ A basic Swin Transformer layer for one stage.
         
     | 
| 912 | 
         
            +
             
     | 
| 913 | 
         
            +
                Args:
         
     | 
| 914 | 
         
            +
                    dim (int): Number of feature channels
         
     | 
| 915 | 
         
            +
                    depth (int): Depths of this stage.
         
     | 
| 916 | 
         
            +
                    num_heads (int): Number of attention head.
         
     | 
| 917 | 
         
            +
                    window_size (int): Local window size. Default: 7.
         
     | 
| 918 | 
         
            +
                    mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
         
     | 
| 919 | 
         
            +
                    qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
         
     | 
| 920 | 
         
            +
                    qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
         
     | 
| 921 | 
         
            +
                    drop (float, optional): Dropout rate. Default: 0.0
         
     | 
| 922 | 
         
            +
                    attn_drop (float, optional): Attention dropout rate. Default: 0.0
         
     | 
| 923 | 
         
            +
                    drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
         
     | 
| 924 | 
         
            +
                    norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
         
     | 
| 925 | 
         
            +
                    downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
         
     | 
| 926 | 
         
            +
                    use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
         
     | 
| 927 | 
         
            +
                """
         
     | 
| 928 | 
         
            +
             
     | 
| 929 | 
         
            +
                def __init__(self,
         
     | 
| 930 | 
         
            +
                             dim,
         
     | 
| 931 | 
         
            +
                             depth,
         
     | 
| 932 | 
         
            +
                             num_heads,
         
     | 
| 933 | 
         
            +
                             window_size=7,
         
     | 
| 934 | 
         
            +
                             mlp_ratio=4.,
         
     | 
| 935 | 
         
            +
                             qkv_bias=True,
         
     | 
| 936 | 
         
            +
                             qk_scale=None,
         
     | 
| 937 | 
         
            +
                             drop=0.,
         
     | 
| 938 | 
         
            +
                             attn_drop=0.,
         
     | 
| 939 | 
         
            +
                             drop_path=0.,
         
     | 
| 940 | 
         
            +
                             norm_layer=nn.LayerNorm,
         
     | 
| 941 | 
         
            +
                             downsample=None,
         
     | 
| 942 | 
         
            +
                             use_checkpoint=False):
         
     | 
| 943 | 
         
            +
                    super().__init__()
         
     | 
| 944 | 
         
            +
                    self.window_size = window_size
         
     | 
| 945 | 
         
            +
                    self.shift_size = window_size // 2
         
     | 
| 946 | 
         
            +
                    self.depth = depth
         
     | 
| 947 | 
         
            +
                    self.use_checkpoint = use_checkpoint
         
     | 
| 948 | 
         
            +
             
     | 
| 949 | 
         
            +
                    # build blocks
         
     | 
| 950 | 
         
            +
                    self.blocks = nn.ModuleList([
         
     | 
| 951 | 
         
            +
                        SwinTransformerBlock(
         
     | 
| 952 | 
         
            +
                            dim=dim,
         
     | 
| 953 | 
         
            +
                            num_heads=num_heads,
         
     | 
| 954 | 
         
            +
                            window_size=window_size,
         
     | 
| 955 | 
         
            +
                            shift_size=0 if (i % 2 == 0) else window_size // 2,
         
     | 
| 956 | 
         
            +
                            mlp_ratio=mlp_ratio,
         
     | 
| 957 | 
         
            +
                            qkv_bias=qkv_bias,
         
     | 
| 958 | 
         
            +
                            qk_scale=qk_scale,
         
     | 
| 959 | 
         
            +
                            drop=drop,
         
     | 
| 960 | 
         
            +
                            attn_drop=attn_drop,
         
     | 
| 961 | 
         
            +
                            drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
         
     | 
| 962 | 
         
            +
                            norm_layer=norm_layer)
         
     | 
| 963 | 
         
            +
                        for i in range(depth)])
         
     | 
| 964 | 
         
            +
             
     | 
| 965 | 
         
            +
                    # patch merging layer
         
     | 
| 966 | 
         
            +
                    if downsample is not None:
         
     | 
| 967 | 
         
            +
                        self.downsample = downsample(dim=dim, norm_layer=norm_layer)
         
     | 
| 968 | 
         
            +
                    else:
         
     | 
| 969 | 
         
            +
                        self.downsample = None
         
     | 
| 970 | 
         
            +
             
     | 
| 971 | 
         
            +
                def forward(self, x, H, W):
         
     | 
| 972 | 
         
            +
                    """ Forward function.
         
     | 
| 973 | 
         
            +
             
     | 
| 974 | 
         
            +
                    Args:
         
     | 
| 975 | 
         
            +
                        x: Input feature, tensor size (B, H*W, C).
         
     | 
| 976 | 
         
            +
                        H, W: Spatial resolution of the input feature.
         
     | 
| 977 | 
         
            +
                    """
         
     | 
| 978 | 
         
            +
             
     | 
| 979 | 
         
            +
                    # calculate attention mask for SW-MSA
         
     | 
| 980 | 
         
            +
                    # Turn int to torch.tensor for the compatiability with torch.compile in PyTorch 2.5.
         
     | 
| 981 | 
         
            +
                    Hp = torch.ceil(torch.tensor(H) / self.window_size).to(torch.int64) * self.window_size
         
     | 
| 982 | 
         
            +
                    Wp = torch.ceil(torch.tensor(W) / self.window_size).to(torch.int64) * self.window_size
         
     | 
| 983 | 
         
            +
                    img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device)  # 1 Hp Wp 1
         
     | 
| 984 | 
         
            +
                    h_slices = (slice(0, -self.window_size),
         
     | 
| 985 | 
         
            +
                                slice(-self.window_size, -self.shift_size),
         
     | 
| 986 | 
         
            +
                                slice(-self.shift_size, None))
         
     | 
| 987 | 
         
            +
                    w_slices = (slice(0, -self.window_size),
         
     | 
| 988 | 
         
            +
                                slice(-self.window_size, -self.shift_size),
         
     | 
| 989 | 
         
            +
                                slice(-self.shift_size, None))
         
     | 
| 990 | 
         
            +
                    cnt = 0
         
     | 
| 991 | 
         
            +
                    for h in h_slices:
         
     | 
| 992 | 
         
            +
                        for w in w_slices:
         
     | 
| 993 | 
         
            +
                            img_mask[:, h, w, :] = cnt
         
     | 
| 994 | 
         
            +
                            cnt += 1
         
     | 
| 995 | 
         
            +
             
     | 
| 996 | 
         
            +
                    mask_windows = window_partition(img_mask, self.window_size)  # nW, window_size, window_size, 1
         
     | 
| 997 | 
         
            +
                    mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
         
     | 
| 998 | 
         
            +
                    attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
         
     | 
| 999 | 
         
            +
                    attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)).to(x.dtype)
         
     | 
| 1000 | 
         
            +
             
     | 
| 1001 | 
         
            +
                    for blk in self.blocks:
         
     | 
| 1002 | 
         
            +
                        blk.H, blk.W = H, W
         
     | 
| 1003 | 
         
            +
                        if self.use_checkpoint:
         
     | 
| 1004 | 
         
            +
                            x = checkpoint.checkpoint(blk, x, attn_mask)
         
     | 
| 1005 | 
         
            +
                        else:
         
     | 
| 1006 | 
         
            +
                            x = blk(x, attn_mask)
         
     | 
| 1007 | 
         
            +
                    if self.downsample is not None:
         
     | 
| 1008 | 
         
            +
                        x_down = self.downsample(x, H, W)
         
     | 
| 1009 | 
         
            +
                        Wh, Ww = (H + 1) // 2, (W + 1) // 2
         
     | 
| 1010 | 
         
            +
                        return x, H, W, x_down, Wh, Ww
         
     | 
| 1011 | 
         
            +
                    else:
         
     | 
| 1012 | 
         
            +
                        return x, H, W, x, H, W
         
     | 
| 1013 | 
         
            +
             
     | 
| 1014 | 
         
            +
             
     | 
| 1015 | 
         
            +
            class PatchEmbed(nn.Module):
         
     | 
| 1016 | 
         
            +
                """ Image to Patch Embedding
         
     | 
| 1017 | 
         
            +
             
     | 
| 1018 | 
         
            +
                Args:
         
     | 
| 1019 | 
         
            +
                    patch_size (int): Patch token size. Default: 4.
         
     | 
| 1020 | 
         
            +
                    in_channels (int): Number of input image channels. Default: 3.
         
     | 
| 1021 | 
         
            +
                    embed_dim (int): Number of linear projection output channels. Default: 96.
         
     | 
| 1022 | 
         
            +
                    norm_layer (nn.Module, optional): Normalization layer. Default: None
         
     | 
| 1023 | 
         
            +
                """
         
     | 
| 1024 | 
         
            +
             
     | 
| 1025 | 
         
            +
                def __init__(self, patch_size=4, in_channels=3, embed_dim=96, norm_layer=None):
         
     | 
| 1026 | 
         
            +
                    super().__init__()
         
     | 
| 1027 | 
         
            +
                    patch_size = to_2tuple(patch_size)
         
     | 
| 1028 | 
         
            +
                    self.patch_size = patch_size
         
     | 
| 1029 | 
         
            +
             
     | 
| 1030 | 
         
            +
                    self.in_channels = in_channels
         
     | 
| 1031 | 
         
            +
                    self.embed_dim = embed_dim
         
     | 
| 1032 | 
         
            +
             
     | 
| 1033 | 
         
            +
                    self.proj = nn.Conv2d(in_channels, embed_dim, kernel_size=patch_size, stride=patch_size)
         
     | 
| 1034 | 
         
            +
                    if norm_layer is not None:
         
     | 
| 1035 | 
         
            +
                        self.norm = norm_layer(embed_dim)
         
     | 
| 1036 | 
         
            +
                    else:
         
     | 
| 1037 | 
         
            +
                        self.norm = None
         
     | 
| 1038 | 
         
            +
             
     | 
| 1039 | 
         
            +
                def forward(self, x):
         
     | 
| 1040 | 
         
            +
                    """Forward function."""
         
     | 
| 1041 | 
         
            +
                    # padding
         
     | 
| 1042 | 
         
            +
                    _, _, H, W = x.size()
         
     | 
| 1043 | 
         
            +
                    if W % self.patch_size[1] != 0:
         
     | 
| 1044 | 
         
            +
                        x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1]))
         
     | 
| 1045 | 
         
            +
                    if H % self.patch_size[0] != 0:
         
     | 
| 1046 | 
         
            +
                        x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0]))
         
     | 
| 1047 | 
         
            +
             
     | 
| 1048 | 
         
            +
                    x = self.proj(x)  # B C Wh Ww
         
     | 
| 1049 | 
         
            +
                    if self.norm is not None:
         
     | 
| 1050 | 
         
            +
                        Wh, Ww = x.size(2), x.size(3)
         
     | 
| 1051 | 
         
            +
                        x = x.flatten(2).transpose(1, 2)
         
     | 
| 1052 | 
         
            +
                        x = self.norm(x)
         
     | 
| 1053 | 
         
            +
                        x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww)
         
     | 
| 1054 | 
         
            +
             
     | 
| 1055 | 
         
            +
                    return x
         
     | 
| 1056 | 
         
            +
             
     | 
| 1057 | 
         
            +
             
     | 
| 1058 | 
         
            +
            class SwinTransformer(nn.Module):
         
     | 
| 1059 | 
         
            +
                """ Swin Transformer backbone.
         
     | 
| 1060 | 
         
            +
                    A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows`  -
         
     | 
| 1061 | 
         
            +
                      https://arxiv.org/pdf/2103.14030
         
     | 
| 1062 | 
         
            +
             
     | 
| 1063 | 
         
            +
                Args:
         
     | 
| 1064 | 
         
            +
                    pretrain_img_size (int): Input image size for training the pretrained model,
         
     | 
| 1065 | 
         
            +
                        used in absolute postion embedding. Default 224.
         
     | 
| 1066 | 
         
            +
                    patch_size (int | tuple(int)): Patch size. Default: 4.
         
     | 
| 1067 | 
         
            +
                    in_channels (int): Number of input image channels. Default: 3.
         
     | 
| 1068 | 
         
            +
                    embed_dim (int): Number of linear projection output channels. Default: 96.
         
     | 
| 1069 | 
         
            +
                    depths (tuple[int]): Depths of each Swin Transformer stage.
         
     | 
| 1070 | 
         
            +
                    num_heads (tuple[int]): Number of attention head of each stage.
         
     | 
| 1071 | 
         
            +
                    window_size (int): Window size. Default: 7.
         
     | 
| 1072 | 
         
            +
                    mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
         
     | 
| 1073 | 
         
            +
                    qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
         
     | 
| 1074 | 
         
            +
                    qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
         
     | 
| 1075 | 
         
            +
                    drop_rate (float): Dropout rate.
         
     | 
| 1076 | 
         
            +
                    attn_drop_rate (float): Attention dropout rate. Default: 0.
         
     | 
| 1077 | 
         
            +
                    drop_path_rate (float): Stochastic depth rate. Default: 0.2.
         
     | 
| 1078 | 
         
            +
                    norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
         
     | 
| 1079 | 
         
            +
                    ape (bool): If True, add absolute position embedding to the patch embedding. Default: False.
         
     | 
| 1080 | 
         
            +
                    patch_norm (bool): If True, add normalization after patch embedding. Default: True.
         
     | 
| 1081 | 
         
            +
                    out_indices (Sequence[int]): Output from which stages.
         
     | 
| 1082 | 
         
            +
                    frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
         
     | 
| 1083 | 
         
            +
                        -1 means not freezing any parameters.
         
     | 
| 1084 | 
         
            +
                    use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
         
     | 
| 1085 | 
         
            +
                """
         
     | 
| 1086 | 
         
            +
             
     | 
| 1087 | 
         
            +
                def __init__(self,
         
     | 
| 1088 | 
         
            +
                             pretrain_img_size=224,
         
     | 
| 1089 | 
         
            +
                             patch_size=4,
         
     | 
| 1090 | 
         
            +
                             in_channels=3,
         
     | 
| 1091 | 
         
            +
                             embed_dim=96,
         
     | 
| 1092 | 
         
            +
                             depths=[2, 2, 6, 2],
         
     | 
| 1093 | 
         
            +
                             num_heads=[3, 6, 12, 24],
         
     | 
| 1094 | 
         
            +
                             window_size=7,
         
     | 
| 1095 | 
         
            +
                             mlp_ratio=4.,
         
     | 
| 1096 | 
         
            +
                             qkv_bias=True,
         
     | 
| 1097 | 
         
            +
                             qk_scale=None,
         
     | 
| 1098 | 
         
            +
                             drop_rate=0.,
         
     | 
| 1099 | 
         
            +
                             attn_drop_rate=0.,
         
     | 
| 1100 | 
         
            +
                             drop_path_rate=0.2,
         
     | 
| 1101 | 
         
            +
                             norm_layer=nn.LayerNorm,
         
     | 
| 1102 | 
         
            +
                             ape=False,
         
     | 
| 1103 | 
         
            +
                             patch_norm=True,
         
     | 
| 1104 | 
         
            +
                             out_indices=(0, 1, 2, 3),
         
     | 
| 1105 | 
         
            +
                             frozen_stages=-1,
         
     | 
| 1106 | 
         
            +
                             use_checkpoint=False):
         
     | 
| 1107 | 
         
            +
                    super().__init__()
         
     | 
| 1108 | 
         
            +
             
     | 
| 1109 | 
         
            +
                    self.pretrain_img_size = pretrain_img_size
         
     | 
| 1110 | 
         
            +
                    self.num_layers = len(depths)
         
     | 
| 1111 | 
         
            +
                    self.embed_dim = embed_dim
         
     | 
| 1112 | 
         
            +
                    self.ape = ape
         
     | 
| 1113 | 
         
            +
                    self.patch_norm = patch_norm
         
     | 
| 1114 | 
         
            +
                    self.out_indices = out_indices
         
     | 
| 1115 | 
         
            +
                    self.frozen_stages = frozen_stages
         
     | 
| 1116 | 
         
            +
             
     | 
| 1117 | 
         
            +
                    # split image into non-overlapping patches
         
     | 
| 1118 | 
         
            +
                    self.patch_embed = PatchEmbed(
         
     | 
| 1119 | 
         
            +
                        patch_size=patch_size, in_channels=in_channels, embed_dim=embed_dim,
         
     | 
| 1120 | 
         
            +
                        norm_layer=norm_layer if self.patch_norm else None)
         
     | 
| 1121 | 
         
            +
             
     | 
| 1122 | 
         
            +
                    # absolute position embedding
         
     | 
| 1123 | 
         
            +
                    if self.ape:
         
     | 
| 1124 | 
         
            +
                        pretrain_img_size = to_2tuple(pretrain_img_size)
         
     | 
| 1125 | 
         
            +
                        patch_size = to_2tuple(patch_size)
         
     | 
| 1126 | 
         
            +
                        patches_resolution = [pretrain_img_size[0] // patch_size[0], pretrain_img_size[1] // patch_size[1]]
         
     | 
| 1127 | 
         
            +
             
     | 
| 1128 | 
         
            +
                        self.absolute_pos_embed = nn.Parameter(torch.zeros(1, embed_dim, patches_resolution[0], patches_resolution[1]))
         
     | 
| 1129 | 
         
            +
                        trunc_normal_(self.absolute_pos_embed, std=.02)
         
     | 
| 1130 | 
         
            +
             
     | 
| 1131 | 
         
            +
                    self.pos_drop = nn.Dropout(p=drop_rate)
         
     | 
| 1132 | 
         
            +
             
     | 
| 1133 | 
         
            +
                    # stochastic depth
         
     | 
| 1134 | 
         
            +
                    dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule
         
     | 
| 1135 | 
         
            +
             
     | 
| 1136 | 
         
            +
                    # build layers
         
     | 
| 1137 | 
         
            +
                    self.layers = nn.ModuleList()
         
     | 
| 1138 | 
         
            +
                    for i_layer in range(self.num_layers):
         
     | 
| 1139 | 
         
            +
                        layer = BasicLayer(
         
     | 
| 1140 | 
         
            +
                            dim=int(embed_dim * 2 ** i_layer),
         
     | 
| 1141 | 
         
            +
                            depth=depths[i_layer],
         
     | 
| 1142 | 
         
            +
                            num_heads=num_heads[i_layer],
         
     | 
| 1143 | 
         
            +
                            window_size=window_size,
         
     | 
| 1144 | 
         
            +
                            mlp_ratio=mlp_ratio,
         
     | 
| 1145 | 
         
            +
                            qkv_bias=qkv_bias,
         
     | 
| 1146 | 
         
            +
                            qk_scale=qk_scale,
         
     | 
| 1147 | 
         
            +
                            drop=drop_rate,
         
     | 
| 1148 | 
         
            +
                            attn_drop=attn_drop_rate,
         
     | 
| 1149 | 
         
            +
                            drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
         
     | 
| 1150 | 
         
            +
                            norm_layer=norm_layer,
         
     | 
| 1151 | 
         
            +
                            downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
         
     | 
| 1152 | 
         
            +
                            use_checkpoint=use_checkpoint)
         
     | 
| 1153 | 
         
            +
                        self.layers.append(layer)
         
     | 
| 1154 | 
         
            +
             
     | 
| 1155 | 
         
            +
                    num_features = [int(embed_dim * 2 ** i) for i in range(self.num_layers)]
         
     | 
| 1156 | 
         
            +
                    self.num_features = num_features
         
     | 
| 1157 | 
         
            +
             
     | 
| 1158 | 
         
            +
                    # add a norm layer for each output
         
     | 
| 1159 | 
         
            +
                    for i_layer in out_indices:
         
     | 
| 1160 | 
         
            +
                        layer = norm_layer(num_features[i_layer])
         
     | 
| 1161 | 
         
            +
                        layer_name = f'norm{i_layer}'
         
     | 
| 1162 | 
         
            +
                        self.add_module(layer_name, layer)
         
     | 
| 1163 | 
         
            +
             
     | 
| 1164 | 
         
            +
                    self._freeze_stages()
         
     | 
| 1165 | 
         
            +
             
     | 
| 1166 | 
         
            +
                def _freeze_stages(self):
         
     | 
| 1167 | 
         
            +
                    if self.frozen_stages >= 0:
         
     | 
| 1168 | 
         
            +
                        self.patch_embed.eval()
         
     | 
| 1169 | 
         
            +
                        for param in self.patch_embed.parameters():
         
     | 
| 1170 | 
         
            +
                            param.requires_grad = False
         
     | 
| 1171 | 
         
            +
             
     | 
| 1172 | 
         
            +
                    if self.frozen_stages >= 1 and self.ape:
         
     | 
| 1173 | 
         
            +
                        self.absolute_pos_embed.requires_grad = False
         
     | 
| 1174 | 
         
            +
             
     | 
| 1175 | 
         
            +
                    if self.frozen_stages >= 2:
         
     | 
| 1176 | 
         
            +
                        self.pos_drop.eval()
         
     | 
| 1177 | 
         
            +
                        for i in range(0, self.frozen_stages - 1):
         
     | 
| 1178 | 
         
            +
                            m = self.layers[i]
         
     | 
| 1179 | 
         
            +
                            m.eval()
         
     | 
| 1180 | 
         
            +
                            for param in m.parameters():
         
     | 
| 1181 | 
         
            +
                                param.requires_grad = False
         
     | 
| 1182 | 
         
            +
             
     | 
| 1183 | 
         
            +
             
     | 
| 1184 | 
         
            +
                def forward(self, x):
         
     | 
| 1185 | 
         
            +
                    """Forward function."""
         
     | 
| 1186 | 
         
            +
                    x = self.patch_embed(x)
         
     | 
| 1187 | 
         
            +
             
     | 
| 1188 | 
         
            +
                    Wh, Ww = x.size(2), x.size(3)
         
     | 
| 1189 | 
         
            +
                    if self.ape:
         
     | 
| 1190 | 
         
            +
                        # interpolate the position embedding to the corresponding size
         
     | 
| 1191 | 
         
            +
                        absolute_pos_embed = F.interpolate(self.absolute_pos_embed, size=(Wh, Ww), mode='bicubic')
         
     | 
| 1192 | 
         
            +
                        x = (x + absolute_pos_embed) # B Wh*Ww C
         
     | 
| 1193 | 
         
            +
                        
         
     | 
| 1194 | 
         
            +
                    outs = []#x.contiguous()]
         
     | 
| 1195 | 
         
            +
                    x = x.flatten(2).transpose(1, 2)
         
     | 
| 1196 | 
         
            +
                    x = self.pos_drop(x)
         
     | 
| 1197 | 
         
            +
                    for i in range(self.num_layers):
         
     | 
| 1198 | 
         
            +
                        layer = self.layers[i]
         
     | 
| 1199 | 
         
            +
                        x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
         
     | 
| 1200 | 
         
            +
             
     | 
| 1201 | 
         
            +
                        if i in self.out_indices:
         
     | 
| 1202 | 
         
            +
                            norm_layer = getattr(self, f'norm{i}')
         
     | 
| 1203 | 
         
            +
                            x_out = norm_layer(x_out)
         
     | 
| 1204 | 
         
            +
             
     | 
| 1205 | 
         
            +
                            out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous()
         
     | 
| 1206 | 
         
            +
                            outs.append(out)
         
     | 
| 1207 | 
         
            +
             
     | 
| 1208 | 
         
            +
                    return tuple(outs)
         
     | 
| 1209 | 
         
            +
             
     | 
| 1210 | 
         
            +
                def train(self, mode=True):
         
     | 
| 1211 | 
         
            +
                    """Convert the model into training mode while keep layers freezed."""
         
     | 
| 1212 | 
         
            +
                    super(SwinTransformer, self).train(mode)
         
     | 
| 1213 | 
         
            +
                    self._freeze_stages()
         
     | 
| 1214 | 
         
            +
             
     | 
| 1215 | 
         
            +
            def swin_v1_t():
         
     | 
| 1216 | 
         
            +
                model = SwinTransformer(embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7)
         
     | 
| 1217 | 
         
            +
                return model
         
     | 
| 1218 | 
         
            +
             
     | 
| 1219 | 
         
            +
            def swin_v1_s():
         
     | 
| 1220 | 
         
            +
                model = SwinTransformer(embed_dim=96, depths=[2, 2, 18, 2], num_heads=[3, 6, 12, 24], window_size=7)
         
     | 
| 1221 | 
         
            +
                return model
         
     | 
| 1222 | 
         
            +
             
     | 
| 1223 | 
         
            +
            def swin_v1_b():
         
     | 
| 1224 | 
         
            +
                model = SwinTransformer(embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=12)
         
     | 
| 1225 | 
         
            +
                return model
         
     | 
| 1226 | 
         
            +
             
     | 
| 1227 | 
         
            +
            def swin_v1_l():
         
     | 
| 1228 | 
         
            +
                model = SwinTransformer(embed_dim=192, depths=[2, 2, 18, 2], num_heads=[6, 12, 24, 48], window_size=12)
         
     | 
| 1229 | 
         
            +
                return model
         
     | 
| 1230 | 
         
            +
             
     | 
| 1231 | 
         
            +
             
     | 
| 1232 | 
         
            +
             
     | 
| 1233 | 
         
            +
            ### models/modules/deform_conv.py
         
     | 
| 1234 | 
         
            +
             
     | 
| 1235 | 
         
            +
            import torch
         
     | 
| 1236 | 
         
            +
            import torch.nn as nn
         
     | 
| 1237 | 
         
            +
            from torchvision.ops import deform_conv2d
         
     | 
| 1238 | 
         
            +
             
     | 
| 1239 | 
         
            +
             
     | 
| 1240 | 
         
            +
            class DeformableConv2d(nn.Module):
         
     | 
| 1241 | 
         
            +
                def __init__(self,
         
     | 
| 1242 | 
         
            +
                             in_channels,
         
     | 
| 1243 | 
         
            +
                             out_channels,
         
     | 
| 1244 | 
         
            +
                             kernel_size=3,
         
     | 
| 1245 | 
         
            +
                             stride=1,
         
     | 
| 1246 | 
         
            +
                             padding=1,
         
     | 
| 1247 | 
         
            +
                             bias=False):
         
     | 
| 1248 | 
         
            +
             
     | 
| 1249 | 
         
            +
                    super(DeformableConv2d, self).__init__()
         
     | 
| 1250 | 
         
            +
                    
         
     | 
| 1251 | 
         
            +
                    assert type(kernel_size) == tuple or type(kernel_size) == int
         
     | 
| 1252 | 
         
            +
             
     | 
| 1253 | 
         
            +
                    kernel_size = kernel_size if type(kernel_size) == tuple else (kernel_size, kernel_size)
         
     | 
| 1254 | 
         
            +
                    self.stride = stride if type(stride) == tuple else (stride, stride)
         
     | 
| 1255 | 
         
            +
                    self.padding = padding
         
     | 
| 1256 | 
         
            +
                    
         
     | 
| 1257 | 
         
            +
                    self.offset_conv = nn.Conv2d(in_channels,
         
     | 
| 1258 | 
         
            +
                                                 2 * kernel_size[0] * kernel_size[1],
         
     | 
| 1259 | 
         
            +
                                                 kernel_size=kernel_size,
         
     | 
| 1260 | 
         
            +
                                                 stride=stride,
         
     | 
| 1261 | 
         
            +
                                                 padding=self.padding,
         
     | 
| 1262 | 
         
            +
                                                 bias=True)
         
     | 
| 1263 | 
         
            +
             
     | 
| 1264 | 
         
            +
                    nn.init.constant_(self.offset_conv.weight, 0.)
         
     | 
| 1265 | 
         
            +
                    nn.init.constant_(self.offset_conv.bias, 0.)
         
     | 
| 1266 | 
         
            +
                    
         
     | 
| 1267 | 
         
            +
                    self.modulator_conv = nn.Conv2d(in_channels,
         
     | 
| 1268 | 
         
            +
                                                 1 * kernel_size[0] * kernel_size[1],
         
     | 
| 1269 | 
         
            +
                                                 kernel_size=kernel_size,
         
     | 
| 1270 | 
         
            +
                                                 stride=stride,
         
     | 
| 1271 | 
         
            +
                                                 padding=self.padding,
         
     | 
| 1272 | 
         
            +
                                                 bias=True)
         
     | 
| 1273 | 
         
            +
             
     | 
| 1274 | 
         
            +
                    nn.init.constant_(self.modulator_conv.weight, 0.)
         
     | 
| 1275 | 
         
            +
                    nn.init.constant_(self.modulator_conv.bias, 0.)
         
     | 
| 1276 | 
         
            +
             
     | 
| 1277 | 
         
            +
                    self.regular_conv = nn.Conv2d(in_channels,
         
     | 
| 1278 | 
         
            +
                                                  out_channels=out_channels,
         
     | 
| 1279 | 
         
            +
                                                  kernel_size=kernel_size,
         
     | 
| 1280 | 
         
            +
                                                  stride=stride,
         
     | 
| 1281 | 
         
            +
                                                  padding=self.padding,
         
     | 
| 1282 | 
         
            +
                                                  bias=bias)
         
     | 
| 1283 | 
         
            +
             
     | 
| 1284 | 
         
            +
                def forward(self, x):
         
     | 
| 1285 | 
         
            +
                    #h, w = x.shape[2:]
         
     | 
| 1286 | 
         
            +
                    #max_offset = max(h, w)/4.
         
     | 
| 1287 | 
         
            +
             
     | 
| 1288 | 
         
            +
                    offset = self.offset_conv(x)#.clamp(-max_offset, max_offset)
         
     | 
| 1289 | 
         
            +
                    modulator = 2. * torch.sigmoid(self.modulator_conv(x))
         
     | 
| 1290 | 
         
            +
                    
         
     | 
| 1291 | 
         
            +
                    x = deform_conv2d(
         
     | 
| 1292 | 
         
            +
                        input=x,
         
     | 
| 1293 | 
         
            +
                        offset=offset,
         
     | 
| 1294 | 
         
            +
                        weight=self.regular_conv.weight,
         
     | 
| 1295 | 
         
            +
                        bias=self.regular_conv.bias,
         
     | 
| 1296 | 
         
            +
                        padding=self.padding,
         
     | 
| 1297 | 
         
            +
                        mask=modulator,
         
     | 
| 1298 | 
         
            +
                        stride=self.stride,
         
     | 
| 1299 | 
         
            +
                    )
         
     | 
| 1300 | 
         
            +
                    return x
         
     | 
| 1301 | 
         
            +
             
     | 
| 1302 | 
         
            +
             
     | 
| 1303 | 
         
            +
             
     | 
| 1304 | 
         
            +
             
     | 
| 1305 | 
         
            +
            ### utils.py
         
     | 
| 1306 | 
         
            +
             
     | 
| 1307 | 
         
            +
            import torch.nn as nn
         
     | 
| 1308 | 
         
            +
             
     | 
| 1309 | 
         
            +
             
     | 
| 1310 | 
         
            +
            def build_act_layer(act_layer):
         
     | 
| 1311 | 
         
            +
                if act_layer == 'ReLU':
         
     | 
| 1312 | 
         
            +
                    return nn.ReLU(inplace=True)
         
     | 
| 1313 | 
         
            +
                elif act_layer == 'SiLU':
         
     | 
| 1314 | 
         
            +
                    return nn.SiLU(inplace=True)
         
     | 
| 1315 | 
         
            +
                elif act_layer == 'GELU':
         
     | 
| 1316 | 
         
            +
                    return nn.GELU()
         
     | 
| 1317 | 
         
            +
             
     | 
| 1318 | 
         
            +
                raise NotImplementedError(f'build_act_layer does not support {act_layer}')
         
     | 
| 1319 | 
         
            +
             
     | 
| 1320 | 
         
            +
             
     | 
| 1321 | 
         
            +
            def build_norm_layer(dim,
         
     | 
| 1322 | 
         
            +
                                 norm_layer,
         
     | 
| 1323 | 
         
            +
                                 in_format='channels_last',
         
     | 
| 1324 | 
         
            +
                                 out_format='channels_last',
         
     | 
| 1325 | 
         
            +
                                 eps=1e-6):
         
     | 
| 1326 | 
         
            +
                layers = []
         
     | 
| 1327 | 
         
            +
                if norm_layer == 'BN':
         
     | 
| 1328 | 
         
            +
                    if in_format == 'channels_last':
         
     | 
| 1329 | 
         
            +
                        layers.append(to_channels_first())
         
     | 
| 1330 | 
         
            +
                    layers.append(nn.BatchNorm2d(dim))
         
     | 
| 1331 | 
         
            +
                    if out_format == 'channels_last':
         
     | 
| 1332 | 
         
            +
                        layers.append(to_channels_last())
         
     | 
| 1333 | 
         
            +
                elif norm_layer == 'LN':
         
     | 
| 1334 | 
         
            +
                    if in_format == 'channels_first':
         
     | 
| 1335 | 
         
            +
                        layers.append(to_channels_last())
         
     | 
| 1336 | 
         
            +
                    layers.append(nn.LayerNorm(dim, eps=eps))
         
     | 
| 1337 | 
         
            +
                    if out_format == 'channels_first':
         
     | 
| 1338 | 
         
            +
                        layers.append(to_channels_first())
         
     | 
| 1339 | 
         
            +
                else:
         
     | 
| 1340 | 
         
            +
                    raise NotImplementedError(
         
     | 
| 1341 | 
         
            +
                        f'build_norm_layer does not support {norm_layer}')
         
     | 
| 1342 | 
         
            +
                return nn.Sequential(*layers)
         
     | 
| 1343 | 
         
            +
             
     | 
| 1344 | 
         
            +
             
     | 
| 1345 | 
         
            +
            class to_channels_first(nn.Module):
         
     | 
| 1346 | 
         
            +
             
     | 
| 1347 | 
         
            +
                def __init__(self):
         
     | 
| 1348 | 
         
            +
                    super().__init__()
         
     | 
| 1349 | 
         
            +
             
     | 
| 1350 | 
         
            +
                def forward(self, x):
         
     | 
| 1351 | 
         
            +
                    return x.permute(0, 3, 1, 2)
         
     | 
| 1352 | 
         
            +
             
     | 
| 1353 | 
         
            +
             
     | 
| 1354 | 
         
            +
            class to_channels_last(nn.Module):
         
     | 
| 1355 | 
         
            +
             
     | 
| 1356 | 
         
            +
                def __init__(self):
         
     | 
| 1357 | 
         
            +
                    super().__init__()
         
     | 
| 1358 | 
         
            +
             
     | 
| 1359 | 
         
            +
                def forward(self, x):
         
     | 
| 1360 | 
         
            +
                    return x.permute(0, 2, 3, 1)
         
     | 
| 1361 | 
         
            +
             
     | 
| 1362 | 
         
            +
             
     | 
| 1363 | 
         
            +
             
     | 
| 1364 | 
         
            +
            ### dataset.py
         
     | 
| 1365 | 
         
            +
             
     | 
| 1366 | 
         
            +
            _class_labels_TR_sorted = (
         
     | 
| 1367 | 
         
            +
                'Airplane, Ant, Antenna, Archery, Axe, BabyCarriage, Bag, BalanceBeam, Balcony, Balloon, Basket, BasketballHoop, Beatle, Bed, Bee, Bench, Bicycle, '
         
     | 
| 1368 | 
         
            +
                'BicycleFrame, BicycleStand, Boat, Bonsai, BoomLift, Bridge, BunkBed, Butterfly, Button, Cable, CableLift, Cage, Camcorder, Cannon, Canoe, Car, '
         
     | 
| 1369 | 
         
            +
                'CarParkDropArm, Carriage, Cart, Caterpillar, CeilingLamp, Centipede, Chair, Clip, Clock, Clothes, CoatHanger, Comb, ConcretePumpTruck, Crack, Crane, '
         
     | 
| 1370 | 
         
            +
                'Cup, DentalChair, Desk, DeskChair, Diagram, DishRack, DoorHandle, Dragonfish, Dragonfly, Drum, Earphone, Easel, ElectricIron, Excavator, Eyeglasses, '
         
     | 
| 1371 | 
         
            +
                'Fan, Fence, Fencing, FerrisWheel, FireExtinguisher, Fishing, Flag, FloorLamp, Forklift, GasStation, Gate, Gear, Goal, Golf, GymEquipment, Hammock, '
         
     | 
| 1372 | 
         
            +
                'Handcart, Handcraft, Handrail, HangGlider, Harp, Harvester, Headset, Helicopter, Helmet, Hook, HorizontalBar, Hydrovalve, IroningTable, Jewelry, Key, '
         
     | 
| 1373 | 
         
            +
                'KidsPlayground, Kitchenware, Kite, Knife, Ladder, LaundryRack, Lightning, Lobster, Locust, Machine, MachineGun, MagazineRack, Mantis, Medal, MemorialArchway, '
         
     | 
| 1374 | 
         
            +
                'Microphone, Missile, MobileHolder, Monitor, Mosquito, Motorcycle, MovingTrolley, Mower, MusicPlayer, MusicStand, ObservationTower, Octopus, OilWell, '
         
     | 
| 1375 | 
         
            +
                'OlympicLogo, OperatingTable, OutdoorFitnessEquipment, Parachute, Pavilion, Piano, Pipe, PlowHarrow, PoleVault, Punchbag, Rack, Racket, Rifle, Ring, Robot, '
         
     | 
| 1376 | 
         
            +
                'RockClimbing, Rope, Sailboat, Satellite, Scaffold, Scale, Scissor, Scooter, Sculpture, Seadragon, Seahorse, Seal, SewingMachine, Ship, Shoe, ShoppingCart, '
         
     | 
| 1377 | 
         
            +
                'ShoppingTrolley, Shower, Shrimp, Signboard, Skateboarding, Skeleton, Skiing, Spade, SpeedBoat, Spider, Spoon, Stair, Stand, Stationary, SteeringWheel, '
         
     | 
| 1378 | 
         
            +
                'Stethoscope, Stool, Stove, StreetLamp, SweetStand, Swing, Sword, TV, Table, TableChair, TableLamp, TableTennis, Tank, Tapeline, Teapot, Telescope, Tent, '
         
     | 
| 1379 | 
         
            +
                'TobaccoPipe, Toy, Tractor, TrafficLight, TrafficSign, Trampoline, TransmissionTower, Tree, Tricycle, TrimmerCover, Tripod, Trombone, Truck, Trumpet, Tuba, '
         
     | 
| 1380 | 
         
            +
                'UAV, Umbrella, UnevenBars, UtilityPole, VacuumCleaner, Violin, Wakesurfing, Watch, WaterTower, WateringPot, Well, WellLid, Wheel, Wheelchair, WindTurbine, Windmill, WineGlass, WireWhisk, Yacht'
         
     | 
| 1381 | 
         
            +
            )
         
     | 
| 1382 | 
         
            +
            class_labels_TR_sorted = _class_labels_TR_sorted.split(', ')
         
     | 
| 1383 | 
         
            +
             
     | 
| 1384 | 
         
            +
             
     | 
| 1385 | 
         
            +
            ### models/backbones/build_backbones.py
         
     | 
| 1386 | 
         
            +
             
     | 
| 1387 | 
         
            +
            import torch
         
     | 
| 1388 | 
         
            +
            import torch.nn as nn
         
     | 
| 1389 | 
         
            +
            from collections import OrderedDict
         
     | 
| 1390 | 
         
            +
            from torchvision.models import vgg16, vgg16_bn, VGG16_Weights, VGG16_BN_Weights, resnet50, ResNet50_Weights
         
     | 
| 1391 | 
         
            +
            # from models.pvt_v2 import pvt_v2_b0, pvt_v2_b1, pvt_v2_b2, pvt_v2_b5
         
     | 
| 1392 | 
         
            +
            # from models.swin_v1 import swin_v1_t, swin_v1_s, swin_v1_b, swin_v1_l
         
     | 
| 1393 | 
         
            +
            # from config import Config
         
     | 
| 1394 | 
         
            +
             
     | 
| 1395 | 
         
            +
             
     | 
| 1396 | 
         
            +
            config = Config()
         
     | 
| 1397 | 
         
            +
             
     | 
| 1398 | 
         
            +
            def build_backbone(bb_name, pretrained=True, params_settings=''):
         
     | 
| 1399 | 
         
            +
                if bb_name == 'vgg16':
         
     | 
| 1400 | 
         
            +
                    bb_net = list(vgg16(pretrained=VGG16_Weights.DEFAULT if pretrained else None).children())[0]
         
     | 
| 1401 | 
         
            +
                    bb = nn.Sequential(OrderedDict({'conv1': bb_net[:4], 'conv2': bb_net[4:9], 'conv3': bb_net[9:16], 'conv4': bb_net[16:23]}))
         
     | 
| 1402 | 
         
            +
                elif bb_name == 'vgg16bn':
         
     | 
| 1403 | 
         
            +
                    bb_net = list(vgg16_bn(pretrained=VGG16_BN_Weights.DEFAULT if pretrained else None).children())[0]
         
     | 
| 1404 | 
         
            +
                    bb = nn.Sequential(OrderedDict({'conv1': bb_net[:6], 'conv2': bb_net[6:13], 'conv3': bb_net[13:23], 'conv4': bb_net[23:33]}))
         
     | 
| 1405 | 
         
            +
                elif bb_name == 'resnet50':
         
     | 
| 1406 | 
         
            +
                    bb_net = list(resnet50(pretrained=ResNet50_Weights.DEFAULT if pretrained else None).children())
         
     | 
| 1407 | 
         
            +
                    bb = nn.Sequential(OrderedDict({'conv1': nn.Sequential(*bb_net[0:3]), 'conv2': bb_net[4], 'conv3': bb_net[5], 'conv4': bb_net[6]}))
         
     | 
| 1408 | 
         
            +
                else:
         
     | 
| 1409 | 
         
            +
                    bb = eval('{}({})'.format(bb_name, params_settings))
         
     | 
| 1410 | 
         
            +
                    if pretrained:
         
     | 
| 1411 | 
         
            +
                        bb = load_weights(bb, bb_name)
         
     | 
| 1412 | 
         
            +
                return bb
         
     | 
| 1413 | 
         
            +
             
     | 
| 1414 | 
         
            +
            def load_weights(model, model_name):
         
     | 
| 1415 | 
         
            +
                save_model = torch.load(config.weights[model_name], map_location='cpu')
         
     | 
| 1416 | 
         
            +
                model_dict = model.state_dict()
         
     | 
| 1417 | 
         
            +
                state_dict = {k: v if v.size() == model_dict[k].size() else model_dict[k] for k, v in save_model.items() if k in model_dict.keys()}
         
     | 
| 1418 | 
         
            +
                # to ignore the weights with mismatched size when I modify the backbone itself.
         
     | 
| 1419 | 
         
            +
                if not state_dict:
         
     | 
| 1420 | 
         
            +
                    save_model_keys = list(save_model.keys())
         
     | 
| 1421 | 
         
            +
                    sub_item = save_model_keys[0] if len(save_model_keys) == 1 else None
         
     | 
| 1422 | 
         
            +
                    state_dict = {k: v if v.size() == model_dict[k].size() else model_dict[k] for k, v in save_model[sub_item].items() if k in model_dict.keys()}
         
     | 
| 1423 | 
         
            +
                    if not state_dict or not sub_item:
         
     | 
| 1424 | 
         
            +
                        print('Weights are not successully loaded. Check the state dict of weights file.')
         
     | 
| 1425 | 
         
            +
                        return None
         
     | 
| 1426 | 
         
            +
                    else:
         
     | 
| 1427 | 
         
            +
                        print('Found correct weights in the "{}" item of loaded state_dict.'.format(sub_item))
         
     | 
| 1428 | 
         
            +
                model_dict.update(state_dict)
         
     | 
| 1429 | 
         
            +
                model.load_state_dict(model_dict)
         
     | 
| 1430 | 
         
            +
                return model
         
     | 
| 1431 | 
         
            +
             
     | 
| 1432 | 
         
            +
             
     | 
| 1433 | 
         
            +
             
     | 
| 1434 | 
         
            +
            ### models/modules/decoder_blocks.py
         
     | 
| 1435 | 
         
            +
             
     | 
| 1436 | 
         
            +
            import torch
         
     | 
| 1437 | 
         
            +
            import torch.nn as nn
         
     | 
| 1438 | 
         
            +
            # from models.aspp import ASPP, ASPPDeformable
         
     | 
| 1439 | 
         
            +
            # from config import Config
         
     | 
| 1440 | 
         
            +
             
     | 
| 1441 | 
         
            +
             
     | 
| 1442 | 
         
            +
            # config = Config()
         
     | 
| 1443 | 
         
            +
             
     | 
| 1444 | 
         
            +
             
     | 
| 1445 | 
         
            +
            class BasicDecBlk(nn.Module):
         
     | 
| 1446 | 
         
            +
                def __init__(self, in_channels=64, out_channels=64, inter_channels=64):
         
     | 
| 1447 | 
         
            +
                    super(BasicDecBlk, self).__init__()
         
     | 
| 1448 | 
         
            +
                    inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64
         
     | 
| 1449 | 
         
            +
                    self.conv_in = nn.Conv2d(in_channels, inter_channels, 3, 1, padding=1)
         
     | 
| 1450 | 
         
            +
                    self.relu_in = nn.ReLU(inplace=True)
         
     | 
| 1451 | 
         
            +
                    if config.dec_att == 'ASPP':
         
     | 
| 1452 | 
         
            +
                        self.dec_att = ASPP(in_channels=inter_channels)
         
     | 
| 1453 | 
         
            +
                    elif config.dec_att == 'ASPPDeformable':
         
     | 
| 1454 | 
         
            +
                        self.dec_att = ASPPDeformable(in_channels=inter_channels)
         
     | 
| 1455 | 
         
            +
                    self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, padding=1)
         
     | 
| 1456 | 
         
            +
                    self.bn_in = nn.BatchNorm2d(inter_channels) if config.batch_size > 1 else nn.Identity()
         
     | 
| 1457 | 
         
            +
                    self.bn_out = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
         
     | 
| 1458 | 
         
            +
             
     | 
| 1459 | 
         
            +
                def forward(self, x):
         
     | 
| 1460 | 
         
            +
                    x = self.conv_in(x)
         
     | 
| 1461 | 
         
            +
                    x = self.bn_in(x)
         
     | 
| 1462 | 
         
            +
                    x = self.relu_in(x)
         
     | 
| 1463 | 
         
            +
                    if hasattr(self, 'dec_att'):
         
     | 
| 1464 | 
         
            +
                        x = self.dec_att(x)
         
     | 
| 1465 | 
         
            +
                    x = self.conv_out(x)
         
     | 
| 1466 | 
         
            +
                    x = self.bn_out(x)
         
     | 
| 1467 | 
         
            +
                    return x
         
     | 
| 1468 | 
         
            +
             
     | 
| 1469 | 
         
            +
             
     | 
| 1470 | 
         
            +
            class ResBlk(nn.Module):
         
     | 
| 1471 | 
         
            +
                def __init__(self, in_channels=64, out_channels=None, inter_channels=64):
         
     | 
| 1472 | 
         
            +
                    super(ResBlk, self).__init__()
         
     | 
| 1473 | 
         
            +
                    if out_channels is None:
         
     | 
| 1474 | 
         
            +
                        out_channels = in_channels
         
     | 
| 1475 | 
         
            +
                    inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64
         
     | 
| 1476 | 
         
            +
             
     | 
| 1477 | 
         
            +
                    self.conv_in = nn.Conv2d(in_channels, inter_channels, 3, 1, padding=1)
         
     | 
| 1478 | 
         
            +
                    self.bn_in = nn.BatchNorm2d(inter_channels) if config.batch_size > 1 else nn.Identity()
         
     | 
| 1479 | 
         
            +
                    self.relu_in = nn.ReLU(inplace=True)
         
     | 
| 1480 | 
         
            +
             
     | 
| 1481 | 
         
            +
                    if config.dec_att == 'ASPP':
         
     | 
| 1482 | 
         
            +
                        self.dec_att = ASPP(in_channels=inter_channels)
         
     | 
| 1483 | 
         
            +
                    elif config.dec_att == 'ASPPDeformable':
         
     | 
| 1484 | 
         
            +
                        self.dec_att = ASPPDeformable(in_channels=inter_channels)
         
     | 
| 1485 | 
         
            +
             
     | 
| 1486 | 
         
            +
                    self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, padding=1)
         
     | 
| 1487 | 
         
            +
                    self.bn_out = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
         
     | 
| 1488 | 
         
            +
                    
         
     | 
| 1489 | 
         
            +
                    self.conv_resi = nn.Conv2d(in_channels, out_channels, 1, 1, 0)
         
     | 
| 1490 | 
         
            +
             
     | 
| 1491 | 
         
            +
                def forward(self, x):
         
     | 
| 1492 | 
         
            +
                    _x = self.conv_resi(x)
         
     | 
| 1493 | 
         
            +
                    x = self.conv_in(x)
         
     | 
| 1494 | 
         
            +
                    x = self.bn_in(x)
         
     | 
| 1495 | 
         
            +
                    x = self.relu_in(x)
         
     | 
| 1496 | 
         
            +
                    if hasattr(self, 'dec_att'):
         
     | 
| 1497 | 
         
            +
                        x = self.dec_att(x)
         
     | 
| 1498 | 
         
            +
                    x = self.conv_out(x)
         
     | 
| 1499 | 
         
            +
                    x = self.bn_out(x)
         
     | 
| 1500 | 
         
            +
                    return x + _x
         
     | 
| 1501 | 
         
            +
             
     | 
| 1502 | 
         
            +
             
     | 
| 1503 | 
         
            +
             
     | 
| 1504 | 
         
            +
            ### models/modules/lateral_blocks.py
         
     | 
| 1505 | 
         
            +
             
     | 
| 1506 | 
         
            +
            import numpy as np
         
     | 
| 1507 | 
         
            +
            import torch
         
     | 
| 1508 | 
         
            +
            import torch.nn as nn
         
     | 
| 1509 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 1510 | 
         
            +
            from functools import partial
         
     | 
| 1511 | 
         
            +
             
     | 
| 1512 | 
         
            +
            # from config import Config
         
     | 
| 1513 | 
         
            +
             
     | 
| 1514 | 
         
            +
             
     | 
| 1515 | 
         
            +
            # config = Config()
         
     | 
| 1516 | 
         
            +
             
     | 
| 1517 | 
         
            +
             
     | 
| 1518 | 
         
            +
            class BasicLatBlk(nn.Module):
         
     | 
| 1519 | 
         
            +
                def __init__(self, in_channels=64, out_channels=64, inter_channels=64):
         
     | 
| 1520 | 
         
            +
                    super(BasicLatBlk, self).__init__()
         
     | 
| 1521 | 
         
            +
                    inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64
         
     | 
| 1522 | 
         
            +
                    self.conv = nn.Conv2d(in_channels, out_channels, 1, 1, 0)
         
     | 
| 1523 | 
         
            +
             
     | 
| 1524 | 
         
            +
                def forward(self, x):
         
     | 
| 1525 | 
         
            +
                    x = self.conv(x)
         
     | 
| 1526 | 
         
            +
                    return x
         
     | 
| 1527 | 
         
            +
             
     | 
| 1528 | 
         
            +
             
     | 
| 1529 | 
         
            +
             
     | 
| 1530 | 
         
            +
            ### models/modules/aspp.py
         
     | 
| 1531 | 
         
            +
             
     | 
| 1532 | 
         
            +
            import torch
         
     | 
| 1533 | 
         
            +
            import torch.nn as nn
         
     | 
| 1534 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 1535 | 
         
            +
            # from models.deform_conv import DeformableConv2d
         
     | 
| 1536 | 
         
            +
            # from config import Config
         
     | 
| 1537 | 
         
            +
             
     | 
| 1538 | 
         
            +
             
     | 
| 1539 | 
         
            +
            # config = Config()
         
     | 
| 1540 | 
         
            +
             
     | 
| 1541 | 
         
            +
             
     | 
| 1542 | 
         
            +
            class _ASPPModule(nn.Module):
         
     | 
| 1543 | 
         
            +
                def __init__(self, in_channels, planes, kernel_size, padding, dilation):
         
     | 
| 1544 | 
         
            +
                    super(_ASPPModule, self).__init__()
         
     | 
| 1545 | 
         
            +
                    self.atrous_conv = nn.Conv2d(in_channels, planes, kernel_size=kernel_size,
         
     | 
| 1546 | 
         
            +
                                                        stride=1, padding=padding, dilation=dilation, bias=False)
         
     | 
| 1547 | 
         
            +
                    self.bn = nn.BatchNorm2d(planes) if config.batch_size > 1 else nn.Identity()
         
     | 
| 1548 | 
         
            +
                    self.relu = nn.ReLU(inplace=True)
         
     | 
| 1549 | 
         
            +
             
     | 
| 1550 | 
         
            +
                def forward(self, x):
         
     | 
| 1551 | 
         
            +
                    x = self.atrous_conv(x)
         
     | 
| 1552 | 
         
            +
                    x = self.bn(x)
         
     | 
| 1553 | 
         
            +
             
     | 
| 1554 | 
         
            +
                    return self.relu(x)
         
     | 
| 1555 | 
         
            +
             
     | 
| 1556 | 
         
            +
             
     | 
| 1557 | 
         
            +
            class ASPP(nn.Module):
         
     | 
| 1558 | 
         
            +
                def __init__(self, in_channels=64, out_channels=None, output_stride=16):
         
     | 
| 1559 | 
         
            +
                    super(ASPP, self).__init__()
         
     | 
| 1560 | 
         
            +
                    self.down_scale = 1
         
     | 
| 1561 | 
         
            +
                    if out_channels is None:
         
     | 
| 1562 | 
         
            +
                        out_channels = in_channels
         
     | 
| 1563 | 
         
            +
                    self.in_channelster = 256 // self.down_scale
         
     | 
| 1564 | 
         
            +
                    if output_stride == 16:
         
     | 
| 1565 | 
         
            +
                        dilations = [1, 6, 12, 18]
         
     | 
| 1566 | 
         
            +
                    elif output_stride == 8:
         
     | 
| 1567 | 
         
            +
                        dilations = [1, 12, 24, 36]
         
     | 
| 1568 | 
         
            +
                    else:
         
     | 
| 1569 | 
         
            +
                        raise NotImplementedError
         
     | 
| 1570 | 
         
            +
             
     | 
| 1571 | 
         
            +
                    self.aspp1 = _ASPPModule(in_channels, self.in_channelster, 1, padding=0, dilation=dilations[0])
         
     | 
| 1572 | 
         
            +
                    self.aspp2 = _ASPPModule(in_channels, self.in_channelster, 3, padding=dilations[1], dilation=dilations[1])
         
     | 
| 1573 | 
         
            +
                    self.aspp3 = _ASPPModule(in_channels, self.in_channelster, 3, padding=dilations[2], dilation=dilations[2])
         
     | 
| 1574 | 
         
            +
                    self.aspp4 = _ASPPModule(in_channels, self.in_channelster, 3, padding=dilations[3], dilation=dilations[3])
         
     | 
| 1575 | 
         
            +
             
     | 
| 1576 | 
         
            +
                    self.global_avg_pool = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)),
         
     | 
| 1577 | 
         
            +
                                                         nn.Conv2d(in_channels, self.in_channelster, 1, stride=1, bias=False),
         
     | 
| 1578 | 
         
            +
                                                         nn.BatchNorm2d(self.in_channelster) if config.batch_size > 1 else nn.Identity(),
         
     | 
| 1579 | 
         
            +
                                                         nn.ReLU(inplace=True))
         
     | 
| 1580 | 
         
            +
                    self.conv1 = nn.Conv2d(self.in_channelster * 5, out_channels, 1, bias=False)
         
     | 
| 1581 | 
         
            +
                    self.bn1 = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
         
     | 
| 1582 | 
         
            +
                    self.relu = nn.ReLU(inplace=True)
         
     | 
| 1583 | 
         
            +
                    self.dropout = nn.Dropout(0.5)
         
     | 
| 1584 | 
         
            +
             
     | 
| 1585 | 
         
            +
                def forward(self, x):
         
     | 
| 1586 | 
         
            +
                    x1 = self.aspp1(x)
         
     | 
| 1587 | 
         
            +
                    x2 = self.aspp2(x)
         
     | 
| 1588 | 
         
            +
                    x3 = self.aspp3(x)
         
     | 
| 1589 | 
         
            +
                    x4 = self.aspp4(x)
         
     | 
| 1590 | 
         
            +
                    x5 = self.global_avg_pool(x)
         
     | 
| 1591 | 
         
            +
                    x5 = F.interpolate(x5, size=x1.size()[2:], mode='bilinear', align_corners=True)
         
     | 
| 1592 | 
         
            +
                    x = torch.cat((x1, x2, x3, x4, x5), dim=1)
         
     | 
| 1593 | 
         
            +
             
     | 
| 1594 | 
         
            +
                    x = self.conv1(x)
         
     | 
| 1595 | 
         
            +
                    x = self.bn1(x)
         
     | 
| 1596 | 
         
            +
                    x = self.relu(x)
         
     | 
| 1597 | 
         
            +
             
     | 
| 1598 | 
         
            +
                    return self.dropout(x)
         
     | 
| 1599 | 
         
            +
             
     | 
| 1600 | 
         
            +
             
     | 
| 1601 | 
         
            +
            ##################### Deformable
         
     | 
| 1602 | 
         
            +
            class _ASPPModuleDeformable(nn.Module):
         
     | 
| 1603 | 
         
            +
                def __init__(self, in_channels, planes, kernel_size, padding):
         
     | 
| 1604 | 
         
            +
                    super(_ASPPModuleDeformable, self).__init__()
         
     | 
| 1605 | 
         
            +
                    self.atrous_conv = DeformableConv2d(in_channels, planes, kernel_size=kernel_size,
         
     | 
| 1606 | 
         
            +
                                                        stride=1, padding=padding, bias=False)
         
     | 
| 1607 | 
         
            +
                    self.bn = nn.BatchNorm2d(planes) if config.batch_size > 1 else nn.Identity()
         
     | 
| 1608 | 
         
            +
                    self.relu = nn.ReLU(inplace=True)
         
     | 
| 1609 | 
         
            +
             
     | 
| 1610 | 
         
            +
                def forward(self, x):
         
     | 
| 1611 | 
         
            +
                    x = self.atrous_conv(x)
         
     | 
| 1612 | 
         
            +
                    x = self.bn(x)
         
     | 
| 1613 | 
         
            +
             
     | 
| 1614 | 
         
            +
                    return self.relu(x)
         
     | 
| 1615 | 
         
            +
             
     | 
| 1616 | 
         
            +
             
     | 
| 1617 | 
         
            +
            class ASPPDeformable(nn.Module):
         
     | 
| 1618 | 
         
            +
                def __init__(self, in_channels, out_channels=None, parallel_block_sizes=[1, 3, 7]):
         
     | 
| 1619 | 
         
            +
                    super(ASPPDeformable, self).__init__()
         
     | 
| 1620 | 
         
            +
                    self.down_scale = 1
         
     | 
| 1621 | 
         
            +
                    if out_channels is None:
         
     | 
| 1622 | 
         
            +
                        out_channels = in_channels
         
     | 
| 1623 | 
         
            +
                    self.in_channelster = 256 // self.down_scale
         
     | 
| 1624 | 
         
            +
             
     | 
| 1625 | 
         
            +
                    self.aspp1 = _ASPPModuleDeformable(in_channels, self.in_channelster, 1, padding=0)
         
     | 
| 1626 | 
         
            +
                    self.aspp_deforms = nn.ModuleList([
         
     | 
| 1627 | 
         
            +
                        _ASPPModuleDeformable(in_channels, self.in_channelster, conv_size, padding=int(conv_size//2)) for conv_size in parallel_block_sizes
         
     | 
| 1628 | 
         
            +
                    ])
         
     | 
| 1629 | 
         
            +
             
     | 
| 1630 | 
         
            +
                    self.global_avg_pool = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)),
         
     | 
| 1631 | 
         
            +
                                                         nn.Conv2d(in_channels, self.in_channelster, 1, stride=1, bias=False),
         
     | 
| 1632 | 
         
            +
                                                         nn.BatchNorm2d(self.in_channelster) if config.batch_size > 1 else nn.Identity(),
         
     | 
| 1633 | 
         
            +
                                                         nn.ReLU(inplace=True))
         
     | 
| 1634 | 
         
            +
                    self.conv1 = nn.Conv2d(self.in_channelster * (2 + len(self.aspp_deforms)), out_channels, 1, bias=False)
         
     | 
| 1635 | 
         
            +
                    self.bn1 = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
         
     | 
| 1636 | 
         
            +
                    self.relu = nn.ReLU(inplace=True)
         
     | 
| 1637 | 
         
            +
                    self.dropout = nn.Dropout(0.5)
         
     | 
| 1638 | 
         
            +
             
     | 
| 1639 | 
         
            +
                def forward(self, x):
         
     | 
| 1640 | 
         
            +
                    x1 = self.aspp1(x)
         
     | 
| 1641 | 
         
            +
                    x_aspp_deforms = [aspp_deform(x) for aspp_deform in self.aspp_deforms]
         
     | 
| 1642 | 
         
            +
                    x5 = self.global_avg_pool(x)
         
     | 
| 1643 | 
         
            +
                    x5 = F.interpolate(x5, size=x1.size()[2:], mode='bilinear', align_corners=True)
         
     | 
| 1644 | 
         
            +
                    x = torch.cat((x1, *x_aspp_deforms, x5), dim=1)
         
     | 
| 1645 | 
         
            +
             
     | 
| 1646 | 
         
            +
                    x = self.conv1(x)
         
     | 
| 1647 | 
         
            +
                    x = self.bn1(x)
         
     | 
| 1648 | 
         
            +
                    x = self.relu(x)
         
     | 
| 1649 | 
         
            +
             
     | 
| 1650 | 
         
            +
                    return self.dropout(x)
         
     | 
| 1651 | 
         
            +
             
     | 
| 1652 | 
         
            +
             
     | 
| 1653 | 
         
            +
             
     | 
| 1654 | 
         
            +
            ### models/refinement/refiner.py
         
     | 
| 1655 | 
         
            +
             
     | 
| 1656 | 
         
            +
            import torch
         
     | 
| 1657 | 
         
            +
            import torch.nn as nn
         
     | 
| 1658 | 
         
            +
            from collections import OrderedDict
         
     | 
| 1659 | 
         
            +
            import torch
         
     | 
| 1660 | 
         
            +
            import torch.nn as nn
         
     | 
| 1661 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 1662 | 
         
            +
            from torchvision.models import vgg16, vgg16_bn
         
     | 
| 1663 | 
         
            +
            from torchvision.models import resnet50
         
     | 
| 1664 | 
         
            +
             
     | 
| 1665 | 
         
            +
            # from config import Config
         
     | 
| 1666 | 
         
            +
            # from dataset import class_labels_TR_sorted
         
     | 
| 1667 | 
         
            +
            # from models.build_backbone import build_backbone
         
     | 
| 1668 | 
         
            +
            # from models.decoder_blocks import BasicDecBlk
         
     | 
| 1669 | 
         
            +
            # from models.lateral_blocks import BasicLatBlk
         
     | 
| 1670 | 
         
            +
            # from models.ing import *
         
     | 
| 1671 | 
         
            +
            # from models.stem_layer import StemLayer
         
     | 
| 1672 | 
         
            +
             
     | 
| 1673 | 
         
            +
             
     | 
| 1674 | 
         
            +
            class RefinerPVTInChannels4(nn.Module):
         
     | 
| 1675 | 
         
            +
                def __init__(self, in_channels=3+1):
         
     | 
| 1676 | 
         
            +
                    super(RefinerPVTInChannels4, self).__init__()
         
     | 
| 1677 | 
         
            +
                    self.config = Config()
         
     | 
| 1678 | 
         
            +
                    self.epoch = 1
         
     | 
| 1679 | 
         
            +
                    self.bb = build_backbone(self.config.bb, params_settings='in_channels=4')
         
     | 
| 1680 | 
         
            +
             
     | 
| 1681 | 
         
            +
                    lateral_channels_in_collection = {
         
     | 
| 1682 | 
         
            +
                        'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64],
         
     | 
| 1683 | 
         
            +
                        'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64],
         
     | 
| 1684 | 
         
            +
                        'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192],
         
     | 
| 1685 | 
         
            +
                    }
         
     | 
| 1686 | 
         
            +
                    channels = lateral_channels_in_collection[self.config.bb]
         
     | 
| 1687 | 
         
            +
                    self.squeeze_module = BasicDecBlk(channels[0], channels[0])
         
     | 
| 1688 | 
         
            +
             
     | 
| 1689 | 
         
            +
                    self.decoder = Decoder(channels)
         
     | 
| 1690 | 
         
            +
             
     | 
| 1691 | 
         
            +
                    if 0:
         
     | 
| 1692 | 
         
            +
                        for key, value in self.named_parameters():
         
     | 
| 1693 | 
         
            +
                            if 'bb.' in key:
         
     | 
| 1694 | 
         
            +
                                value.requires_grad = False
         
     | 
| 1695 | 
         
            +
             
     | 
| 1696 | 
         
            +
                def forward(self, x):
         
     | 
| 1697 | 
         
            +
                    if isinstance(x, list):
         
     | 
| 1698 | 
         
            +
                        x = torch.cat(x, dim=1)
         
     | 
| 1699 | 
         
            +
                    ########## Encoder ##########
         
     | 
| 1700 | 
         
            +
                    if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']:
         
     | 
| 1701 | 
         
            +
                        x1 = self.bb.conv1(x)
         
     | 
| 1702 | 
         
            +
                        x2 = self.bb.conv2(x1)
         
     | 
| 1703 | 
         
            +
                        x3 = self.bb.conv3(x2)
         
     | 
| 1704 | 
         
            +
                        x4 = self.bb.conv4(x3)
         
     | 
| 1705 | 
         
            +
                    else:
         
     | 
| 1706 | 
         
            +
                        x1, x2, x3, x4 = self.bb(x)
         
     | 
| 1707 | 
         
            +
             
     | 
| 1708 | 
         
            +
                    x4 = self.squeeze_module(x4)
         
     | 
| 1709 | 
         
            +
             
     | 
| 1710 | 
         
            +
                    ########## Decoder ##########
         
     | 
| 1711 | 
         
            +
             
     | 
| 1712 | 
         
            +
                    features = [x, x1, x2, x3, x4]
         
     | 
| 1713 | 
         
            +
                    scaled_preds = self.decoder(features)
         
     | 
| 1714 | 
         
            +
             
     | 
| 1715 | 
         
            +
                    return scaled_preds
         
     | 
| 1716 | 
         
            +
             
     | 
| 1717 | 
         
            +
             
     | 
| 1718 | 
         
            +
            class Refiner(nn.Module):
         
     | 
| 1719 | 
         
            +
                def __init__(self, in_channels=3+1):
         
     | 
| 1720 | 
         
            +
                    super(Refiner, self).__init__()
         
     | 
| 1721 | 
         
            +
                    self.config = Config()
         
     | 
| 1722 | 
         
            +
                    self.epoch = 1
         
     | 
| 1723 | 
         
            +
                    self.stem_layer = StemLayer(in_channels=in_channels, inter_channels=48, out_channels=3, norm_layer='BN' if self.config.batch_size > 1 else 'LN')
         
     | 
| 1724 | 
         
            +
                    self.bb = build_backbone(self.config.bb)
         
     | 
| 1725 | 
         
            +
             
     | 
| 1726 | 
         
            +
                    lateral_channels_in_collection = {
         
     | 
| 1727 | 
         
            +
                        'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64],
         
     | 
| 1728 | 
         
            +
                        'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64],
         
     | 
| 1729 | 
         
            +
                        'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192],
         
     | 
| 1730 | 
         
            +
                    }
         
     | 
| 1731 | 
         
            +
                    channels = lateral_channels_in_collection[self.config.bb]
         
     | 
| 1732 | 
         
            +
                    self.squeeze_module = BasicDecBlk(channels[0], channels[0])
         
     | 
| 1733 | 
         
            +
             
     | 
| 1734 | 
         
            +
                    self.decoder = Decoder(channels)
         
     | 
| 1735 | 
         
            +
             
     | 
| 1736 | 
         
            +
                    if 0:
         
     | 
| 1737 | 
         
            +
                        for key, value in self.named_parameters():
         
     | 
| 1738 | 
         
            +
                            if 'bb.' in key:
         
     | 
| 1739 | 
         
            +
                                value.requires_grad = False
         
     | 
| 1740 | 
         
            +
             
     | 
| 1741 | 
         
            +
                def forward(self, x):
         
     | 
| 1742 | 
         
            +
                    if isinstance(x, list):
         
     | 
| 1743 | 
         
            +
                        x = torch.cat(x, dim=1)
         
     | 
| 1744 | 
         
            +
                    x = self.stem_layer(x)
         
     | 
| 1745 | 
         
            +
                    ########## Encoder ##########
         
     | 
| 1746 | 
         
            +
                    if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']:
         
     | 
| 1747 | 
         
            +
                        x1 = self.bb.conv1(x)
         
     | 
| 1748 | 
         
            +
                        x2 = self.bb.conv2(x1)
         
     | 
| 1749 | 
         
            +
                        x3 = self.bb.conv3(x2)
         
     | 
| 1750 | 
         
            +
                        x4 = self.bb.conv4(x3)
         
     | 
| 1751 | 
         
            +
                    else:
         
     | 
| 1752 | 
         
            +
                        x1, x2, x3, x4 = self.bb(x)
         
     | 
| 1753 | 
         
            +
             
     | 
| 1754 | 
         
            +
                    x4 = self.squeeze_module(x4)
         
     | 
| 1755 | 
         
            +
             
     | 
| 1756 | 
         
            +
                    ########## Decoder ##########
         
     | 
| 1757 | 
         
            +
             
     | 
| 1758 | 
         
            +
                    features = [x, x1, x2, x3, x4]
         
     | 
| 1759 | 
         
            +
                    scaled_preds = self.decoder(features)
         
     | 
| 1760 | 
         
            +
             
     | 
| 1761 | 
         
            +
                    return scaled_preds
         
     | 
| 1762 | 
         
            +
             
     | 
| 1763 | 
         
            +
             
     | 
| 1764 | 
         
            +
            class Decoder(nn.Module):
         
     | 
| 1765 | 
         
            +
                def __init__(self, channels):
         
     | 
| 1766 | 
         
            +
                    super(Decoder, self).__init__()
         
     | 
| 1767 | 
         
            +
                    self.config = Config()
         
     | 
| 1768 | 
         
            +
                    DecoderBlock = eval('BasicDecBlk')
         
     | 
| 1769 | 
         
            +
                    LateralBlock = eval('BasicLatBlk')
         
     | 
| 1770 | 
         
            +
             
     | 
| 1771 | 
         
            +
                    self.decoder_block4 = DecoderBlock(channels[0], channels[1])
         
     | 
| 1772 | 
         
            +
                    self.decoder_block3 = DecoderBlock(channels[1], channels[2])
         
     | 
| 1773 | 
         
            +
                    self.decoder_block2 = DecoderBlock(channels[2], channels[3])
         
     | 
| 1774 | 
         
            +
                    self.decoder_block1 = DecoderBlock(channels[3], channels[3]//2)
         
     | 
| 1775 | 
         
            +
             
     | 
| 1776 | 
         
            +
                    self.lateral_block4 = LateralBlock(channels[1], channels[1])
         
     | 
| 1777 | 
         
            +
                    self.lateral_block3 = LateralBlock(channels[2], channels[2])
         
     | 
| 1778 | 
         
            +
                    self.lateral_block2 = LateralBlock(channels[3], channels[3])
         
     | 
| 1779 | 
         
            +
             
     | 
| 1780 | 
         
            +
                    if self.config.ms_supervision:
         
     | 
| 1781 | 
         
            +
                        self.conv_ms_spvn_4 = nn.Conv2d(channels[1], 1, 1, 1, 0)
         
     | 
| 1782 | 
         
            +
                        self.conv_ms_spvn_3 = nn.Conv2d(channels[2], 1, 1, 1, 0)
         
     | 
| 1783 | 
         
            +
                        self.conv_ms_spvn_2 = nn.Conv2d(channels[3], 1, 1, 1, 0)
         
     | 
| 1784 | 
         
            +
                    self.conv_out1 = nn.Sequential(nn.Conv2d(channels[3]//2, 1, 1, 1, 0))
         
     | 
| 1785 | 
         
            +
             
     | 
| 1786 | 
         
            +
                def forward(self, features):
         
     | 
| 1787 | 
         
            +
                    x, x1, x2, x3, x4 = features
         
     | 
| 1788 | 
         
            +
                    outs = []
         
     | 
| 1789 | 
         
            +
                    p4 = self.decoder_block4(x4)
         
     | 
| 1790 | 
         
            +
                    _p4 = F.interpolate(p4, size=x3.shape[2:], mode='bilinear', align_corners=True)
         
     | 
| 1791 | 
         
            +
                    _p3 = _p4 + self.lateral_block4(x3)
         
     | 
| 1792 | 
         
            +
             
     | 
| 1793 | 
         
            +
                    p3 = self.decoder_block3(_p3)
         
     | 
| 1794 | 
         
            +
                    _p3 = F.interpolate(p3, size=x2.shape[2:], mode='bilinear', align_corners=True)
         
     | 
| 1795 | 
         
            +
                    _p2 = _p3 + self.lateral_block3(x2)
         
     | 
| 1796 | 
         
            +
             
     | 
| 1797 | 
         
            +
                    p2 = self.decoder_block2(_p2)
         
     | 
| 1798 | 
         
            +
                    _p2 = F.interpolate(p2, size=x1.shape[2:], mode='bilinear', align_corners=True)
         
     | 
| 1799 | 
         
            +
                    _p1 = _p2 + self.lateral_block2(x1)
         
     | 
| 1800 | 
         
            +
             
     | 
| 1801 | 
         
            +
                    _p1 = self.decoder_block1(_p1)
         
     | 
| 1802 | 
         
            +
                    _p1 = F.interpolate(_p1, size=x.shape[2:], mode='bilinear', align_corners=True)
         
     | 
| 1803 | 
         
            +
                    p1_out = self.conv_out1(_p1)
         
     | 
| 1804 | 
         
            +
             
     | 
| 1805 | 
         
            +
                    if self.config.ms_supervision:
         
     | 
| 1806 | 
         
            +
                        outs.append(self.conv_ms_spvn_4(p4))
         
     | 
| 1807 | 
         
            +
                        outs.append(self.conv_ms_spvn_3(p3))
         
     | 
| 1808 | 
         
            +
                        outs.append(self.conv_ms_spvn_2(p2))
         
     | 
| 1809 | 
         
            +
                    outs.append(p1_out)
         
     | 
| 1810 | 
         
            +
                    return outs
         
     | 
| 1811 | 
         
            +
             
     | 
| 1812 | 
         
            +
             
     | 
| 1813 | 
         
            +
            class RefUNet(nn.Module):
         
     | 
| 1814 | 
         
            +
                # Refinement
         
     | 
| 1815 | 
         
            +
                def __init__(self, in_channels=3+1):
         
     | 
| 1816 | 
         
            +
                    super(RefUNet, self).__init__()
         
     | 
| 1817 | 
         
            +
                    self.encoder_1 = nn.Sequential(
         
     | 
| 1818 | 
         
            +
                        nn.Conv2d(in_channels, 64, 3, 1, 1),
         
     | 
| 1819 | 
         
            +
                        nn.Conv2d(64, 64, 3, 1, 1),
         
     | 
| 1820 | 
         
            +
                        nn.BatchNorm2d(64),
         
     | 
| 1821 | 
         
            +
                        nn.ReLU(inplace=True)
         
     | 
| 1822 | 
         
            +
                    )
         
     | 
| 1823 | 
         
            +
             
     | 
| 1824 | 
         
            +
                    self.encoder_2 = nn.Sequential(
         
     | 
| 1825 | 
         
            +
                        nn.MaxPool2d(2, 2, ceil_mode=True),
         
     | 
| 1826 | 
         
            +
                        nn.Conv2d(64, 64, 3, 1, 1),
         
     | 
| 1827 | 
         
            +
                        nn.BatchNorm2d(64),
         
     | 
| 1828 | 
         
            +
                        nn.ReLU(inplace=True)
         
     | 
| 1829 | 
         
            +
                    )
         
     | 
| 1830 | 
         
            +
             
     | 
| 1831 | 
         
            +
                    self.encoder_3 = nn.Sequential(
         
     | 
| 1832 | 
         
            +
                        nn.MaxPool2d(2, 2, ceil_mode=True),
         
     | 
| 1833 | 
         
            +
                        nn.Conv2d(64, 64, 3, 1, 1),
         
     | 
| 1834 | 
         
            +
                        nn.BatchNorm2d(64),
         
     | 
| 1835 | 
         
            +
                        nn.ReLU(inplace=True)
         
     | 
| 1836 | 
         
            +
                    )
         
     | 
| 1837 | 
         
            +
             
     | 
| 1838 | 
         
            +
                    self.encoder_4 = nn.Sequential(
         
     | 
| 1839 | 
         
            +
                        nn.MaxPool2d(2, 2, ceil_mode=True),
         
     | 
| 1840 | 
         
            +
                        nn.Conv2d(64, 64, 3, 1, 1),
         
     | 
| 1841 | 
         
            +
                        nn.BatchNorm2d(64),
         
     | 
| 1842 | 
         
            +
                        nn.ReLU(inplace=True)
         
     | 
| 1843 | 
         
            +
                    )
         
     | 
| 1844 | 
         
            +
             
     | 
| 1845 | 
         
            +
                    self.pool4 = nn.MaxPool2d(2, 2, ceil_mode=True)
         
     | 
| 1846 | 
         
            +
                    #####
         
     | 
| 1847 | 
         
            +
                    self.decoder_5 = nn.Sequential(
         
     | 
| 1848 | 
         
            +
                        nn.Conv2d(64, 64, 3, 1, 1),
         
     | 
| 1849 | 
         
            +
                        nn.BatchNorm2d(64),
         
     | 
| 1850 | 
         
            +
                        nn.ReLU(inplace=True)
         
     | 
| 1851 | 
         
            +
                    )
         
     | 
| 1852 | 
         
            +
                    #####
         
     | 
| 1853 | 
         
            +
                    self.decoder_4 = nn.Sequential(
         
     | 
| 1854 | 
         
            +
                        nn.Conv2d(128, 64, 3, 1, 1),
         
     | 
| 1855 | 
         
            +
                        nn.BatchNorm2d(64),
         
     | 
| 1856 | 
         
            +
                        nn.ReLU(inplace=True)
         
     | 
| 1857 | 
         
            +
                    )
         
     | 
| 1858 | 
         
            +
             
     | 
| 1859 | 
         
            +
                    self.decoder_3 = nn.Sequential(
         
     | 
| 1860 | 
         
            +
                        nn.Conv2d(128, 64, 3, 1, 1),
         
     | 
| 1861 | 
         
            +
                        nn.BatchNorm2d(64),
         
     | 
| 1862 | 
         
            +
                        nn.ReLU(inplace=True)
         
     | 
| 1863 | 
         
            +
                    )
         
     | 
| 1864 | 
         
            +
             
     | 
| 1865 | 
         
            +
                    self.decoder_2 = nn.Sequential(
         
     | 
| 1866 | 
         
            +
                        nn.Conv2d(128, 64, 3, 1, 1),
         
     | 
| 1867 | 
         
            +
                        nn.BatchNorm2d(64),
         
     | 
| 1868 | 
         
            +
                        nn.ReLU(inplace=True)
         
     | 
| 1869 | 
         
            +
                    )
         
     | 
| 1870 | 
         
            +
             
     | 
| 1871 | 
         
            +
                    self.decoder_1 = nn.Sequential(
         
     | 
| 1872 | 
         
            +
                        nn.Conv2d(128, 64, 3, 1, 1),
         
     | 
| 1873 | 
         
            +
                        nn.BatchNorm2d(64),
         
     | 
| 1874 | 
         
            +
                        nn.ReLU(inplace=True)
         
     | 
| 1875 | 
         
            +
                    )
         
     | 
| 1876 | 
         
            +
             
     | 
| 1877 | 
         
            +
                    self.conv_d0 = nn.Conv2d(64, 1, 3, 1, 1)
         
     | 
| 1878 | 
         
            +
             
     | 
| 1879 | 
         
            +
                    self.upscore2 = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
         
     | 
| 1880 | 
         
            +
             
     | 
| 1881 | 
         
            +
                def forward(self, x):
         
     | 
| 1882 | 
         
            +
                    outs = []
         
     | 
| 1883 | 
         
            +
                    if isinstance(x, list):
         
     | 
| 1884 | 
         
            +
                        x = torch.cat(x, dim=1)
         
     | 
| 1885 | 
         
            +
                    hx = x
         
     | 
| 1886 | 
         
            +
             
     | 
| 1887 | 
         
            +
                    hx1 = self.encoder_1(hx)
         
     | 
| 1888 | 
         
            +
                    hx2 = self.encoder_2(hx1)
         
     | 
| 1889 | 
         
            +
                    hx3 = self.encoder_3(hx2)
         
     | 
| 1890 | 
         
            +
                    hx4 = self.encoder_4(hx3)
         
     | 
| 1891 | 
         
            +
             
     | 
| 1892 | 
         
            +
                    hx = self.decoder_5(self.pool4(hx4))
         
     | 
| 1893 | 
         
            +
                    hx = torch.cat((self.upscore2(hx), hx4), 1)
         
     | 
| 1894 | 
         
            +
             
     | 
| 1895 | 
         
            +
                    d4 = self.decoder_4(hx)
         
     | 
| 1896 | 
         
            +
                    hx = torch.cat((self.upscore2(d4), hx3), 1)
         
     | 
| 1897 | 
         
            +
             
     | 
| 1898 | 
         
            +
                    d3 = self.decoder_3(hx)
         
     | 
| 1899 | 
         
            +
                    hx = torch.cat((self.upscore2(d3), hx2), 1)
         
     | 
| 1900 | 
         
            +
             
     | 
| 1901 | 
         
            +
                    d2 = self.decoder_2(hx)
         
     | 
| 1902 | 
         
            +
                    hx = torch.cat((self.upscore2(d2), hx1), 1)
         
     | 
| 1903 | 
         
            +
             
     | 
| 1904 | 
         
            +
                    d1 = self.decoder_1(hx)
         
     | 
| 1905 | 
         
            +
             
     | 
| 1906 | 
         
            +
                    x = self.conv_d0(d1)
         
     | 
| 1907 | 
         
            +
                    outs.append(x)
         
     | 
| 1908 | 
         
            +
                    return outs
         
     | 
| 1909 | 
         
            +
             
     | 
| 1910 | 
         
            +
             
     | 
| 1911 | 
         
            +
             
     | 
| 1912 | 
         
            +
            ### models/stem_layer.py
         
     | 
| 1913 | 
         
            +
             
     | 
| 1914 | 
         
            +
            import torch.nn as nn
         
     | 
| 1915 | 
         
            +
            # from utils import build_act_layer, build_norm_layer
         
     | 
| 1916 | 
         
            +
             
     | 
| 1917 | 
         
            +
             
     | 
| 1918 | 
         
            +
            class StemLayer(nn.Module):
         
     | 
| 1919 | 
         
            +
                r""" Stem layer of InternImage
         
     | 
| 1920 | 
         
            +
                Args:
         
     | 
| 1921 | 
         
            +
                    in_channels (int): number of input channels
         
     | 
| 1922 | 
         
            +
                    out_channels (int): number of output channels
         
     | 
| 1923 | 
         
            +
                    act_layer (str): activation layer
         
     | 
| 1924 | 
         
            +
                    norm_layer (str): normalization layer
         
     | 
| 1925 | 
         
            +
                """
         
     | 
| 1926 | 
         
            +
             
     | 
| 1927 | 
         
            +
                def __init__(self,
         
     | 
| 1928 | 
         
            +
                             in_channels=3+1,
         
     | 
| 1929 | 
         
            +
                             inter_channels=48,
         
     | 
| 1930 | 
         
            +
                             out_channels=96,
         
     | 
| 1931 | 
         
            +
                             act_layer='GELU',
         
     | 
| 1932 | 
         
            +
                             norm_layer='BN'):
         
     | 
| 1933 | 
         
            +
                    super().__init__()
         
     | 
| 1934 | 
         
            +
                    self.conv1 = nn.Conv2d(in_channels,
         
     | 
| 1935 | 
         
            +
                                           inter_channels,
         
     | 
| 1936 | 
         
            +
                                           kernel_size=3,
         
     | 
| 1937 | 
         
            +
                                           stride=1,
         
     | 
| 1938 | 
         
            +
                                           padding=1)
         
     | 
| 1939 | 
         
            +
                    self.norm1 = build_norm_layer(
         
     | 
| 1940 | 
         
            +
                        inter_channels, norm_layer, 'channels_first', 'channels_first'
         
     | 
| 1941 | 
         
            +
                    )
         
     | 
| 1942 | 
         
            +
                    self.act = build_act_layer(act_layer)
         
     | 
| 1943 | 
         
            +
                    self.conv2 = nn.Conv2d(inter_channels,
         
     | 
| 1944 | 
         
            +
                                           out_channels,
         
     | 
| 1945 | 
         
            +
                                           kernel_size=3,
         
     | 
| 1946 | 
         
            +
                                           stride=1,
         
     | 
| 1947 | 
         
            +
                                           padding=1)
         
     | 
| 1948 | 
         
            +
                    self.norm2 = build_norm_layer(
         
     | 
| 1949 | 
         
            +
                        out_channels, norm_layer, 'channels_first', 'channels_first'
         
     | 
| 1950 | 
         
            +
                    )
         
     | 
| 1951 | 
         
            +
             
     | 
| 1952 | 
         
            +
                def forward(self, x):
         
     | 
| 1953 | 
         
            +
                    x = self.conv1(x)
         
     | 
| 1954 | 
         
            +
                    x = self.norm1(x)
         
     | 
| 1955 | 
         
            +
                    x = self.act(x)
         
     | 
| 1956 | 
         
            +
                    x = self.conv2(x)
         
     | 
| 1957 | 
         
            +
                    x = self.norm2(x)
         
     | 
| 1958 | 
         
            +
                    return x
         
     | 
| 1959 | 
         
            +
             
     | 
| 1960 | 
         
            +
             
     | 
| 1961 | 
         
            +
            ### models/birefnet.py
         
     | 
| 1962 | 
         
            +
             
     | 
| 1963 | 
         
            +
            import torch
         
     | 
| 1964 | 
         
            +
            import torch.nn as nn
         
     | 
| 1965 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 1966 | 
         
            +
            from kornia.filters import laplacian
         
     | 
| 1967 | 
         
            +
            from transformers import PreTrainedModel
         
     | 
| 1968 | 
         
            +
            from einops import rearrange
         
     | 
| 1969 | 
         
            +
             
     | 
| 1970 | 
         
            +
            # from config import Config
         
     | 
| 1971 | 
         
            +
            # from dataset import class_labels_TR_sorted
         
     | 
| 1972 | 
         
            +
            # from models.build_backbone import build_backbone
         
     | 
| 1973 | 
         
            +
            # from models.decoder_blocks import BasicDecBlk, ResBlk, HierarAttDecBlk
         
     | 
| 1974 | 
         
            +
            # from models.lateral_blocks import BasicLatBlk
         
     | 
| 1975 | 
         
            +
            # from models.aspp import ASPP, ASPPDeformable
         
     | 
| 1976 | 
         
            +
            # from models.ing import *
         
     | 
| 1977 | 
         
            +
            # from models.refiner import Refiner, RefinerPVTInChannels4, RefUNet
         
     | 
| 1978 | 
         
            +
            # from models.stem_layer import StemLayer
         
     | 
| 1979 | 
         
            +
            from .BiRefNet_config import BiRefNetConfig
         
     | 
| 1980 | 
         
            +
             
     | 
| 1981 | 
         
            +
             
     | 
| 1982 | 
         
            +
            def image2patches(image, grid_h=2, grid_w=2, patch_ref=None, transformation='b c (hg h) (wg w) -> (b hg wg) c h w'):
         
     | 
| 1983 | 
         
            +
                if patch_ref is not None:
         
     | 
| 1984 | 
         
            +
                    grid_h, grid_w = image.shape[-2] // patch_ref.shape[-2], image.shape[-1] // patch_ref.shape[-1]
         
     | 
| 1985 | 
         
            +
                patches = rearrange(image, transformation, hg=grid_h, wg=grid_w)
         
     | 
| 1986 | 
         
            +
                return patches
         
     | 
| 1987 | 
         
            +
             
     | 
| 1988 | 
         
            +
            def patches2image(patches, grid_h=2, grid_w=2, patch_ref=None, transformation='(b hg wg) c h w -> b c (hg h) (wg w)'):
         
     | 
| 1989 | 
         
            +
                if patch_ref is not None:
         
     | 
| 1990 | 
         
            +
                    grid_h, grid_w = patch_ref.shape[-2] // patches[0].shape[-2], patch_ref.shape[-1] // patches[0].shape[-1]
         
     | 
| 1991 | 
         
            +
                image = rearrange(patches, transformation, hg=grid_h, wg=grid_w)
         
     | 
| 1992 | 
         
            +
                return image
         
     | 
| 1993 | 
         
            +
             
     | 
| 1994 | 
         
            +
            class BiRefNet(
         
     | 
| 1995 | 
         
            +
                PreTrainedModel
         
     | 
| 1996 | 
         
            +
            ):
         
     | 
| 1997 | 
         
            +
                config_class = BiRefNetConfig
         
     | 
| 1998 | 
         
            +
                def __init__(self, bb_pretrained=True, config=BiRefNetConfig()):
         
     | 
| 1999 | 
         
            +
                    super(BiRefNet, self).__init__(config)
         
     | 
| 2000 | 
         
            +
                    bb_pretrained = config.bb_pretrained
         
     | 
| 2001 | 
         
            +
                    self.config = Config()
         
     | 
| 2002 | 
         
            +
                    self.epoch = 1
         
     | 
| 2003 | 
         
            +
                    self.bb = build_backbone(self.config.bb, pretrained=bb_pretrained)
         
     | 
| 2004 | 
         
            +
             
     | 
| 2005 | 
         
            +
                    channels = self.config.lateral_channels_in_collection
         
     | 
| 2006 | 
         
            +
             
     | 
| 2007 | 
         
            +
                    if self.config.auxiliary_classification:
         
     | 
| 2008 | 
         
            +
                        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
         
     | 
| 2009 | 
         
            +
                        self.cls_head = nn.Sequential(
         
     | 
| 2010 | 
         
            +
                            nn.Linear(channels[0], len(class_labels_TR_sorted))
         
     | 
| 2011 | 
         
            +
                        )
         
     | 
| 2012 | 
         
            +
             
     | 
| 2013 | 
         
            +
                    if self.config.squeeze_block:
         
     | 
| 2014 | 
         
            +
                        self.squeeze_module = nn.Sequential(*[
         
     | 
| 2015 | 
         
            +
                            eval(self.config.squeeze_block.split('_x')[0])(channels[0]+sum(self.config.cxt), channels[0])
         
     | 
| 2016 | 
         
            +
                            for _ in range(eval(self.config.squeeze_block.split('_x')[1]))
         
     | 
| 2017 | 
         
            +
                        ])
         
     | 
| 2018 | 
         
            +
             
     | 
| 2019 | 
         
            +
                    self.decoder = Decoder(channels)
         
     | 
| 2020 | 
         
            +
             
     | 
| 2021 | 
         
            +
                    if self.config.ender:
         
     | 
| 2022 | 
         
            +
                        self.dec_end = nn.Sequential(
         
     | 
| 2023 | 
         
            +
                            nn.Conv2d(1, 16, 3, 1, 1),
         
     | 
| 2024 | 
         
            +
                            nn.Conv2d(16, 1, 3, 1, 1),
         
     | 
| 2025 | 
         
            +
                            nn.ReLU(inplace=True),
         
     | 
| 2026 | 
         
            +
                        )
         
     | 
| 2027 | 
         
            +
             
     | 
| 2028 | 
         
            +
                    # refine patch-level segmentation
         
     | 
| 2029 | 
         
            +
                    if self.config.refine:
         
     | 
| 2030 | 
         
            +
                        if self.config.refine == 'itself':
         
     | 
| 2031 | 
         
            +
                            self.stem_layer = StemLayer(in_channels=3+1, inter_channels=48, out_channels=3, norm_layer='BN' if self.config.batch_size > 1 else 'LN')
         
     | 
| 2032 | 
         
            +
                        else:
         
     | 
| 2033 | 
         
            +
                            self.refiner = eval('{}({})'.format(self.config.refine, 'in_channels=3+1'))
         
     | 
| 2034 | 
         
            +
             
     | 
| 2035 | 
         
            +
                    if self.config.freeze_bb:
         
     | 
| 2036 | 
         
            +
                        # Freeze the backbone...
         
     | 
| 2037 | 
         
            +
                        print(self.named_parameters())
         
     | 
| 2038 | 
         
            +
                        for key, value in self.named_parameters():
         
     | 
| 2039 | 
         
            +
                            if 'bb.' in key and 'refiner.' not in key:
         
     | 
| 2040 | 
         
            +
                                value.requires_grad = False
         
     | 
| 2041 | 
         
            +
             
     | 
| 2042 | 
         
            +
                def forward_enc(self, x):
         
     | 
| 2043 | 
         
            +
                    if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']:
         
     | 
| 2044 | 
         
            +
                        x1 = self.bb.conv1(x); x2 = self.bb.conv2(x1); x3 = self.bb.conv3(x2); x4 = self.bb.conv4(x3)
         
     | 
| 2045 | 
         
            +
                    else:
         
     | 
| 2046 | 
         
            +
                        x1, x2, x3, x4 = self.bb(x)
         
     | 
| 2047 | 
         
            +
                        if self.config.mul_scl_ipt == 'cat':
         
     | 
| 2048 | 
         
            +
                            B, C, H, W = x.shape
         
     | 
| 2049 | 
         
            +
                            x1_, x2_, x3_, x4_ = self.bb(F.interpolate(x, size=(H//2, W//2), mode='bilinear', align_corners=True))
         
     | 
| 2050 | 
         
            +
                            x1 = torch.cat([x1, F.interpolate(x1_, size=x1.shape[2:], mode='bilinear', align_corners=True)], dim=1)
         
     | 
| 2051 | 
         
            +
                            x2 = torch.cat([x2, F.interpolate(x2_, size=x2.shape[2:], mode='bilinear', align_corners=True)], dim=1)
         
     | 
| 2052 | 
         
            +
                            x3 = torch.cat([x3, F.interpolate(x3_, size=x3.shape[2:], mode='bilinear', align_corners=True)], dim=1)
         
     | 
| 2053 | 
         
            +
                            x4 = torch.cat([x4, F.interpolate(x4_, size=x4.shape[2:], mode='bilinear', align_corners=True)], dim=1)
         
     | 
| 2054 | 
         
            +
                        elif self.config.mul_scl_ipt == 'add':
         
     | 
| 2055 | 
         
            +
                            B, C, H, W = x.shape
         
     | 
| 2056 | 
         
            +
                            x1_, x2_, x3_, x4_ = self.bb(F.interpolate(x, size=(H//2, W//2), mode='bilinear', align_corners=True))
         
     | 
| 2057 | 
         
            +
                            x1 = x1 + F.interpolate(x1_, size=x1.shape[2:], mode='bilinear', align_corners=True)
         
     | 
| 2058 | 
         
            +
                            x2 = x2 + F.interpolate(x2_, size=x2.shape[2:], mode='bilinear', align_corners=True)
         
     | 
| 2059 | 
         
            +
                            x3 = x3 + F.interpolate(x3_, size=x3.shape[2:], mode='bilinear', align_corners=True)
         
     | 
| 2060 | 
         
            +
                            x4 = x4 + F.interpolate(x4_, size=x4.shape[2:], mode='bilinear', align_corners=True)
         
     | 
| 2061 | 
         
            +
                    class_preds = self.cls_head(self.avgpool(x4).view(x4.shape[0], -1)) if self.training and self.config.auxiliary_classification else None
         
     | 
| 2062 | 
         
            +
                    if self.config.cxt:
         
     | 
| 2063 | 
         
            +
                        x4 = torch.cat(
         
     | 
| 2064 | 
         
            +
                            (
         
     | 
| 2065 | 
         
            +
                                *[
         
     | 
| 2066 | 
         
            +
                                    F.interpolate(x1, size=x4.shape[2:], mode='bilinear', align_corners=True),
         
     | 
| 2067 | 
         
            +
                                    F.interpolate(x2, size=x4.shape[2:], mode='bilinear', align_corners=True),
         
     | 
| 2068 | 
         
            +
                                    F.interpolate(x3, size=x4.shape[2:], mode='bilinear', align_corners=True),
         
     | 
| 2069 | 
         
            +
                                ][-len(self.config.cxt):],
         
     | 
| 2070 | 
         
            +
                                x4
         
     | 
| 2071 | 
         
            +
                            ),
         
     | 
| 2072 | 
         
            +
                            dim=1
         
     | 
| 2073 | 
         
            +
                        )
         
     | 
| 2074 | 
         
            +
                    return (x1, x2, x3, x4), class_preds
         
     | 
| 2075 | 
         
            +
             
     | 
| 2076 | 
         
            +
                def forward_ori(self, x):
         
     | 
| 2077 | 
         
            +
                    ########## Encoder ##########
         
     | 
| 2078 | 
         
            +
                    (x1, x2, x3, x4), class_preds = self.forward_enc(x)
         
     | 
| 2079 | 
         
            +
                    if self.config.squeeze_block:
         
     | 
| 2080 | 
         
            +
                        x4 = self.squeeze_module(x4)
         
     | 
| 2081 | 
         
            +
                    ########## Decoder ##########
         
     | 
| 2082 | 
         
            +
                    features = [x, x1, x2, x3, x4]
         
     | 
| 2083 | 
         
            +
                    if self.training and self.config.out_ref:
         
     | 
| 2084 | 
         
            +
                        features.append(laplacian(torch.mean(x, dim=1).unsqueeze(1), kernel_size=5))
         
     | 
| 2085 | 
         
            +
                    scaled_preds = self.decoder(features)
         
     | 
| 2086 | 
         
            +
                    return scaled_preds, class_preds
         
     | 
| 2087 | 
         
            +
             
     | 
| 2088 | 
         
            +
                def forward(self, x):
         
     | 
| 2089 | 
         
            +
                    scaled_preds, class_preds = self.forward_ori(x)
         
     | 
| 2090 | 
         
            +
                    class_preds_lst = [class_preds]
         
     | 
| 2091 | 
         
            +
                    return [scaled_preds, class_preds_lst] if self.training else scaled_preds
         
     | 
| 2092 | 
         
            +
             
     | 
| 2093 | 
         
            +
             
     | 
| 2094 | 
         
            +
            class Decoder(nn.Module):
         
     | 
| 2095 | 
         
            +
                def __init__(self, channels):
         
     | 
| 2096 | 
         
            +
                    super(Decoder, self).__init__()
         
     | 
| 2097 | 
         
            +
                    self.config = Config()
         
     | 
| 2098 | 
         
            +
                    DecoderBlock = eval(self.config.dec_blk)
         
     | 
| 2099 | 
         
            +
                    LateralBlock = eval(self.config.lat_blk)
         
     | 
| 2100 | 
         
            +
             
     | 
| 2101 | 
         
            +
                    if self.config.dec_ipt:
         
     | 
| 2102 | 
         
            +
                        self.split = self.config.dec_ipt_split
         
     | 
| 2103 | 
         
            +
                        N_dec_ipt = 64
         
     | 
| 2104 | 
         
            +
                        DBlock = SimpleConvs
         
     | 
| 2105 | 
         
            +
                        ic = 64
         
     | 
| 2106 | 
         
            +
                        ipt_cha_opt = 1
         
     | 
| 2107 | 
         
            +
                        self.ipt_blk5 = DBlock(2**10*3 if self.split else 3, [N_dec_ipt, channels[0]//8][ipt_cha_opt], inter_channels=ic)
         
     | 
| 2108 | 
         
            +
                        self.ipt_blk4 = DBlock(2**8*3 if self.split else 3, [N_dec_ipt, channels[0]//8][ipt_cha_opt], inter_channels=ic)
         
     | 
| 2109 | 
         
            +
                        self.ipt_blk3 = DBlock(2**6*3 if self.split else 3, [N_dec_ipt, channels[1]//8][ipt_cha_opt], inter_channels=ic)
         
     | 
| 2110 | 
         
            +
                        self.ipt_blk2 = DBlock(2**4*3 if self.split else 3, [N_dec_ipt, channels[2]//8][ipt_cha_opt], inter_channels=ic)
         
     | 
| 2111 | 
         
            +
                        self.ipt_blk1 = DBlock(2**0*3 if self.split else 3, [N_dec_ipt, channels[3]//8][ipt_cha_opt], inter_channels=ic)
         
     | 
| 2112 | 
         
            +
                    else:
         
     | 
| 2113 | 
         
            +
                        self.split = None
         
     | 
| 2114 | 
         
            +
             
     | 
| 2115 | 
         
            +
                    self.decoder_block4 = DecoderBlock(channels[0]+([N_dec_ipt, channels[0]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[1])
         
     | 
| 2116 | 
         
            +
                    self.decoder_block3 = DecoderBlock(channels[1]+([N_dec_ipt, channels[0]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[2])
         
     | 
| 2117 | 
         
            +
                    self.decoder_block2 = DecoderBlock(channels[2]+([N_dec_ipt, channels[1]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[3])
         
     | 
| 2118 | 
         
            +
                    self.decoder_block1 = DecoderBlock(channels[3]+([N_dec_ipt, channels[2]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[3]//2)
         
     | 
| 2119 | 
         
            +
                    self.conv_out1 = nn.Sequential(nn.Conv2d(channels[3]//2+([N_dec_ipt, channels[3]//8][ipt_cha_opt] if self.config.dec_ipt else 0), 1, 1, 1, 0))
         
     | 
| 2120 | 
         
            +
             
     | 
| 2121 | 
         
            +
                    self.lateral_block4 = LateralBlock(channels[1], channels[1])
         
     | 
| 2122 | 
         
            +
                    self.lateral_block3 = LateralBlock(channels[2], channels[2])
         
     | 
| 2123 | 
         
            +
                    self.lateral_block2 = LateralBlock(channels[3], channels[3])
         
     | 
| 2124 | 
         
            +
             
     | 
| 2125 | 
         
            +
                    if self.config.ms_supervision:
         
     | 
| 2126 | 
         
            +
                        self.conv_ms_spvn_4 = nn.Conv2d(channels[1], 1, 1, 1, 0)
         
     | 
| 2127 | 
         
            +
                        self.conv_ms_spvn_3 = nn.Conv2d(channels[2], 1, 1, 1, 0)
         
     | 
| 2128 | 
         
            +
                        self.conv_ms_spvn_2 = nn.Conv2d(channels[3], 1, 1, 1, 0)
         
     | 
| 2129 | 
         
            +
             
     | 
| 2130 | 
         
            +
                        if self.config.out_ref:
         
     | 
| 2131 | 
         
            +
                            _N = 16
         
     | 
| 2132 | 
         
            +
                            self.gdt_convs_4 = nn.Sequential(nn.Conv2d(channels[1], _N, 3, 1, 1), nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(), nn.ReLU(inplace=True))
         
     | 
| 2133 | 
         
            +
                            self.gdt_convs_3 = nn.Sequential(nn.Conv2d(channels[2], _N, 3, 1, 1), nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(), nn.ReLU(inplace=True))
         
     | 
| 2134 | 
         
            +
                            self.gdt_convs_2 = nn.Sequential(nn.Conv2d(channels[3], _N, 3, 1, 1), nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(), nn.ReLU(inplace=True))
         
     | 
| 2135 | 
         
            +
             
     | 
| 2136 | 
         
            +
                            self.gdt_convs_pred_4 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
         
     | 
| 2137 | 
         
            +
                            self.gdt_convs_pred_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
         
     | 
| 2138 | 
         
            +
                            self.gdt_convs_pred_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
         
     | 
| 2139 | 
         
            +
                            
         
     | 
| 2140 | 
         
            +
                            self.gdt_convs_attn_4 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
         
     | 
| 2141 | 
         
            +
                            self.gdt_convs_attn_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
         
     | 
| 2142 | 
         
            +
                            self.gdt_convs_attn_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
         
     | 
| 2143 | 
         
            +
             
     | 
| 2144 | 
         
            +
                def forward(self, features):
         
     | 
| 2145 | 
         
            +
                    if self.training and self.config.out_ref:
         
     | 
| 2146 | 
         
            +
                        outs_gdt_pred = []
         
     | 
| 2147 | 
         
            +
                        outs_gdt_label = []
         
     | 
| 2148 | 
         
            +
                        x, x1, x2, x3, x4, gdt_gt = features
         
     | 
| 2149 | 
         
            +
                    else:
         
     | 
| 2150 | 
         
            +
                        x, x1, x2, x3, x4 = features
         
     | 
| 2151 | 
         
            +
                    outs = []
         
     | 
| 2152 | 
         
            +
             
     | 
| 2153 | 
         
            +
                    if self.config.dec_ipt:
         
     | 
| 2154 | 
         
            +
                        patches_batch = image2patches(x, patch_ref=x4, transformation='b c (hg h) (wg w) -> b (c hg wg) h w') if self.split else x
         
     | 
| 2155 | 
         
            +
                        x4 = torch.cat((x4, self.ipt_blk5(F.interpolate(patches_batch, size=x4.shape[2:], mode='bilinear', align_corners=True))), 1)
         
     | 
| 2156 | 
         
            +
                    p4 = self.decoder_block4(x4)
         
     | 
| 2157 | 
         
            +
                    m4 = self.conv_ms_spvn_4(p4) if self.config.ms_supervision and self.training else None
         
     | 
| 2158 | 
         
            +
                    if self.config.out_ref:
         
     | 
| 2159 | 
         
            +
                        p4_gdt = self.gdt_convs_4(p4)
         
     | 
| 2160 | 
         
            +
                        if self.training:
         
     | 
| 2161 | 
         
            +
                            # >> GT:
         
     | 
| 2162 | 
         
            +
                            m4_dia = m4
         
     | 
| 2163 | 
         
            +
                            gdt_label_main_4 = gdt_gt * F.interpolate(m4_dia, size=gdt_gt.shape[2:], mode='bilinear', align_corners=True)
         
     | 
| 2164 | 
         
            +
                            outs_gdt_label.append(gdt_label_main_4)
         
     | 
| 2165 | 
         
            +
                            # >> Pred:
         
     | 
| 2166 | 
         
            +
                            gdt_pred_4 = self.gdt_convs_pred_4(p4_gdt)
         
     | 
| 2167 | 
         
            +
                            outs_gdt_pred.append(gdt_pred_4)
         
     | 
| 2168 | 
         
            +
                        gdt_attn_4 = self.gdt_convs_attn_4(p4_gdt).sigmoid()
         
     | 
| 2169 | 
         
            +
                        # >> Finally:
         
     | 
| 2170 | 
         
            +
                        p4 = p4 * gdt_attn_4
         
     | 
| 2171 | 
         
            +
                    _p4 = F.interpolate(p4, size=x3.shape[2:], mode='bilinear', align_corners=True)
         
     | 
| 2172 | 
         
            +
                    _p3 = _p4 + self.lateral_block4(x3)
         
     | 
| 2173 | 
         
            +
             
     | 
| 2174 | 
         
            +
                    if self.config.dec_ipt:
         
     | 
| 2175 | 
         
            +
                        patches_batch = image2patches(x, patch_ref=_p3, transformation='b c (hg h) (wg w) -> b (c hg wg) h w') if self.split else x
         
     | 
| 2176 | 
         
            +
                        _p3 = torch.cat((_p3, self.ipt_blk4(F.interpolate(patches_batch, size=x3.shape[2:], mode='bilinear', align_corners=True))), 1)
         
     | 
| 2177 | 
         
            +
                    p3 = self.decoder_block3(_p3)
         
     | 
| 2178 | 
         
            +
                    m3 = self.conv_ms_spvn_3(p3) if self.config.ms_supervision and self.training else None
         
     | 
| 2179 | 
         
            +
                    if self.config.out_ref:
         
     | 
| 2180 | 
         
            +
                        p3_gdt = self.gdt_convs_3(p3)
         
     | 
| 2181 | 
         
            +
                        if self.training:
         
     | 
| 2182 | 
         
            +
                            # >> GT:
         
     | 
| 2183 | 
         
            +
                            # m3 --dilation--> m3_dia
         
     | 
| 2184 | 
         
            +
                            # G_3^gt * m3_dia --> G_3^m, which is the label of gradient
         
     | 
| 2185 | 
         
            +
                            m3_dia = m3
         
     | 
| 2186 | 
         
            +
                            gdt_label_main_3 = gdt_gt * F.interpolate(m3_dia, size=gdt_gt.shape[2:], mode='bilinear', align_corners=True)
         
     | 
| 2187 | 
         
            +
                            outs_gdt_label.append(gdt_label_main_3)
         
     | 
| 2188 | 
         
            +
                            # >> Pred:
         
     | 
| 2189 | 
         
            +
                            # p3 --conv--BN--> F_3^G, where F_3^G predicts the \hat{G_3} with xx
         
     | 
| 2190 | 
         
            +
                            # F_3^G --sigmoid--> A_3^G
         
     | 
| 2191 | 
         
            +
                            gdt_pred_3 = self.gdt_convs_pred_3(p3_gdt)
         
     | 
| 2192 | 
         
            +
                            outs_gdt_pred.append(gdt_pred_3)
         
     | 
| 2193 | 
         
            +
                        gdt_attn_3 = self.gdt_convs_attn_3(p3_gdt).sigmoid()
         
     | 
| 2194 | 
         
            +
                        # >> Finally:
         
     | 
| 2195 | 
         
            +
                        # p3 = p3 * A_3^G
         
     | 
| 2196 | 
         
            +
                        p3 = p3 * gdt_attn_3
         
     | 
| 2197 | 
         
            +
                    _p3 = F.interpolate(p3, size=x2.shape[2:], mode='bilinear', align_corners=True)
         
     | 
| 2198 | 
         
            +
                    _p2 = _p3 + self.lateral_block3(x2)
         
     | 
| 2199 | 
         
            +
             
     | 
| 2200 | 
         
            +
                    if self.config.dec_ipt:
         
     | 
| 2201 | 
         
            +
                        patches_batch = image2patches(x, patch_ref=_p2, transformation='b c (hg h) (wg w) -> b (c hg wg) h w') if self.split else x
         
     | 
| 2202 | 
         
            +
                        _p2 = torch.cat((_p2, self.ipt_blk3(F.interpolate(patches_batch, size=x2.shape[2:], mode='bilinear', align_corners=True))), 1)
         
     | 
| 2203 | 
         
            +
                    p2 = self.decoder_block2(_p2)
         
     | 
| 2204 | 
         
            +
                    m2 = self.conv_ms_spvn_2(p2) if self.config.ms_supervision and self.training else None
         
     | 
| 2205 | 
         
            +
                    if self.config.out_ref:
         
     | 
| 2206 | 
         
            +
                        p2_gdt = self.gdt_convs_2(p2)
         
     | 
| 2207 | 
         
            +
                        if self.training:
         
     | 
| 2208 | 
         
            +
                            # >> GT:
         
     | 
| 2209 | 
         
            +
                            m2_dia = m2
         
     | 
| 2210 | 
         
            +
                            gdt_label_main_2 = gdt_gt * F.interpolate(m2_dia, size=gdt_gt.shape[2:], mode='bilinear', align_corners=True)
         
     | 
| 2211 | 
         
            +
                            outs_gdt_label.append(gdt_label_main_2)
         
     | 
| 2212 | 
         
            +
                            # >> Pred:
         
     | 
| 2213 | 
         
            +
                            gdt_pred_2 = self.gdt_convs_pred_2(p2_gdt)
         
     | 
| 2214 | 
         
            +
                            outs_gdt_pred.append(gdt_pred_2)
         
     | 
| 2215 | 
         
            +
                        gdt_attn_2 = self.gdt_convs_attn_2(p2_gdt).sigmoid()
         
     | 
| 2216 | 
         
            +
                        # >> Finally:
         
     | 
| 2217 | 
         
            +
                        p2 = p2 * gdt_attn_2
         
     | 
| 2218 | 
         
            +
                    _p2 = F.interpolate(p2, size=x1.shape[2:], mode='bilinear', align_corners=True)
         
     | 
| 2219 | 
         
            +
                    _p1 = _p2 + self.lateral_block2(x1)
         
     | 
| 2220 | 
         
            +
             
     | 
| 2221 | 
         
            +
                    if self.config.dec_ipt:
         
     | 
| 2222 | 
         
            +
                        patches_batch = image2patches(x, patch_ref=_p1, transformation='b c (hg h) (wg w) -> b (c hg wg) h w') if self.split else x
         
     | 
| 2223 | 
         
            +
                        _p1 = torch.cat((_p1, self.ipt_blk2(F.interpolate(patches_batch, size=x1.shape[2:], mode='bilinear', align_corners=True))), 1)
         
     | 
| 2224 | 
         
            +
                    _p1 = self.decoder_block1(_p1)
         
     | 
| 2225 | 
         
            +
                    _p1 = F.interpolate(_p1, size=x.shape[2:], mode='bilinear', align_corners=True)
         
     | 
| 2226 | 
         
            +
             
     | 
| 2227 | 
         
            +
                    if self.config.dec_ipt:
         
     | 
| 2228 | 
         
            +
                        patches_batch = image2patches(x, patch_ref=_p1, transformation='b c (hg h) (wg w) -> b (c hg wg) h w') if self.split else x
         
     | 
| 2229 | 
         
            +
                        _p1 = torch.cat((_p1, self.ipt_blk1(F.interpolate(patches_batch, size=x.shape[2:], mode='bilinear', align_corners=True))), 1)
         
     | 
| 2230 | 
         
            +
                    p1_out = self.conv_out1(_p1)
         
     | 
| 2231 | 
         
            +
             
     | 
| 2232 | 
         
            +
                    if self.config.ms_supervision and self.training:
         
     | 
| 2233 | 
         
            +
                        outs.append(m4)
         
     | 
| 2234 | 
         
            +
                        outs.append(m3)
         
     | 
| 2235 | 
         
            +
                        outs.append(m2)
         
     | 
| 2236 | 
         
            +
                    outs.append(p1_out)
         
     | 
| 2237 | 
         
            +
                    return outs if not (self.config.out_ref and self.training) else ([outs_gdt_pred, outs_gdt_label], outs)
         
     | 
| 2238 | 
         
            +
             
     | 
| 2239 | 
         
            +
             
     | 
| 2240 | 
         
            +
            class SimpleConvs(nn.Module):
         
     | 
| 2241 | 
         
            +
                def __init__(
         
     | 
| 2242 | 
         
            +
                    self, in_channels: int, out_channels: int, inter_channels=64
         
     | 
| 2243 | 
         
            +
                ) -> None:
         
     | 
| 2244 | 
         
            +
                    super().__init__()
         
     | 
| 2245 | 
         
            +
                    self.conv1 = nn.Conv2d(in_channels, inter_channels, 3, 1, 1)
         
     | 
| 2246 | 
         
            +
                    self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, 1)
         
     | 
| 2247 | 
         
            +
             
     | 
| 2248 | 
         
            +
                def forward(self, x):
         
     | 
| 2249 | 
         
            +
                    return self.conv_out(self.conv1(x))
         
     | 
    	
        config.json
    ADDED
    
    | 
         @@ -0,0 +1,20 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            {
         
     | 
| 2 | 
         
            +
              "_name_or_path": "ZhengPeng7/BiRefNet",
         
     | 
| 3 | 
         
            +
              "architectures": [
         
     | 
| 4 | 
         
            +
                "BiRefNet"
         
     | 
| 5 | 
         
            +
              ],
         
     | 
| 6 | 
         
            +
              "auto_map": {
         
     | 
| 7 | 
         
            +
                "AutoConfig": "BiRefNet_config.BiRefNetConfig",
         
     | 
| 8 | 
         
            +
                "AutoModelForImageSegmentation": "birefnet.BiRefNet"
         
     | 
| 9 | 
         
            +
              },
         
     | 
| 10 | 
         
            +
              "custom_pipelines": {
         
     | 
| 11 | 
         
            +
                "image-segmentation": {
         
     | 
| 12 | 
         
            +
                  "pt": [
         
     | 
| 13 | 
         
            +
                    "AutoModelForImageSegmentation"
         
     | 
| 14 | 
         
            +
                  ],
         
     | 
| 15 | 
         
            +
                  "tf": [],
         
     | 
| 16 | 
         
            +
                  "type": "image"
         
     | 
| 17 | 
         
            +
                }
         
     | 
| 18 | 
         
            +
              },
         
     | 
| 19 | 
         
            +
              "bb_pretrained": false
         
     | 
| 20 | 
         
            +
            }
         
     | 
    	
        gitattributes
    ADDED
    
    | 
         @@ -0,0 +1,35 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            *.7z filter=lfs diff=lfs merge=lfs -text
         
     | 
| 2 | 
         
            +
            *.arrow filter=lfs diff=lfs merge=lfs -text
         
     | 
| 3 | 
         
            +
            *.bin filter=lfs diff=lfs merge=lfs -text
         
     | 
| 4 | 
         
            +
            *.bz2 filter=lfs diff=lfs merge=lfs -text
         
     | 
| 5 | 
         
            +
            *.ckpt filter=lfs diff=lfs merge=lfs -text
         
     | 
| 6 | 
         
            +
            *.ftz filter=lfs diff=lfs merge=lfs -text
         
     | 
| 7 | 
         
            +
            *.gz filter=lfs diff=lfs merge=lfs -text
         
     | 
| 8 | 
         
            +
            *.h5 filter=lfs diff=lfs merge=lfs -text
         
     | 
| 9 | 
         
            +
            *.joblib filter=lfs diff=lfs merge=lfs -text
         
     | 
| 10 | 
         
            +
            *.lfs.* filter=lfs diff=lfs merge=lfs -text
         
     | 
| 11 | 
         
            +
            *.mlmodel filter=lfs diff=lfs merge=lfs -text
         
     | 
| 12 | 
         
            +
            *.model filter=lfs diff=lfs merge=lfs -text
         
     | 
| 13 | 
         
            +
            *.msgpack filter=lfs diff=lfs merge=lfs -text
         
     | 
| 14 | 
         
            +
            *.npy filter=lfs diff=lfs merge=lfs -text
         
     | 
| 15 | 
         
            +
            *.npz filter=lfs diff=lfs merge=lfs -text
         
     | 
| 16 | 
         
            +
            *.onnx filter=lfs diff=lfs merge=lfs -text
         
     | 
| 17 | 
         
            +
            *.ot filter=lfs diff=lfs merge=lfs -text
         
     | 
| 18 | 
         
            +
            *.parquet filter=lfs diff=lfs merge=lfs -text
         
     | 
| 19 | 
         
            +
            *.pb filter=lfs diff=lfs merge=lfs -text
         
     | 
| 20 | 
         
            +
            *.pickle filter=lfs diff=lfs merge=lfs -text
         
     | 
| 21 | 
         
            +
            *.pkl filter=lfs diff=lfs merge=lfs -text
         
     | 
| 22 | 
         
            +
            *.pt filter=lfs diff=lfs merge=lfs -text
         
     | 
| 23 | 
         
            +
            *.pth filter=lfs diff=lfs merge=lfs -text
         
     | 
| 24 | 
         
            +
            *.rar filter=lfs diff=lfs merge=lfs -text
         
     | 
| 25 | 
         
            +
            *.safetensors filter=lfs diff=lfs merge=lfs -text
         
     | 
| 26 | 
         
            +
            saved_model/**/* filter=lfs diff=lfs merge=lfs -text
         
     | 
| 27 | 
         
            +
            *.tar.* filter=lfs diff=lfs merge=lfs -text
         
     | 
| 28 | 
         
            +
            *.tar filter=lfs diff=lfs merge=lfs -text
         
     | 
| 29 | 
         
            +
            *.tflite filter=lfs diff=lfs merge=lfs -text
         
     | 
| 30 | 
         
            +
            *.tgz filter=lfs diff=lfs merge=lfs -text
         
     | 
| 31 | 
         
            +
            *.wasm filter=lfs diff=lfs merge=lfs -text
         
     | 
| 32 | 
         
            +
            *.xz filter=lfs diff=lfs merge=lfs -text
         
     | 
| 33 | 
         
            +
            *.zip filter=lfs diff=lfs merge=lfs -text
         
     | 
| 34 | 
         
            +
            *.zst filter=lfs diff=lfs merge=lfs -text
         
     | 
| 35 | 
         
            +
            *tfevents* filter=lfs diff=lfs merge=lfs -text
         
     | 
    	
        gitignore
    ADDED
    
    | 
         @@ -0,0 +1,142 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            # Custom
         
     | 
| 2 | 
         
            +
            e_*
         
     | 
| 3 | 
         
            +
            .vscode
         
     | 
| 4 | 
         
            +
            ckpt
         
     | 
| 5 | 
         
            +
            preds
         
     | 
| 6 | 
         
            +
            evaluation/eval-*
         
     | 
| 7 | 
         
            +
            nohup.out*
         
     | 
| 8 | 
         
            +
            tmp*
         
     | 
| 9 | 
         
            +
            *.pth
         
     | 
| 10 | 
         
            +
            core-*-python-*
         
     | 
| 11 | 
         
            +
            .DS_Store
         
     | 
| 12 | 
         
            +
            __MACOSX/
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
            # Byte-compiled / optimized / DLL files
         
     | 
| 15 | 
         
            +
            __pycache__/
         
     | 
| 16 | 
         
            +
            *.py[cod]
         
     | 
| 17 | 
         
            +
            *$py.class
         
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
            # C extensions
         
     | 
| 20 | 
         
            +
            *.so
         
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
            # Distribution / packaging
         
     | 
| 23 | 
         
            +
            .Python
         
     | 
| 24 | 
         
            +
            build/
         
     | 
| 25 | 
         
            +
            develop-eggs/
         
     | 
| 26 | 
         
            +
            dist/
         
     | 
| 27 | 
         
            +
            downloads/
         
     | 
| 28 | 
         
            +
            eggs/
         
     | 
| 29 | 
         
            +
            .eggs/
         
     | 
| 30 | 
         
            +
            lib/
         
     | 
| 31 | 
         
            +
            lib64/
         
     | 
| 32 | 
         
            +
            parts/
         
     | 
| 33 | 
         
            +
            sdist/
         
     | 
| 34 | 
         
            +
            var/
         
     | 
| 35 | 
         
            +
            wheels/
         
     | 
| 36 | 
         
            +
            pip-wheel-metadata/
         
     | 
| 37 | 
         
            +
            share/python-wheels/
         
     | 
| 38 | 
         
            +
            *.egg-info/
         
     | 
| 39 | 
         
            +
            .installed.cfg
         
     | 
| 40 | 
         
            +
            *.egg
         
     | 
| 41 | 
         
            +
            MANIFEST
         
     | 
| 42 | 
         
            +
             
     | 
| 43 | 
         
            +
            # PyInstaller
         
     | 
| 44 | 
         
            +
            #  Usually these files are written by a python script from a template
         
     | 
| 45 | 
         
            +
            #  before PyInstaller builds the exe, so as to inject date/other infos into it.
         
     | 
| 46 | 
         
            +
            *.manifest
         
     | 
| 47 | 
         
            +
            *.spec
         
     | 
| 48 | 
         
            +
             
     | 
| 49 | 
         
            +
            # Installer logs
         
     | 
| 50 | 
         
            +
            pip-log.txt
         
     | 
| 51 | 
         
            +
            pip-delete-this-directory.txt
         
     | 
| 52 | 
         
            +
             
     | 
| 53 | 
         
            +
            # Unit test / coverage reports
         
     | 
| 54 | 
         
            +
            htmlcov/
         
     | 
| 55 | 
         
            +
            .tox/
         
     | 
| 56 | 
         
            +
            .nox/
         
     | 
| 57 | 
         
            +
            .coverage
         
     | 
| 58 | 
         
            +
            .coverage.*
         
     | 
| 59 | 
         
            +
            .cache
         
     | 
| 60 | 
         
            +
            nosetests.xml
         
     | 
| 61 | 
         
            +
            coverage.xml
         
     | 
| 62 | 
         
            +
            *.cover
         
     | 
| 63 | 
         
            +
            *.py,cover
         
     | 
| 64 | 
         
            +
            .hypothesis/
         
     | 
| 65 | 
         
            +
            .pytest_cache/
         
     | 
| 66 | 
         
            +
             
     | 
| 67 | 
         
            +
            # Translations
         
     | 
| 68 | 
         
            +
            *.mo
         
     | 
| 69 | 
         
            +
            *.pot
         
     | 
| 70 | 
         
            +
             
     | 
| 71 | 
         
            +
            # Django stuff:
         
     | 
| 72 | 
         
            +
            *.log
         
     | 
| 73 | 
         
            +
            local_settings.py
         
     | 
| 74 | 
         
            +
            db.sqlite3
         
     | 
| 75 | 
         
            +
            db.sqlite3-journal
         
     | 
| 76 | 
         
            +
             
     | 
| 77 | 
         
            +
            # Flask stuff:
         
     | 
| 78 | 
         
            +
            instance/
         
     | 
| 79 | 
         
            +
            .webassets-cache
         
     | 
| 80 | 
         
            +
             
     | 
| 81 | 
         
            +
            # Scrapy stuff:
         
     | 
| 82 | 
         
            +
            .scrapy
         
     | 
| 83 | 
         
            +
             
     | 
| 84 | 
         
            +
            # Sphinx documentation
         
     | 
| 85 | 
         
            +
            docs/_build/
         
     | 
| 86 | 
         
            +
             
     | 
| 87 | 
         
            +
            # PyBuilder
         
     | 
| 88 | 
         
            +
            target/
         
     | 
| 89 | 
         
            +
             
     | 
| 90 | 
         
            +
            # Jupyter Notebook
         
     | 
| 91 | 
         
            +
            .ipynb_checkpoints
         
     | 
| 92 | 
         
            +
             
     | 
| 93 | 
         
            +
            # IPython
         
     | 
| 94 | 
         
            +
            profile_default/
         
     | 
| 95 | 
         
            +
            ipython_config.py
         
     | 
| 96 | 
         
            +
             
     | 
| 97 | 
         
            +
            # pyenv
         
     | 
| 98 | 
         
            +
            .python-version
         
     | 
| 99 | 
         
            +
             
     | 
| 100 | 
         
            +
            # pipenv
         
     | 
| 101 | 
         
            +
            #   According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
         
     | 
| 102 | 
         
            +
            #   However, in case of collaboration, if having platform-specific dependencies or dependencies
         
     | 
| 103 | 
         
            +
            #   having no cross-platform support, pipenv may install dependencies that don't work, or not
         
     | 
| 104 | 
         
            +
            #   install all needed dependencies.
         
     | 
| 105 | 
         
            +
            #Pipfile.lock
         
     | 
| 106 | 
         
            +
             
     | 
| 107 | 
         
            +
            # PEP 582; used by e.g. github.com/David-OConnor/pyflow
         
     | 
| 108 | 
         
            +
            __pypackages__/
         
     | 
| 109 | 
         
            +
             
     | 
| 110 | 
         
            +
            # Celery stuff
         
     | 
| 111 | 
         
            +
            celerybeat-schedule
         
     | 
| 112 | 
         
            +
            celerybeat.pid
         
     | 
| 113 | 
         
            +
             
     | 
| 114 | 
         
            +
            # SageMath parsed files
         
     | 
| 115 | 
         
            +
            *.sage.py
         
     | 
| 116 | 
         
            +
             
     | 
| 117 | 
         
            +
            # Environments
         
     | 
| 118 | 
         
            +
            .env
         
     | 
| 119 | 
         
            +
            .venv
         
     | 
| 120 | 
         
            +
            env/
         
     | 
| 121 | 
         
            +
            venv/
         
     | 
| 122 | 
         
            +
            ENV/
         
     | 
| 123 | 
         
            +
            env.bak/
         
     | 
| 124 | 
         
            +
            venv.bak/
         
     | 
| 125 | 
         
            +
             
     | 
| 126 | 
         
            +
            # Spyder project settings
         
     | 
| 127 | 
         
            +
            .spyderproject
         
     | 
| 128 | 
         
            +
            .spyproject
         
     | 
| 129 | 
         
            +
             
     | 
| 130 | 
         
            +
            # Rope project settings
         
     | 
| 131 | 
         
            +
            .ropeproject
         
     | 
| 132 | 
         
            +
             
     | 
| 133 | 
         
            +
            # mkdocs documentation
         
     | 
| 134 | 
         
            +
            /site
         
     | 
| 135 | 
         
            +
             
     | 
| 136 | 
         
            +
            # mypy
         
     | 
| 137 | 
         
            +
            .mypy_cache/
         
     | 
| 138 | 
         
            +
            .dmypy.json
         
     | 
| 139 | 
         
            +
            dmypy.json
         
     | 
| 140 | 
         
            +
             
     | 
| 141 | 
         
            +
            # Pyre type checker
         
     | 
| 142 | 
         
            +
            .pyre/
         
     | 
    	
        handler.py
    ADDED
    
    | 
         @@ -0,0 +1,139 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            # These HF deployment codes refer to https://huggingface.co/not-lain/BiRefNet/raw/main/handler.py.
         
     | 
| 2 | 
         
            +
            from typing import Dict, List, Any, Tuple
         
     | 
| 3 | 
         
            +
            import os
         
     | 
| 4 | 
         
            +
            import requests
         
     | 
| 5 | 
         
            +
            from io import BytesIO
         
     | 
| 6 | 
         
            +
            import cv2
         
     | 
| 7 | 
         
            +
            import numpy as np
         
     | 
| 8 | 
         
            +
            from PIL import Image
         
     | 
| 9 | 
         
            +
            import torch
         
     | 
| 10 | 
         
            +
            from torchvision import transforms
         
     | 
| 11 | 
         
            +
            from transformers import AutoModelForImageSegmentation
         
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
            torch.set_float32_matmul_precision(["high", "highest"][0])
         
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            device = "cuda" if torch.cuda.is_available() else "cpu"
         
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
            ### image_proc.py
         
     | 
| 18 | 
         
            +
            def refine_foreground(image, mask, r=90):
         
     | 
| 19 | 
         
            +
                if mask.size != image.size:
         
     | 
| 20 | 
         
            +
                    mask = mask.resize(image.size)
         
     | 
| 21 | 
         
            +
                image = np.array(image) / 255.0
         
     | 
| 22 | 
         
            +
                mask = np.array(mask) / 255.0
         
     | 
| 23 | 
         
            +
                estimated_foreground = FB_blur_fusion_foreground_estimator_2(image, mask, r=r)
         
     | 
| 24 | 
         
            +
                image_masked = Image.fromarray((estimated_foreground * 255.0).astype(np.uint8))
         
     | 
| 25 | 
         
            +
                return image_masked
         
     | 
| 26 | 
         
            +
             
     | 
| 27 | 
         
            +
             
     | 
| 28 | 
         
            +
            def FB_blur_fusion_foreground_estimator_2(image, alpha, r=90):
         
     | 
| 29 | 
         
            +
                # Thanks to the source: https://github.com/Photoroom/fast-foreground-estimation
         
     | 
| 30 | 
         
            +
                alpha = alpha[:, :, None]
         
     | 
| 31 | 
         
            +
                F, blur_B = FB_blur_fusion_foreground_estimator(image, image, image, alpha, r)
         
     | 
| 32 | 
         
            +
                return FB_blur_fusion_foreground_estimator(image, F, blur_B, alpha, r=6)[0]
         
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
             
     | 
| 35 | 
         
            +
            def FB_blur_fusion_foreground_estimator(image, F, B, alpha, r=90):
         
     | 
| 36 | 
         
            +
                if isinstance(image, Image.Image):
         
     | 
| 37 | 
         
            +
                    image = np.array(image) / 255.0
         
     | 
| 38 | 
         
            +
                blurred_alpha = cv2.blur(alpha, (r, r))[:, :, None]
         
     | 
| 39 | 
         
            +
             
     | 
| 40 | 
         
            +
                blurred_FA = cv2.blur(F * alpha, (r, r))
         
     | 
| 41 | 
         
            +
                blurred_F = blurred_FA / (blurred_alpha + 1e-5)
         
     | 
| 42 | 
         
            +
             
     | 
| 43 | 
         
            +
                blurred_B1A = cv2.blur(B * (1 - alpha), (r, r))
         
     | 
| 44 | 
         
            +
                blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5)
         
     | 
| 45 | 
         
            +
                F = blurred_F + alpha * \
         
     | 
| 46 | 
         
            +
                    (image - alpha * blurred_F - (1 - alpha) * blurred_B)
         
     | 
| 47 | 
         
            +
                F = np.clip(F, 0, 1)
         
     | 
| 48 | 
         
            +
                return F, blurred_B
         
     | 
| 49 | 
         
            +
             
     | 
| 50 | 
         
            +
             
     | 
| 51 | 
         
            +
            class ImagePreprocessor():
         
     | 
| 52 | 
         
            +
                def __init__(self, resolution: Tuple[int, int] = (1024, 1024)) -> None:
         
     | 
| 53 | 
         
            +
                    self.transform_image = transforms.Compose([
         
     | 
| 54 | 
         
            +
                        transforms.Resize(resolution),
         
     | 
| 55 | 
         
            +
                        transforms.ToTensor(),
         
     | 
| 56 | 
         
            +
                        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
         
     | 
| 57 | 
         
            +
                    ])
         
     | 
| 58 | 
         
            +
             
     | 
| 59 | 
         
            +
                def proc(self, image: Image.Image) -> torch.Tensor:
         
     | 
| 60 | 
         
            +
                    image = self.transform_image(image)
         
     | 
| 61 | 
         
            +
                    return image
         
     | 
| 62 | 
         
            +
             
     | 
| 63 | 
         
            +
            usage_to_weights_file = {
         
     | 
| 64 | 
         
            +
                'General': 'BiRefNet',
         
     | 
| 65 | 
         
            +
                'General-HR': 'BiRefNet_HR',
         
     | 
| 66 | 
         
            +
                'General-Lite': 'BiRefNet_lite',
         
     | 
| 67 | 
         
            +
                'General-Lite-2K': 'BiRefNet_lite-2K',
         
     | 
| 68 | 
         
            +
                'General-reso_512': 'BiRefNet-reso_512',
         
     | 
| 69 | 
         
            +
                'Matting': 'BiRefNet-matting',
         
     | 
| 70 | 
         
            +
                'Matting-HR': 'BiRefNet_HR-Matting',
         
     | 
| 71 | 
         
            +
                'Portrait': 'BiRefNet-portrait',
         
     | 
| 72 | 
         
            +
                'DIS': 'BiRefNet-DIS5K',
         
     | 
| 73 | 
         
            +
                'HRSOD': 'BiRefNet-HRSOD',
         
     | 
| 74 | 
         
            +
                'COD': 'BiRefNet-COD',
         
     | 
| 75 | 
         
            +
                'DIS-TR_TEs': 'BiRefNet-DIS5K-TR_TEs',
         
     | 
| 76 | 
         
            +
                'General-legacy': 'BiRefNet-legacy'
         
     | 
| 77 | 
         
            +
            }
         
     | 
| 78 | 
         
            +
             
     | 
| 79 | 
         
            +
            # Choose the version of BiRefNet here.
         
     | 
| 80 | 
         
            +
            usage = 'General'
         
     | 
| 81 | 
         
            +
             
     | 
| 82 | 
         
            +
            # Set resolution
         
     | 
| 83 | 
         
            +
            if usage in ['General-Lite-2K']:
         
     | 
| 84 | 
         
            +
                resolution = (2560, 1440)
         
     | 
| 85 | 
         
            +
            elif usage in ['General-reso_512']:
         
     | 
| 86 | 
         
            +
                resolution = (512, 512)
         
     | 
| 87 | 
         
            +
            elif usage in ['General-HR', 'Matting-HR']:
         
     | 
| 88 | 
         
            +
                resolution = (2048, 2048)
         
     | 
| 89 | 
         
            +
            else:
         
     | 
| 90 | 
         
            +
                resolution = (1024, 1024) 
         
     | 
| 91 | 
         
            +
             
     | 
| 92 | 
         
            +
            half_precision = True
         
     | 
| 93 | 
         
            +
             
     | 
| 94 | 
         
            +
            class EndpointHandler():
         
     | 
| 95 | 
         
            +
                def __init__(self, path=''):
         
     | 
| 96 | 
         
            +
                    self.birefnet = AutoModelForImageSegmentation.from_pretrained(
         
     | 
| 97 | 
         
            +
                        '/'.join(('zhengpeng7', usage_to_weights_file[usage])), trust_remote_code=True
         
     | 
| 98 | 
         
            +
                    )
         
     | 
| 99 | 
         
            +
                    self.birefnet.to(device)
         
     | 
| 100 | 
         
            +
                    self.birefnet.eval()
         
     | 
| 101 | 
         
            +
                    if half_precision:
         
     | 
| 102 | 
         
            +
                        self.birefnet.half()
         
     | 
| 103 | 
         
            +
             
     | 
| 104 | 
         
            +
                def __call__(self, data: Dict[str, Any]):
         
     | 
| 105 | 
         
            +
                    """
         
     | 
| 106 | 
         
            +
                    data args:
         
     | 
| 107 | 
         
            +
                        inputs (:obj: `str`)
         
     | 
| 108 | 
         
            +
                        date (:obj: `str`)
         
     | 
| 109 | 
         
            +
                    Return:
         
     | 
| 110 | 
         
            +
                        A :obj:`list` | `dict`: will be serialized and returned
         
     | 
| 111 | 
         
            +
                    """
         
     | 
| 112 | 
         
            +
                    print('data["inputs"] = ', data["inputs"])
         
     | 
| 113 | 
         
            +
                    image_src = data["inputs"]
         
     | 
| 114 | 
         
            +
                    if isinstance(image_src, str):
         
     | 
| 115 | 
         
            +
                        if os.path.isfile(image_src):
         
     | 
| 116 | 
         
            +
                            image_ori = Image.open(image_src)
         
     | 
| 117 | 
         
            +
                        else:
         
     | 
| 118 | 
         
            +
                            response = requests.get(image_src)
         
     | 
| 119 | 
         
            +
                            image_data = BytesIO(response.content)
         
     | 
| 120 | 
         
            +
                            image_ori = Image.open(image_data)
         
     | 
| 121 | 
         
            +
                    else:
         
     | 
| 122 | 
         
            +
                        image_ori = Image.fromarray(image_src)
         
     | 
| 123 | 
         
            +
             
     | 
| 124 | 
         
            +
                    image = image_ori.convert('RGB')
         
     | 
| 125 | 
         
            +
                    # Preprocess the image
         
     | 
| 126 | 
         
            +
                    image_preprocessor = ImagePreprocessor(resolution=tuple(resolution))
         
     | 
| 127 | 
         
            +
                    image_proc = image_preprocessor.proc(image)
         
     | 
| 128 | 
         
            +
                    image_proc = image_proc.unsqueeze(0)
         
     | 
| 129 | 
         
            +
             
     | 
| 130 | 
         
            +
                    # Prediction
         
     | 
| 131 | 
         
            +
                    with torch.no_grad():
         
     | 
| 132 | 
         
            +
                        preds = self.birefnet(image_proc.to(device).half() if half_precision else image_proc.to(device))[-1].sigmoid().cpu()
         
     | 
| 133 | 
         
            +
                    pred = preds[0].squeeze()
         
     | 
| 134 | 
         
            +
             
     | 
| 135 | 
         
            +
                    # Show Results
         
     | 
| 136 | 
         
            +
                    pred_pil = transforms.ToPILImage()(pred)
         
     | 
| 137 | 
         
            +
                    image_masked = refine_foreground(image, pred_pil)
         
     | 
| 138 | 
         
            +
                    image_masked.putalpha(pred_pil.resize(image.size))
         
     | 
| 139 | 
         
            +
                    return image_masked
         
     | 
    	
        model.safetensors
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:9ab37426bf4de0567af6b5d21b16151357149139362e6e8992021b8ce356a154
         
     | 
| 3 | 
         
            +
            size 444473596
         
     | 
    	
        requirements.txt
    ADDED
    
    | 
         @@ -0,0 +1,16 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            torch==2.5.1
         
     | 
| 2 | 
         
            +
            torchvision
         
     | 
| 3 | 
         
            +
            numpy<2
         
     | 
| 4 | 
         
            +
            opencv-python
         
     | 
| 5 | 
         
            +
            timm
         
     | 
| 6 | 
         
            +
            scipy
         
     | 
| 7 | 
         
            +
            scikit-image
         
     | 
| 8 | 
         
            +
            kornia
         
     | 
| 9 | 
         
            +
            einops
         
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
            tqdm
         
     | 
| 12 | 
         
            +
            prettytable
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
            transformers
         
     | 
| 15 | 
         
            +
            huggingface-hub>0.25
         
     | 
| 16 | 
         
            +
            accelerate
         
     |