from typing import Callable, Optional, Union import torch from torch import nn from retention.triton import power_retention, power_retention_inference from transformers.activations import ACT2FN from transformers.generation import GenerationMixin from transformers.masking_utils import create_causal_mask, create_sliding_window_causal_mask from transformers.modeling_flash_attention_utils import FlashAttentionKwargs from transformers.modeling_layers import ( GenericForSequenceClassification, GenericForTokenClassification, GradientCheckpointingLayer, ) from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel from transformers.processing_utils import Unpack from transformers.utils import TransformersKwargs, auto_docstring, can_return_tuple from .configuration_powercoder import PowerCoderConfig from .kvgs_dynamic_cache import Cache, DynamicCache class PowerCoderMLP(nn.Module): def __init__(self, config: PowerCoderConfig): super().__init__() embed_dim = config.hidden_size self.c_fc = nn.Linear(embed_dim, config.intermediate_size, bias=config.use_bias) self.c_proj = nn.Linear(config.intermediate_size, embed_dim, bias=config.use_bias) self.act = ACT2FN[config.hidden_act] self.residual_dropout = config.residual_dropout def forward(self, hidden_states: Optional[tuple[torch.FloatTensor]]) -> torch.FloatTensor: hidden_states = self.c_fc(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.c_proj(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.residual_dropout, training=self.training) return hidden_states def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`, *optional*): Deprecated and unused. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ cos = cos.unsqueeze(unsqueeze_dim) sin = sin.unsqueeze(unsqueeze_dim) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed.to(q.dtype), k_embed.to(k.dtype) def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) def eager_power_attention_forward( module: nn.Module, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Optional[torch.Tensor], scaling: float, dropout: float = 0.0, **kwargs: Unpack[TransformersKwargs], ): key_states = repeat_kv(key, module.num_key_value_groups) value_states = repeat_kv(value, module.num_key_value_groups) attn_weights = 2*torch.log(torch.abs( torch.matmul(query, key_states.transpose(2, 3)) * scaling + 1e-5)) if attention_mask is not None: causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) attn_output = torch.matmul(attn_weights, value_states) attn_output = attn_output.transpose(1, 2).contiguous() return attn_output, attn_weights class PowerCoderAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: PowerCoderConfig, layer_idx: Optional[int] = None): super().__init__() self.config = config self.layer_idx = layer_idx self.head_dim = getattr(config, "head_dim", None) or config.hidden_size // config.num_attention_heads self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads self.scaling = self.head_dim**-0.5 self.attention_dropout = config.attention_dropout self.is_causal = True self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.use_bias) self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.use_bias) self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.use_bias) self.g_proj = nn.Linear(config.hidden_size, config.num_key_value_heads, bias=config.use_bias) self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.use_bias) self.residual_dropout = config.residual_dropout def forward( self, hidden_states: torch.Tensor, position_embeddings: tuple[torch.Tensor, torch.Tensor], padding_starts: Optional[torch.Tensor], past_key_value: Optional[Cache] = None, cache_position: Optional[torch.LongTensor] = None, chunk_size: Optional[int] = None, switch_over_seq_len: Optional[int] = None, **kwargs: Unpack[FlashAttentionKwargs], ) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]: input_shape = hidden_states.shape[:-1] hidden_shape = (*input_shape, -1, self.head_dim) interpolate_exp_amount = kwargs.get('interpolate_exp', 0) assert 0 <= interpolate_exp_amount <= 1, f'{interpolate_exp_amount=}' run_exp = interpolate_exp_amount > 0 query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) gate_states = self.g_proj(hidden_states).view(hidden_shape[:-1]).transpose(1, 2) gate_states = nn.functional.logsigmoid(gate_states.to(torch.float32)) cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states, gate_states, state, sum_of_keys = past_key_value.update_kv(key_states, value_states, gate_states, self.layer_idx, cache_kwargs) if run_exp: attention_interface = ALL_ATTENTION_FUNCTIONS["sdpa"] exp_attn_output, exp_attn_weights = attention_interface( self, query_states, key_states, value_states, is_causal=True, attention_mask=None, dropout=0.0 if not self.training else self.attention_dropout, scaling=self.scaling, **kwargs, ) if query_states.shape[2] == 1: key_len = key_states.shape[2] power_attn_output, state, sum_of_keys = power_retention_inference( query_states.transpose(1, 2), key_states.transpose(1, 2), value_states.transpose(1, 2), gate_states.transpose(1, 2), initial_state=state, sum_of_keys=sum_of_keys, deg=2, scale=self.scaling, switch_over_seq_len=switch_over_seq_len, ) if switch_over_seq_len is not None and key_len >= switch_over_seq_len: past_key_value.clean_kv(self.layer_idx) past_key_value.update_state(state, sum_of_keys, self.layer_idx, cache_kwargs) else: key_len = key_states.shape[2] power_attn_output = power_retention( query_states.transpose(1, 2), key_states.transpose(1, 2), value_states.transpose(1, 2), gate_states.transpose(1, 2), deg=2, scale=self.scaling, chunk_size=chunk_size, # enable chunked prefilling by default switch_over_seq_len=switch_over_seq_len, ) if interpolate_exp_amount == 1: attn_output = exp_attn_output elif interpolate_exp_amount == 0: attn_output = power_attn_output else: attn_output = interpolate_exp_amount * exp_attn_output + (1 - interpolate_exp_amount) * power_attn_output assert attn_output.shape == (input_shape[0], query_states.shape[2], self.config.num_attention_heads, self.head_dim),\ f'{attn_output.shape=} {(input_shape[0], query_states.shape[2], self.config.num_attention_heads, self.head_dim)=}' attn_output = attn_output.reshape(*input_shape, -1).contiguous() attn_output = self.o_proj(attn_output) attn_output = nn.functional.dropout( attn_output, p=self.residual_dropout, training=self.training ) # diff with Llama return attn_output class PowerCoderDecoderLayer(GradientCheckpointingLayer): def __init__(self, config: PowerCoderConfig, layer_idx: int): super().__init__() self.hidden_size = config.hidden_size self.self_attn = PowerCoderAttention(config=config, layer_idx=layer_idx) self.mlp = PowerCoderMLP(config) self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.norm_epsilon) self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.norm_epsilon) def forward( self, hidden_states: torch.Tensor, padding_starts: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC chunk_size: Optional[int] = None, switch_over_seq_len: Optional[int] = None, **kwargs: Unpack[TransformersKwargs], ) -> tuple[torch.Tensor]: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states = self.self_attn( hidden_states=hidden_states, padding_starts=padding_starts, position_ids=position_ids, past_key_value=past_key_value, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, chunk_size=chunk_size, switch_over_seq_len=switch_over_seq_len, **kwargs, ) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states return hidden_states class PowerCoderRotaryEmbedding(nn.Module): def __init__(self, config: PowerCoderConfig, device=None): super().__init__() # BC: "rope_type" was originally "type" if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict): self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) else: self.rope_type = "default" self.max_seq_len_cached = config.max_position_embeddings self.original_max_seq_len = config.max_position_embeddings self.config = config self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) self.register_buffer("inv_freq", inv_freq, persistent=False) self.original_inv_freq = self.inv_freq @torch.no_grad() @dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope) def forward(self, x, position_ids): inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device) position_ids_expanded = position_ids[:, None, :].float() device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): # Force float32 freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) emb = torch.cat((freqs, freqs), dim=-1) cos = emb.cos() * self.attention_scaling sin = emb.sin() * self.attention_scaling return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) @auto_docstring class PowerCoderPreTrainedModel(PreTrainedModel): config: PowerCoderConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["PowerCoderDecoderLayer"] _skip_keys_device_placement = ["past_key_values"] _supports_flash_attn = True _supports_sdpa = True _supports_flex_attn = True _can_compile_fullgraph = True _supports_attention_backend = True _can_record_outputs = { "hidden_states": PowerCoderDecoderLayer, "attentions": PowerCoderAttention, } @auto_docstring class PowerCoderModel(PowerCoderPreTrainedModel): def __init__(self, config: PowerCoderConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.layers = nn.ModuleList( [PowerCoderDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.norm = nn.LayerNorm(config.hidden_size, eps=config.norm_epsilon) self.rotary_emb = PowerCoderRotaryEmbedding(config=config) self.gradient_checkpointing = False self.embedding_dropout = config.embedding_dropout # Initialize weights and apply final processing self.post_init() def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, list[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, chunk_size: Optional[int] = None, switch_over_seq_len: Optional[int] = None, **kwargs: Unpack[TransformersKwargs], ) -> BaseModelOutputWithPast: if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) # Always use our local DynamicCache implementation for compatibility with gating if use_cache: if past_key_values is None or not isinstance(past_key_values, Cache): past_key_values = DynamicCache() if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) # mask_function = create_causal_mask if self.config.sliding_window is None else create_sliding_window_causal_mask # causal_mask = mask_function( # config=self.config, # input_embeds=inputs_embeds, # attention_mask=attention_mask, # cache_position=cache_position, # past_key_values=past_key_values, # position_ids=position_ids, # ) padding_starts = attention_mask.argmin(-1) if attention_mask is not None else None hidden_states = inputs_embeds hidden_states = nn.functional.dropout( hidden_states, p=self.embedding_dropout, training=self.training ) # main diff with Llama # create position embeddings to be shared across the decoder layers position_embeddings = self.rotary_emb(hidden_states, position_ids) for i, decoder_layer in enumerate(self.layers[: self.config.num_hidden_layers]): hidden_states = decoder_layer( hidden_states, padding_starts=padding_starts, position_ids=position_ids, past_key_value=past_key_values, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, chunk_size=chunk_size, switch_over_seq_len=switch_over_seq_len, **kwargs, ) hidden_states = self.norm(hidden_states) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=past_key_values if use_cache else None, ) @auto_docstring class PowerCoderForCausalLM(PowerCoderPreTrainedModel, GenerationMixin): _tied_weights_keys = ["lm_head.weight"] _tp_plan = {"lm_head": "colwise_rep"} _pp_plan = {"lm_head": (["hidden_states"], ["logits"])} def __init__(self, config): super().__init__(config) self.model = PowerCoderModel(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model @can_return_tuple @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, logits_to_keep: Union[int, torch.Tensor] = 0, chunk_size: Optional[int] = None, switch_over_seq_len: Optional[int] = None, **kwargs: Unpack[TransformersKwargs], ) -> CausalLMOutputWithPast: r""" Example: ```python >>> from transformers import AutoTokenizer, PowerCoderForCausalLM >>> model = PowerCoderForCausalLM.from_pretrained("meta-PowerCoder/PowerCoder-2-7b-hf") >>> tokenizer = AutoTokenizer.from_pretrained("meta-PowerCoder/PowerCoder-2-7b-hf") >>> prompt = "Hey, are you conscious? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." ``` Args: input_ids (`Optional[torch.LongTensor]`, *optional*): Indices of input sequence tokens in the vocabulary. attention_mask (`Optional[torch.Tensor]`, *optional*): Mask to avoid performing attention on padding token indices. position_ids (`Optional[torch.LongTensor]`, *optional*): Indices of positions of each input sequence tokens. past_key_values (`Optional[Cache]`, *optional*): Cache containing pre-computed key and value states for attention layers, used for faster inference. If `use_cache` is True, the cache will be used and updated with new key/value states. inputs_embeds (`Optional[torch.FloatTensor]`, *optional*): Pre-computed input embeddings. Useful for scenarios where you want to compute embeddings separately. labels (`Optional[torch.LongTensor]`, *optional*): Labels for computing language modeling loss. use_cache (`Optional[bool]`, *optional*): If True, past key/value states are returned and can be used for future predictions. cache_position (`Optional[torch.LongTensor]`, *optional*): Position indices for cached key/value states when using incremental decoding. logits_to_keep (`Union[int, torch.Tensor]`, *optional*, defaults to 0): Number of logits to compute from the end of the sequence, or specific indices to compute. chunk_size (`Optional[int]`, *optional*): Chunk size for training and prefilling. switch_over_seq_len (`Optional[int]`, *optional*): Sequence length threshold for state update. **kwargs: Additional arguments passed to the underlying model's forward method. Returns: `CausalLMOutputWithPast`: A dataclass containing: - loss (`Optional[torch.FloatTensor]`): Language modeling loss if labels were provided. - logits (`torch.FloatTensor`): Prediction scores for the vocabulary. - past_key_values (`Optional[Cache]`): Updated key/value states for attention layers if use_cache=True. - hidden_states (`Optional[Tuple[torch.FloatTensor]]`): Model's hidden states. - attentions (`Optional[Tuple[torch.FloatTensor]]`): Attention weights if output_attentions=True. """ outputs: BaseModelOutputWithPast = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, cache_position=cache_position, chunk_size=chunk_size, switch_over_seq_len=switch_over_seq_len, **kwargs, ) hidden_states = outputs.last_hidden_state # Only compute necessary logits, and do not upcast them to float if we are not computing the loss slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep logits = self.lm_head(hidden_states[:, slice_indices, :]) loss = None if labels is not None: loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs) return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class PowerCoderForSequenceClassification(GenericForSequenceClassification, PowerCoderPreTrainedModel): pass class PowerCoderForTokenClassification(GenericForTokenClassification, PowerCoderPreTrainedModel): pass __all__ = [ "PowerCoderForCausalLM", "PowerCoderModel", "PowerCoderPreTrainedModel", "PowerCoderForSequenceClassification", "PowerCoderForTokenClassification", ]