maomaocun commited on
Commit
6c9c22c
·
verified ·
1 Parent(s): 81a7970

Upload folder using huggingface_hub

Browse files
chat_template.jinja ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>
2
+
3
+ '+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>
4
+
5
+ ' }}{% endif %}
config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "activation_type": "silu",
3
+ "alibi": false,
4
+ "alibi_bias_max": 8.0,
5
+ "architectures": [
6
+ "LLaDAModelLM"
7
+ ],
8
+ "attention_dropout": 0.0,
9
+ "attention_layer_norm": false,
10
+ "attention_layer_norm_with_affine": true,
11
+ "auto_map": {
12
+ "AutoConfig": "configuration_llada.LLaDAConfig",
13
+ "AutoModel": "modeling_llada.LLaDAModelLM",
14
+ "AutoModelForCausalLM": "modeling_llada.LLaDAModelLM"
15
+ },
16
+ "bias_for_layer_norm": false,
17
+ "block_group_size": 1,
18
+ "block_type": "llama",
19
+ "d_model": 4096,
20
+ "embedding_dropout": 0.0,
21
+ "embedding_size": 126464,
22
+ "eos_token_id": 126081,
23
+ "flash_attention": true,
24
+ "include_bias": false,
25
+ "include_qkv_bias": false,
26
+ "init_cutoff_factor": null,
27
+ "init_device": "meta",
28
+ "init_fn": "mitchell",
29
+ "init_std": 0.02,
30
+ "input_emb_norm": false,
31
+ "layer_norm_type": "rms",
32
+ "layer_norm_with_affine": true,
33
+ "mask_token_id": 126336,
34
+ "max_sequence_length": 16384,
35
+ "mlp_hidden_size": 12288,
36
+ "mlp_ratio": 4,
37
+ "model_type": "llada",
38
+ "multi_query_attention": null,
39
+ "n_heads": 32,
40
+ "n_kv_heads": 32,
41
+ "n_layers": 32,
42
+ "pad_token_id": 126081,
43
+ "precision": "amp_bf16",
44
+ "residual_dropout": 0.0,
45
+ "rms_norm_eps": 1e-05,
46
+ "rope": true,
47
+ "rope_full_precision": true,
48
+ "rope_theta": 500000.0,
49
+ "scale_logits": false,
50
+ "torch_dtype": "bfloat16",
51
+ "transformers_version": "4.55.0",
52
+ "use_cache": false,
53
+ "vocab_size": 126464,
54
+ "weight_tying": false
55
+ }
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e809978310f7331541d31c718255f2b883c8ffd4f3346430568a83aeaf83bf3d
3
+ size 4968045600
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4be1c015a2c7ea6ce4d15d161fef44ee2d6afa224434bff7aea30e103aa6d6e0
3
+ size 4934452207
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6433c7a532431907df7a347c52a87b7c3b4975a1d5fa9d594b43b69d563ce2b1
3
+ size 1136701154
model.safetensors.index.json ADDED
@@ -0,0 +1,299 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_parameters": 8015581184,
4
+ "total_size": 16036143189
5
+ },
6
+ "weight_map": {
7
+ "model.transformer.blocks.0.attn_norm.weight": "model-00001-of-00004.safetensors",
8
+ "model.transformer.blocks.0.attn_out.weight": "model-00001-of-00004.safetensors",
9
+ "model.transformer.blocks.0.ff_norm.weight": "model-00001-of-00004.safetensors",
10
+ "model.transformer.blocks.0.ff_out.weight": "model-00001-of-00004.safetensors",
11
+ "model.transformer.blocks.0.ff_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.transformer.blocks.0.k_proj.weight": "model-00001-of-00004.safetensors",
13
+ "model.transformer.blocks.0.q_proj.weight": "model-00001-of-00004.safetensors",
14
+ "model.transformer.blocks.0.up_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.transformer.blocks.0.v_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.transformer.blocks.1.attn_norm.weight": "model-00001-of-00004.safetensors",
17
+ "model.transformer.blocks.1.attn_out.weight": "model-00001-of-00004.safetensors",
18
+ "model.transformer.blocks.1.ff_norm.weight": "model-00001-of-00004.safetensors",
19
+ "model.transformer.blocks.1.ff_out.weight": "model-00001-of-00004.safetensors",
20
+ "model.transformer.blocks.1.ff_proj.weight": "model-00001-of-00004.safetensors",
21
+ "model.transformer.blocks.1.k_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.transformer.blocks.1.q_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.transformer.blocks.1.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.transformer.blocks.1.v_proj.weight": "model-00001-of-00004.safetensors",
25
+ "model.transformer.blocks.10.attn_norm.weight": "model-00002-of-00004.safetensors",
26
+ "model.transformer.blocks.10.attn_out.weight": "model-00002-of-00004.safetensors",
27
+ "model.transformer.blocks.10.ff_norm.weight": "model-00002-of-00004.safetensors",
28
+ "model.transformer.blocks.10.ff_out.weight": "model-00002-of-00004.safetensors",
29
+ "model.transformer.blocks.10.ff_proj.weight": "model-00002-of-00004.safetensors",
30
+ "model.transformer.blocks.10.k_proj.weight": "model-00002-of-00004.safetensors",
31
+ "model.transformer.blocks.10.q_proj.weight": "model-00002-of-00004.safetensors",
32
+ "model.transformer.blocks.10.up_proj.weight": "model-00002-of-00004.safetensors",
33
+ "model.transformer.blocks.10.v_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.transformer.blocks.11.attn_norm.weight": "model-00002-of-00004.safetensors",
35
+ "model.transformer.blocks.11.attn_out.weight": "model-00002-of-00004.safetensors",
36
+ "model.transformer.blocks.11.ff_norm.weight": "model-00002-of-00004.safetensors",
37
+ "model.transformer.blocks.11.ff_out.weight": "model-00002-of-00004.safetensors",
38
+ "model.transformer.blocks.11.ff_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.transformer.blocks.11.k_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.transformer.blocks.11.q_proj.weight": "model-00002-of-00004.safetensors",
41
+ "model.transformer.blocks.11.up_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.transformer.blocks.11.v_proj.weight": "model-00002-of-00004.safetensors",
43
+ "model.transformer.blocks.12.attn_norm.weight": "model-00002-of-00004.safetensors",
44
+ "model.transformer.blocks.12.attn_out.weight": "model-00002-of-00004.safetensors",
45
+ "model.transformer.blocks.12.ff_norm.weight": "model-00002-of-00004.safetensors",
46
+ "model.transformer.blocks.12.ff_out.weight": "model-00002-of-00004.safetensors",
47
+ "model.transformer.blocks.12.ff_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.transformer.blocks.12.k_proj.weight": "model-00002-of-00004.safetensors",
49
+ "model.transformer.blocks.12.q_proj.weight": "model-00002-of-00004.safetensors",
50
+ "model.transformer.blocks.12.up_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.transformer.blocks.12.v_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.transformer.blocks.13.attn_norm.weight": "model-00002-of-00004.safetensors",
53
+ "model.transformer.blocks.13.attn_out.weight": "model-00002-of-00004.safetensors",
54
+ "model.transformer.blocks.13.ff_norm.weight": "model-00002-of-00004.safetensors",
55
+ "model.transformer.blocks.13.ff_out.weight": "model-00002-of-00004.safetensors",
56
+ "model.transformer.blocks.13.ff_proj.weight": "model-00002-of-00004.safetensors",
57
+ "model.transformer.blocks.13.k_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.transformer.blocks.13.q_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.transformer.blocks.13.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.transformer.blocks.13.v_proj.weight": "model-00002-of-00004.safetensors",
61
+ "model.transformer.blocks.14.attn_norm.weight": "model-00002-of-00004.safetensors",
62
+ "model.transformer.blocks.14.attn_out.weight": "model-00002-of-00004.safetensors",
63
+ "model.transformer.blocks.14.ff_norm.weight": "model-00002-of-00004.safetensors",
64
+ "model.transformer.blocks.14.ff_out.weight": "model-00002-of-00004.safetensors",
65
+ "model.transformer.blocks.14.ff_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.transformer.blocks.14.k_proj.weight": "model-00002-of-00004.safetensors",
67
+ "model.transformer.blocks.14.q_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.transformer.blocks.14.up_proj.weight": "model-00002-of-00004.safetensors",
69
+ "model.transformer.blocks.14.v_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.transformer.blocks.15.attn_norm.weight": "model-00002-of-00004.safetensors",
71
+ "model.transformer.blocks.15.attn_out.weight": "model-00002-of-00004.safetensors",
72
+ "model.transformer.blocks.15.ff_norm.weight": "model-00002-of-00004.safetensors",
73
+ "model.transformer.blocks.15.ff_out.weight": "model-00002-of-00004.safetensors",
74
+ "model.transformer.blocks.15.ff_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.transformer.blocks.15.k_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.transformer.blocks.15.q_proj.weight": "model-00002-of-00004.safetensors",
77
+ "model.transformer.blocks.15.up_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.transformer.blocks.15.v_proj.weight": "model-00002-of-00004.safetensors",
79
+ "model.transformer.blocks.16.attn_norm.weight": "model-00002-of-00004.safetensors",
80
+ "model.transformer.blocks.16.attn_out.weight": "model-00002-of-00004.safetensors",
81
+ "model.transformer.blocks.16.ff_norm.weight": "model-00002-of-00004.safetensors",
82
+ "model.transformer.blocks.16.ff_out.weight": "model-00002-of-00004.safetensors",
83
+ "model.transformer.blocks.16.ff_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.transformer.blocks.16.k_proj.weight": "model-00002-of-00004.safetensors",
85
+ "model.transformer.blocks.16.q_proj.weight": "model-00002-of-00004.safetensors",
86
+ "model.transformer.blocks.16.up_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.transformer.blocks.16.v_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.transformer.blocks.17.attn_norm.weight": "model-00002-of-00004.safetensors",
89
+ "model.transformer.blocks.17.attn_out.weight": "model-00002-of-00004.safetensors",
90
+ "model.transformer.blocks.17.ff_norm.weight": "model-00002-of-00004.safetensors",
91
+ "model.transformer.blocks.17.ff_out.weight": "model-00002-of-00004.safetensors",
92
+ "model.transformer.blocks.17.ff_proj.weight": "model-00002-of-00004.safetensors",
93
+ "model.transformer.blocks.17.k_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.transformer.blocks.17.q_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.transformer.blocks.17.up_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.transformer.blocks.17.v_proj.weight": "model-00002-of-00004.safetensors",
97
+ "model.transformer.blocks.18.attn_norm.weight": "model-00002-of-00004.safetensors",
98
+ "model.transformer.blocks.18.attn_out.weight": "model-00002-of-00004.safetensors",
99
+ "model.transformer.blocks.18.ff_norm.weight": "model-00002-of-00004.safetensors",
100
+ "model.transformer.blocks.18.ff_out.weight": "model-00002-of-00004.safetensors",
101
+ "model.transformer.blocks.18.ff_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.transformer.blocks.18.k_proj.weight": "model-00002-of-00004.safetensors",
103
+ "model.transformer.blocks.18.q_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.transformer.blocks.18.up_proj.weight": "model-00002-of-00004.safetensors",
105
+ "model.transformer.blocks.18.v_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.transformer.blocks.19.attn_norm.weight": "model-00002-of-00004.safetensors",
107
+ "model.transformer.blocks.19.attn_out.weight": "model-00002-of-00004.safetensors",
108
+ "model.transformer.blocks.19.ff_norm.weight": "model-00002-of-00004.safetensors",
109
+ "model.transformer.blocks.19.ff_out.weight": "model-00002-of-00004.safetensors",
110
+ "model.transformer.blocks.19.ff_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.transformer.blocks.19.k_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.transformer.blocks.19.q_proj.weight": "model-00002-of-00004.safetensors",
113
+ "model.transformer.blocks.19.up_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.transformer.blocks.19.v_proj.weight": "model-00002-of-00004.safetensors",
115
+ "model.transformer.blocks.2.attn_norm.weight": "model-00001-of-00004.safetensors",
116
+ "model.transformer.blocks.2.attn_out.weight": "model-00001-of-00004.safetensors",
117
+ "model.transformer.blocks.2.ff_norm.weight": "model-00001-of-00004.safetensors",
118
+ "model.transformer.blocks.2.ff_out.weight": "model-00001-of-00004.safetensors",
119
+ "model.transformer.blocks.2.ff_proj.weight": "model-00001-of-00004.safetensors",
120
+ "model.transformer.blocks.2.k_proj.weight": "model-00001-of-00004.safetensors",
121
+ "model.transformer.blocks.2.q_proj.weight": "model-00001-of-00004.safetensors",
122
+ "model.transformer.blocks.2.up_proj.weight": "model-00001-of-00004.safetensors",
123
+ "model.transformer.blocks.2.v_proj.weight": "model-00001-of-00004.safetensors",
124
+ "model.transformer.blocks.20.attn_norm.weight": "model-00002-of-00004.safetensors",
125
+ "model.transformer.blocks.20.attn_out.weight": "model-00002-of-00004.safetensors",
126
+ "model.transformer.blocks.20.ff_norm.weight": "model-00002-of-00004.safetensors",
127
+ "model.transformer.blocks.20.ff_out.weight": "model-00002-of-00004.safetensors",
128
+ "model.transformer.blocks.20.ff_proj.weight": "model-00003-of-00004.safetensors",
129
+ "model.transformer.blocks.20.k_proj.weight": "model-00002-of-00004.safetensors",
130
+ "model.transformer.blocks.20.q_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.transformer.blocks.20.up_proj.weight": "model-00003-of-00004.safetensors",
132
+ "model.transformer.blocks.20.v_proj.weight": "model-00003-of-00004.safetensors",
133
+ "model.transformer.blocks.21.attn_norm.weight": "model-00003-of-00004.safetensors",
134
+ "model.transformer.blocks.21.attn_out.weight": "model-00003-of-00004.safetensors",
135
+ "model.transformer.blocks.21.ff_norm.weight": "model-00003-of-00004.safetensors",
136
+ "model.transformer.blocks.21.ff_out.weight": "model-00003-of-00004.safetensors",
137
+ "model.transformer.blocks.21.ff_proj.weight": "model-00003-of-00004.safetensors",
138
+ "model.transformer.blocks.21.k_proj.weight": "model-00003-of-00004.safetensors",
139
+ "model.transformer.blocks.21.q_proj.weight": "model-00003-of-00004.safetensors",
140
+ "model.transformer.blocks.21.up_proj.weight": "model-00003-of-00004.safetensors",
141
+ "model.transformer.blocks.21.v_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.transformer.blocks.22.attn_norm.weight": "model-00003-of-00004.safetensors",
143
+ "model.transformer.blocks.22.attn_out.weight": "model-00003-of-00004.safetensors",
144
+ "model.transformer.blocks.22.ff_norm.weight": "model-00003-of-00004.safetensors",
145
+ "model.transformer.blocks.22.ff_out.weight": "model-00003-of-00004.safetensors",
146
+ "model.transformer.blocks.22.ff_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.transformer.blocks.22.k_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.transformer.blocks.22.q_proj.weight": "model-00003-of-00004.safetensors",
149
+ "model.transformer.blocks.22.up_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.transformer.blocks.22.v_proj.weight": "model-00003-of-00004.safetensors",
151
+ "model.transformer.blocks.23.attn_norm.weight": "model-00003-of-00004.safetensors",
152
+ "model.transformer.blocks.23.attn_out.weight": "model-00003-of-00004.safetensors",
153
+ "model.transformer.blocks.23.ff_norm.weight": "model-00003-of-00004.safetensors",
154
+ "model.transformer.blocks.23.ff_out.weight": "model-00003-of-00004.safetensors",
155
+ "model.transformer.blocks.23.ff_proj.weight": "model-00003-of-00004.safetensors",
156
+ "model.transformer.blocks.23.k_proj.weight": "model-00003-of-00004.safetensors",
157
+ "model.transformer.blocks.23.q_proj.weight": "model-00003-of-00004.safetensors",
158
+ "model.transformer.blocks.23.up_proj.weight": "model-00003-of-00004.safetensors",
159
+ "model.transformer.blocks.23.v_proj.weight": "model-00003-of-00004.safetensors",
160
+ "model.transformer.blocks.24.attn_norm.weight": "model-00003-of-00004.safetensors",
161
+ "model.transformer.blocks.24.attn_out.weight": "model-00003-of-00004.safetensors",
162
+ "model.transformer.blocks.24.ff_norm.weight": "model-00003-of-00004.safetensors",
163
+ "model.transformer.blocks.24.ff_out.weight": "model-00003-of-00004.safetensors",
164
+ "model.transformer.blocks.24.ff_proj.weight": "model-00003-of-00004.safetensors",
165
+ "model.transformer.blocks.24.k_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.transformer.blocks.24.q_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.transformer.blocks.24.up_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.transformer.blocks.24.v_proj.weight": "model-00003-of-00004.safetensors",
169
+ "model.transformer.blocks.25.attn_norm.weight": "model-00003-of-00004.safetensors",
170
+ "model.transformer.blocks.25.attn_out.weight": "model-00003-of-00004.safetensors",
171
+ "model.transformer.blocks.25.ff_norm.weight": "model-00003-of-00004.safetensors",
172
+ "model.transformer.blocks.25.ff_out.weight": "model-00003-of-00004.safetensors",
173
+ "model.transformer.blocks.25.ff_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.transformer.blocks.25.k_proj.weight": "model-00003-of-00004.safetensors",
175
+ "model.transformer.blocks.25.q_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.transformer.blocks.25.up_proj.weight": "model-00003-of-00004.safetensors",
177
+ "model.transformer.blocks.25.v_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.transformer.blocks.26.attn_norm.weight": "model-00003-of-00004.safetensors",
179
+ "model.transformer.blocks.26.attn_out.weight": "model-00003-of-00004.safetensors",
180
+ "model.transformer.blocks.26.ff_norm.weight": "model-00003-of-00004.safetensors",
181
+ "model.transformer.blocks.26.ff_out.weight": "model-00003-of-00004.safetensors",
182
+ "model.transformer.blocks.26.ff_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.transformer.blocks.26.k_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.transformer.blocks.26.q_proj.weight": "model-00003-of-00004.safetensors",
185
+ "model.transformer.blocks.26.up_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.transformer.blocks.26.v_proj.weight": "model-00003-of-00004.safetensors",
187
+ "model.transformer.blocks.27.attn_norm.weight": "model-00003-of-00004.safetensors",
188
+ "model.transformer.blocks.27.attn_out.weight": "model-00003-of-00004.safetensors",
189
+ "model.transformer.blocks.27.ff_norm.weight": "model-00003-of-00004.safetensors",
190
+ "model.transformer.blocks.27.ff_out.weight": "model-00003-of-00004.safetensors",
191
+ "model.transformer.blocks.27.ff_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.transformer.blocks.27.k_proj.weight": "model-00003-of-00004.safetensors",
193
+ "model.transformer.blocks.27.q_proj.weight": "model-00003-of-00004.safetensors",
194
+ "model.transformer.blocks.27.up_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.transformer.blocks.27.v_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.transformer.blocks.28.attn_norm.weight": "model-00003-of-00004.safetensors",
197
+ "model.transformer.blocks.28.attn_out.weight": "model-00003-of-00004.safetensors",
198
+ "model.transformer.blocks.28.ff_norm.weight": "model-00003-of-00004.safetensors",
199
+ "model.transformer.blocks.28.ff_out.weight": "model-00003-of-00004.safetensors",
200
+ "model.transformer.blocks.28.ff_proj.weight": "model-00003-of-00004.safetensors",
201
+ "model.transformer.blocks.28.k_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.transformer.blocks.28.q_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.transformer.blocks.28.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.transformer.blocks.28.v_proj.weight": "model-00003-of-00004.safetensors",
205
+ "model.transformer.blocks.29.attn_norm.weight": "model-00003-of-00004.safetensors",
206
+ "model.transformer.blocks.29.attn_out.weight": "model-00003-of-00004.safetensors",
207
+ "model.transformer.blocks.29.ff_norm.weight": "model-00003-of-00004.safetensors",
208
+ "model.transformer.blocks.29.ff_out.weight": "model-00003-of-00004.safetensors",
209
+ "model.transformer.blocks.29.ff_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.transformer.blocks.29.k_proj.weight": "model-00003-of-00004.safetensors",
211
+ "model.transformer.blocks.29.q_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.transformer.blocks.29.up_proj.weight": "model-00003-of-00004.safetensors",
213
+ "model.transformer.blocks.29.v_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.transformer.blocks.3.attn_norm.weight": "model-00001-of-00004.safetensors",
215
+ "model.transformer.blocks.3.attn_out.weight": "model-00001-of-00004.safetensors",
216
+ "model.transformer.blocks.3.ff_norm.weight": "model-00001-of-00004.safetensors",
217
+ "model.transformer.blocks.3.ff_out.weight": "model-00001-of-00004.safetensors",
218
+ "model.transformer.blocks.3.ff_proj.weight": "model-00001-of-00004.safetensors",
219
+ "model.transformer.blocks.3.k_proj.weight": "model-00001-of-00004.safetensors",
220
+ "model.transformer.blocks.3.q_proj.weight": "model-00001-of-00004.safetensors",
221
+ "model.transformer.blocks.3.up_proj.weight": "model-00001-of-00004.safetensors",
222
+ "model.transformer.blocks.3.v_proj.weight": "model-00001-of-00004.safetensors",
223
+ "model.transformer.blocks.30.attn_norm.weight": "model-00003-of-00004.safetensors",
224
+ "model.transformer.blocks.30.attn_out.weight": "model-00003-of-00004.safetensors",
225
+ "model.transformer.blocks.30.ff_norm.weight": "model-00003-of-00004.safetensors",
226
+ "model.transformer.blocks.30.ff_out.weight": "model-00003-of-00004.safetensors",
227
+ "model.transformer.blocks.30.ff_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.transformer.blocks.30.k_proj.weight": "model-00003-of-00004.safetensors",
229
+ "model.transformer.blocks.30.q_proj.weight": "model-00003-of-00004.safetensors",
230
+ "model.transformer.blocks.30.up_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.transformer.blocks.30.v_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.transformer.blocks.31.attn_norm.weight": "model-00003-of-00004.safetensors",
233
+ "model.transformer.blocks.31.attn_out.weight": "model-00003-of-00004.safetensors",
234
+ "model.transformer.blocks.31.ff_norm.weight": "model-00003-of-00004.safetensors",
235
+ "model.transformer.blocks.31.ff_out.weight": "model-00003-of-00004.safetensors",
236
+ "model.transformer.blocks.31.ff_proj.weight": "model-00003-of-00004.safetensors",
237
+ "model.transformer.blocks.31.k_proj.weight": "model-00003-of-00004.safetensors",
238
+ "model.transformer.blocks.31.q_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.transformer.blocks.31.up_proj.weight": "model-00004-of-00004.safetensors",
240
+ "model.transformer.blocks.31.v_proj.weight": "model-00003-of-00004.safetensors",
241
+ "model.transformer.blocks.4.attn_norm.weight": "model-00001-of-00004.safetensors",
242
+ "model.transformer.blocks.4.attn_out.weight": "model-00001-of-00004.safetensors",
243
+ "model.transformer.blocks.4.ff_norm.weight": "model-00001-of-00004.safetensors",
244
+ "model.transformer.blocks.4.ff_out.weight": "model-00001-of-00004.safetensors",
245
+ "model.transformer.blocks.4.ff_proj.weight": "model-00001-of-00004.safetensors",
246
+ "model.transformer.blocks.4.k_proj.weight": "model-00001-of-00004.safetensors",
247
+ "model.transformer.blocks.4.q_proj.weight": "model-00001-of-00004.safetensors",
248
+ "model.transformer.blocks.4.up_proj.weight": "model-00001-of-00004.safetensors",
249
+ "model.transformer.blocks.4.v_proj.weight": "model-00001-of-00004.safetensors",
250
+ "model.transformer.blocks.5.attn_norm.weight": "model-00001-of-00004.safetensors",
251
+ "model.transformer.blocks.5.attn_out.weight": "model-00001-of-00004.safetensors",
252
+ "model.transformer.blocks.5.ff_norm.weight": "model-00001-of-00004.safetensors",
253
+ "model.transformer.blocks.5.ff_out.weight": "model-00001-of-00004.safetensors",
254
+ "model.transformer.blocks.5.ff_proj.weight": "model-00001-of-00004.safetensors",
255
+ "model.transformer.blocks.5.k_proj.weight": "model-00001-of-00004.safetensors",
256
+ "model.transformer.blocks.5.q_proj.weight": "model-00001-of-00004.safetensors",
257
+ "model.transformer.blocks.5.up_proj.weight": "model-00001-of-00004.safetensors",
258
+ "model.transformer.blocks.5.v_proj.weight": "model-00001-of-00004.safetensors",
259
+ "model.transformer.blocks.6.attn_norm.weight": "model-00001-of-00004.safetensors",
260
+ "model.transformer.blocks.6.attn_out.weight": "model-00001-of-00004.safetensors",
261
+ "model.transformer.blocks.6.ff_norm.weight": "model-00001-of-00004.safetensors",
262
+ "model.transformer.blocks.6.ff_out.weight": "model-00001-of-00004.safetensors",
263
+ "model.transformer.blocks.6.ff_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.transformer.blocks.6.k_proj.weight": "model-00001-of-00004.safetensors",
265
+ "model.transformer.blocks.6.q_proj.weight": "model-00001-of-00004.safetensors",
266
+ "model.transformer.blocks.6.up_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.transformer.blocks.6.v_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.transformer.blocks.7.attn_norm.weight": "model-00001-of-00004.safetensors",
269
+ "model.transformer.blocks.7.attn_out.weight": "model-00001-of-00004.safetensors",
270
+ "model.transformer.blocks.7.ff_norm.weight": "model-00001-of-00004.safetensors",
271
+ "model.transformer.blocks.7.ff_out.weight": "model-00001-of-00004.safetensors",
272
+ "model.transformer.blocks.7.ff_proj.weight": "model-00001-of-00004.safetensors",
273
+ "model.transformer.blocks.7.k_proj.weight": "model-00001-of-00004.safetensors",
274
+ "model.transformer.blocks.7.q_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.transformer.blocks.7.up_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.transformer.blocks.7.v_proj.weight": "model-00001-of-00004.safetensors",
277
+ "model.transformer.blocks.8.attn_norm.weight": "model-00001-of-00004.safetensors",
278
+ "model.transformer.blocks.8.attn_out.weight": "model-00001-of-00004.safetensors",
279
+ "model.transformer.blocks.8.ff_norm.weight": "model-00001-of-00004.safetensors",
280
+ "model.transformer.blocks.8.ff_out.weight": "model-00001-of-00004.safetensors",
281
+ "model.transformer.blocks.8.ff_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.transformer.blocks.8.k_proj.weight": "model-00001-of-00004.safetensors",
283
+ "model.transformer.blocks.8.q_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.transformer.blocks.8.up_proj.weight": "model-00001-of-00004.safetensors",
285
+ "model.transformer.blocks.8.v_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.transformer.blocks.9.attn_norm.weight": "model-00002-of-00004.safetensors",
287
+ "model.transformer.blocks.9.attn_out.weight": "model-00001-of-00004.safetensors",
288
+ "model.transformer.blocks.9.ff_norm.weight": "model-00002-of-00004.safetensors",
289
+ "model.transformer.blocks.9.ff_out.weight": "model-00002-of-00004.safetensors",
290
+ "model.transformer.blocks.9.ff_proj.weight": "model-00002-of-00004.safetensors",
291
+ "model.transformer.blocks.9.k_proj.weight": "model-00002-of-00004.safetensors",
292
+ "model.transformer.blocks.9.q_proj.weight": "model-00002-of-00004.safetensors",
293
+ "model.transformer.blocks.9.up_proj.weight": "model-00002-of-00004.safetensors",
294
+ "model.transformer.blocks.9.v_proj.weight": "model-00002-of-00004.safetensors",
295
+ "model.transformer.ff_out.weight": "model-00004-of-00004.safetensors",
296
+ "model.transformer.ln_f.weight": "model-00001-of-00004.safetensors",
297
+ "model.transformer.wte.weight": "model-00001-of-00004.safetensors"
298
+ }
299
+ }
modeling_llada.py ADDED
@@ -0,0 +1,1556 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import logging
4
+ import math
5
+ import sys
6
+ from abc import abstractmethod
7
+ from collections import defaultdict
8
+ from functools import partial
9
+ from typing import (
10
+ Callable,
11
+ Dict,
12
+ Iterable,
13
+ List,
14
+ NamedTuple,
15
+ Optional,
16
+ Sequence,
17
+ Set,
18
+ Tuple,
19
+ cast,
20
+ )
21
+ from dataclasses import fields
22
+ from typing import List, Optional, Tuple, Union
23
+
24
+ import torch
25
+ import torch.backends.cuda
26
+ import torch.nn as nn
27
+ import torch.nn.functional as F
28
+ from torch import einsum
29
+ from transformers import PreTrainedModel
30
+ from transformers.modeling_outputs import CausalLMOutputWithPast
31
+ from transformers.models.auto import AutoModel
32
+ from transformers.cache_utils import Cache
33
+
34
+ from .configuration_llada import (
35
+ LLaDAConfig,
36
+ StrEnum,
37
+ InitFnType,
38
+ ActivationType,
39
+ BlockType,
40
+ LayerNormType,
41
+ ModelConfig,
42
+ ActivationCheckpointingStrategy,
43
+ )
44
+
45
+ if sys.version_info.minor > 8:
46
+ from collections.abc import MutableMapping
47
+ elif sys.version_info.minor == 8:
48
+ from typing import MutableMapping
49
+ else:
50
+ raise SystemExit("This script supports Python 3.8 or higher")
51
+
52
+
53
+
54
+
55
+ __all__ = [
56
+ "LayerNormBase",
57
+ "LayerNorm",
58
+ "RMSLayerNorm",
59
+ "GemmaRMSLayerNorm",
60
+ "RotaryEmbedding",
61
+ "Activation",
62
+ "GELU",
63
+ "ReLU",
64
+ "SwiGLU",
65
+ "LLaDABlock",
66
+ "LLaDASequentialBlock",
67
+ "LLaDAModel",
68
+ "LLaDAOutput",
69
+ "LLaDAGenerateOutput",
70
+ ]
71
+
72
+
73
+ log = logging.getLogger(__name__)
74
+
75
+
76
+ class ModuleType(StrEnum):
77
+ in_module = "in"
78
+ out_module = "out"
79
+ emb = "emb"
80
+ final_out = "final_out"
81
+
82
+
83
+ def init_weights(
84
+ config: ModelConfig,
85
+ module: Union[nn.Linear, nn.Embedding],
86
+ d: Optional[int] = None,
87
+ layer_id: Optional[int] = None,
88
+ std_factor: float = 1.0,
89
+ type_of_module: Optional[ModuleType] = None,
90
+ ) -> None:
91
+ """
92
+ Initialize weights of a linear or embedding module.
93
+
94
+ :param config: The model config.
95
+ :param module: The linear or embedding submodule to initialize.
96
+ :param d: The effective input dimensionality of the weights. This could be smaller than the actual dimensions
97
+ for fused layers.
98
+ :param layer_id: When set, the standard deviation for the "mitchell" method will be adjusted by
99
+ ``1 / sqrt(2 * (layer_id + 1))``.
100
+ """
101
+ d = d if d is not None else config.d_model
102
+ if config.init_fn == InitFnType.normal:
103
+ std = config.init_std * std_factor
104
+ if config.init_cutoff_factor is not None:
105
+ cutoff_value = config.init_cutoff_factor * std
106
+ nn.init.trunc_normal_(module.weight, mean=0.0, std=std, a=-cutoff_value, b=cutoff_value)
107
+ else:
108
+ nn.init.normal_(module.weight, mean=0.0, std=std)
109
+ elif config.init_fn == InitFnType.mitchell:
110
+ std = std_factor / math.sqrt(d)
111
+ if layer_id is not None:
112
+ std = std / math.sqrt(2 * (layer_id + 1))
113
+ nn.init.trunc_normal_(module.weight, mean=0.0, std=std, a=-3 * std, b=3 * std)
114
+ elif config.init_fn == InitFnType.kaiming_normal:
115
+ nn.init.kaiming_normal_(module.weight, nonlinearity="relu")
116
+ elif config.init_fn == InitFnType.fan_in:
117
+ std = std_factor / math.sqrt(d)
118
+ nn.init.normal_(module.weight, mean=0.0, std=std)
119
+ elif config.init_fn == InitFnType.full_megatron:
120
+ if type_of_module is None:
121
+ raise RuntimeError(f"When using the {InitFnType.full_megatron} init, every module must have a type.")
122
+
123
+ cutoff_factor = config.init_cutoff_factor
124
+ if cutoff_factor is None:
125
+ cutoff_factor = 3
126
+
127
+ if type_of_module == ModuleType.in_module:
128
+ # for att_proj (same as QKV), ff_proj
129
+ std = config.init_std
130
+ elif type_of_module == ModuleType.out_module:
131
+ # for attn_out, ff_out
132
+ std = config.init_std / math.sqrt(2.0 * config.n_layers)
133
+ elif type_of_module == ModuleType.emb:
134
+ # positional embeddings (wpe)
135
+ # token embeddings (wte)
136
+ std = config.init_std
137
+ elif type_of_module == ModuleType.final_out:
138
+ # final output (ff_out)
139
+ std = config.d_model**-0.5
140
+ else:
141
+ raise RuntimeError(f"Unknown module type '{type_of_module}'")
142
+ nn.init.trunc_normal_(
143
+ module.weight,
144
+ mean=0.0,
145
+ std=std,
146
+ a=-cutoff_factor * std,
147
+ b=cutoff_factor * std,
148
+ )
149
+ else:
150
+ raise NotImplementedError(config.init_fn)
151
+
152
+ if isinstance(module, nn.Linear):
153
+ if module.bias is not None:
154
+ nn.init.zeros_(module.bias)
155
+
156
+ if config.init_fn == InitFnType.normal and getattr(module, "_is_residual", False):
157
+ with torch.no_grad():
158
+ module.weight.div_(math.sqrt(2 * config.n_layers))
159
+
160
+
161
+ def ensure_finite_(x: torch.Tensor, check_neg_inf: bool = True, check_pos_inf: bool = False):
162
+ """
163
+ Modify ``x`` in place to replace ``float("-inf")`` with the minimum value of the dtype when ``check_neg_inf``
164
+ is ``True`` and to replace ``float("inf")`` with the maximum value of the dtype when ``check_pos_inf`` is ``True``.
165
+ """
166
+ if check_neg_inf:
167
+ x.masked_fill_(x == float("-inf"), torch.finfo(x.dtype).min)
168
+ if check_pos_inf:
169
+ x.masked_fill_(x == float("inf"), torch.finfo(x.dtype).max)
170
+
171
+
172
+ def activation_checkpoint_function(cfg: ModelConfig):
173
+ preserve_rng_state = (
174
+ (cfg.attention_dropout == 0.0) and (cfg.embedding_dropout == 0.0) and (cfg.residual_dropout == 0.0)
175
+ )
176
+ from torch.utils.checkpoint import checkpoint
177
+
178
+ return partial(
179
+ checkpoint,
180
+ preserve_rng_state=preserve_rng_state,
181
+ use_reentrant=False,
182
+ )
183
+
184
+
185
+ class BufferCache(dict, MutableMapping[str, torch.Tensor]):
186
+ """
187
+ Cache for attention biases and other things that would normally be stored as buffers.
188
+ We avoid using buffers because we've run into various issues doing so with FSDP.
189
+ In general it appears the way FSDP handles buffers is not well-defined.
190
+ It doesn't shard them but apparently it does synchronize them across processes, which we want to avoid
191
+ since (A) it isn't necessary, and (B) we sometimes have `-inf` in these biases which might get turned into
192
+ NaNs when they're synchronized due to casting or some other issue.
193
+ """
194
+
195
+
196
+ def _non_meta_init_device(config: ModelConfig) -> torch.device:
197
+ if config.init_device is not None and config.init_device != "meta":
198
+ return torch.device(config.init_device)
199
+ else:
200
+ return torch.device("cuda" if torch.cuda.is_available() else "cpu")
201
+
202
+
203
+ class Dropout(nn.Dropout):
204
+ def forward(self, input: torch.Tensor) -> torch.Tensor:
205
+ if self.p == 0.0:
206
+ return input
207
+ else:
208
+ return F.dropout(input, self.p, self.training, self.inplace)
209
+
210
+
211
+ class LayerNormBase(nn.Module):
212
+ def __init__(
213
+ self,
214
+ config: ModelConfig,
215
+ *,
216
+ size: Optional[int] = None,
217
+ elementwise_affine: Optional[bool] = True,
218
+ eps: float = 1e-05,
219
+ ):
220
+ super().__init__()
221
+ self.config = config
222
+ self.eps = eps
223
+ self.normalized_shape = (size or config.d_model,)
224
+ if elementwise_affine or (elementwise_affine is None and self.config.layer_norm_with_affine):
225
+ self.weight = nn.Parameter(torch.ones(self.normalized_shape, device=config.init_device))
226
+ use_bias = self.config.bias_for_layer_norm
227
+ if use_bias is None:
228
+ use_bias = self.config.include_bias
229
+ if use_bias:
230
+ self.bias = nn.Parameter(torch.zeros(self.normalized_shape, device=config.init_device))
231
+ else:
232
+ self.register_parameter("bias", None)
233
+ else:
234
+ self.register_parameter("bias", None)
235
+ self.register_parameter("weight", None)
236
+
237
+ @abstractmethod
238
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
239
+ raise NotImplementedError
240
+
241
+ @classmethod
242
+ def build(cls, config: ModelConfig, size: Optional[int] = None, **kwargs) -> LayerNormBase:
243
+ if config.layer_norm_type == LayerNormType.default:
244
+ return LayerNorm(config, size=size, low_precision=False, **kwargs)
245
+ elif config.layer_norm_type == LayerNormType.low_precision:
246
+ return LayerNorm(config, size=size, low_precision=True, **kwargs)
247
+ elif config.layer_norm_type == LayerNormType.rms:
248
+ return RMSLayerNorm(config, size=size, **kwargs)
249
+ elif config.layer_norm_type == LayerNormType.gemma_rms:
250
+ return GemmaRMSLayerNorm(config, size=size, **kwargs)
251
+ else:
252
+ raise NotImplementedError(f"Unknown LayerNorm type: '{config.layer_norm_type}'")
253
+
254
+ def _cast_if_autocast_enabled(self, tensor: torch.Tensor, dtype: Optional[torch.dtype] = None) -> torch.Tensor:
255
+ # NOTE: `is_autocast_enabled()` only checks for CUDA autocast, so we use the separate function
256
+ # `is_autocast_cpu_enabled()` for CPU autocast.
257
+ # See https://github.com/pytorch/pytorch/issues/110966.
258
+ if tensor.device.type == "cuda" and torch.is_autocast_enabled():
259
+ return tensor.to(dtype=dtype if dtype is not None else torch.get_autocast_gpu_dtype())
260
+ elif tensor.device.type == "cpu" and torch.is_autocast_cpu_enabled():
261
+ return tensor.to(dtype=dtype if dtype is not None else torch.get_autocast_cpu_dtype())
262
+ else:
263
+ return tensor
264
+
265
+ def reset_parameters(self):
266
+ if self.weight is not None:
267
+ torch.nn.init.ones_(self.weight) # type: ignore
268
+ if self.bias is not None:
269
+ torch.nn.init.zeros_(self.bias) # type: ignore
270
+
271
+
272
+ class LayerNorm(LayerNormBase):
273
+ """
274
+ The default :class:`LayerNorm` implementation which can optionally run in low precision.
275
+ """
276
+
277
+ def __init__(
278
+ self,
279
+ config: ModelConfig,
280
+ size: Optional[int] = None,
281
+ low_precision: bool = False,
282
+ elementwise_affine: Optional[bool] = None,
283
+ eps: float = 1e-05,
284
+ ):
285
+ super().__init__(config, size=size, elementwise_affine=elementwise_affine, eps=eps)
286
+ self.low_precision = low_precision
287
+
288
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
289
+ if self.low_precision:
290
+ module_device = x.device
291
+ downcast_x = self._cast_if_autocast_enabled(x)
292
+ downcast_weight = (
293
+ self._cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight
294
+ )
295
+ downcast_bias = self._cast_if_autocast_enabled(self.bias) if self.bias is not None else self.bias
296
+ with torch.autocast(enabled=False, device_type=module_device.type):
297
+ return F.layer_norm(
298
+ downcast_x, self.normalized_shape, weight=downcast_weight, bias=downcast_bias, eps=self.eps
299
+ )
300
+ else:
301
+ return F.layer_norm(x, self.normalized_shape, weight=self.weight, bias=self.bias, eps=self.eps)
302
+
303
+
304
+ class RMSLayerNorm(LayerNormBase):
305
+ """
306
+ RMS layer norm, a simplified :class:`LayerNorm` implementation
307
+ """
308
+
309
+ def __init__(
310
+ self,
311
+ config: ModelConfig,
312
+ size: Optional[int] = None,
313
+ elementwise_affine: Optional[bool] = None,
314
+ eps: float = 1e-5,
315
+ ):
316
+ super().__init__(config, size=size, elementwise_affine=elementwise_affine, eps=config.rms_norm_eps)
317
+
318
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
319
+ with torch.autocast(enabled=False, device_type=x.device.type):
320
+ og_dtype = x.dtype
321
+ x = x.to(torch.float32)
322
+ variance = x.pow(2).mean(-1, keepdim=True)
323
+ x = x * torch.rsqrt(variance + self.eps)
324
+ x = x.to(og_dtype)
325
+
326
+ if self.weight is not None:
327
+ if self.bias is not None:
328
+ return self.weight * x + self.bias
329
+ else:
330
+ return self.weight * x
331
+ else:
332
+ return x
333
+
334
+
335
+ class GemmaRMSLayerNorm(LayerNormBase):
336
+ """
337
+ Gemma RMS layer norm, a simplified :class:`LayerNorm` implementation
338
+ """
339
+
340
+ def __init__(
341
+ self,
342
+ config: ModelConfig,
343
+ size: Optional[int] = None,
344
+ elementwise_affine: Optional[bool] = None,
345
+ eps: float = 1e-5,
346
+ ):
347
+ super().__init__(config, size=size, elementwise_affine=elementwise_affine, eps=config.rms_norm_eps)
348
+
349
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
350
+ with torch.autocast(enabled=False, device_type=x.device.type):
351
+ og_dtype = x.dtype
352
+ x = x.to(torch.float32)
353
+ variance = x.pow(2).mean(-1, keepdim=True)
354
+ x = x * torch.rsqrt(variance + self.eps)
355
+ x = x.to(og_dtype)
356
+
357
+ if self.weight is not None:
358
+ if self.bias is not None:
359
+ return x * (1 + self.weight) + self.bias
360
+ else:
361
+ return x * (1 + self.weight)
362
+ else:
363
+ return x
364
+
365
+
366
+ class RotaryEmbedding(nn.Module):
367
+ """
368
+ [Rotary positional embeddings (RoPE)](https://arxiv.org/abs/2104.09864).
369
+ """
370
+
371
+ def __init__(self, config: ModelConfig, cache: BufferCache):
372
+ super().__init__()
373
+ self.config = config
374
+ self.__cache = cache
375
+ # Warm up cache.
376
+ self.rope_theta = config.rope_theta
377
+ self.get_rotary_embedding(config.max_sequence_length, _non_meta_init_device(config))
378
+
379
+ def get_rotary_embedding(self, seq_len: int, device: torch.device) -> Tuple[torch.Tensor, torch.Tensor]:
380
+ if (
381
+ (pos_sin := self.__cache.get("rope_pos_sin")) is not None
382
+ and (pos_cos := self.__cache.get("rope_pos_cos")) is not None
383
+ and pos_sin.shape[-2] >= seq_len
384
+ and pos_cos.shape[-2] >= seq_len
385
+ ):
386
+ if pos_sin.device != device:
387
+ pos_sin = pos_sin.to(device)
388
+ self.__cache["rope_pos_sin"] = pos_sin
389
+ if pos_cos.device != device:
390
+ pos_cos = pos_cos.to(device)
391
+ self.__cache["rope_pos_cos"] = pos_cos
392
+ return pos_sin[:, :, :seq_len, :], pos_cos[:, :, :seq_len, :]
393
+
394
+ with torch.autocast(device.type, enabled=False):
395
+ dim = self.config.d_model // self.config.n_heads
396
+ inv_freq = 1.0 / (self.rope_theta ** (torch.arange(0, dim, 2, device=device, dtype=torch.float) / dim))
397
+ seq = torch.arange(seq_len, device=device, dtype=torch.float)
398
+ freqs = einsum("i , j -> i j", seq, inv_freq)
399
+ positions = torch.cat((freqs, freqs), dim=-1)
400
+ pos_sin, pos_cos = positions.sin()[None, None, :, :], positions.cos()[None, None, :, :]
401
+ self.__cache["rope_pos_sin"] = pos_sin
402
+ self.__cache["rope_pos_cos"] = pos_cos
403
+ return pos_sin, pos_cos
404
+
405
+ def rotate_half(self, x: torch.Tensor) -> torch.Tensor:
406
+ B, nh, T, hs = x.size()
407
+ x = x.view(B, nh, T, 2, hs // 2)
408
+ x1, x2 = x.unbind(dim=-2)
409
+ return torch.cat((-x2, x1), dim=-1)
410
+
411
+ def apply_rotary_pos_emb(self, pos_sin: torch.Tensor, pos_cos: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
412
+ return ((t * pos_cos) + (self.rotate_half(t) * pos_sin)).to(t.dtype)
413
+
414
+ def forward(self, q: torch.Tensor, k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
415
+ if self.config.rope_full_precision:
416
+ q_, k_ = q.float(), k.float()
417
+ else:
418
+ q_, k_ = q, k
419
+
420
+ with torch.autocast(q.device.type, enabled=False):
421
+ query_len, key_len = q_.shape[-2], k_.shape[-2] # could be different if layer_past not None
422
+ pos_sin, pos_cos = self.get_rotary_embedding(key_len, q_.device)
423
+ pos_sin = pos_sin.type_as(q_)
424
+ pos_cos = pos_cos.type_as(q_)
425
+ q_ = self.apply_rotary_pos_emb(
426
+ pos_sin[:, :, key_len - query_len : key_len, :],
427
+ pos_cos[:, :, key_len - query_len : key_len, :],
428
+ q_,
429
+ )
430
+ k_ = self.apply_rotary_pos_emb(pos_sin, pos_cos, k_)
431
+ return q_.type_as(q), k_.type_as(k)
432
+
433
+
434
+ class Activation(nn.Module):
435
+ def __init__(self, config: ModelConfig):
436
+ super().__init__()
437
+ self.config = config
438
+
439
+ @abstractmethod
440
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
441
+ raise NotImplementedError
442
+
443
+ @property
444
+ @abstractmethod
445
+ def output_multiplier(self) -> float:
446
+ raise NotImplementedError
447
+
448
+ @classmethod
449
+ def build(cls, config: ModelConfig) -> Activation:
450
+ if config.activation_type == ActivationType.gelu:
451
+ return cast(Activation, GELU(approximate="none"))
452
+ elif config.activation_type == ActivationType.relu:
453
+ return cast(Activation, ReLU(inplace=False))
454
+ elif config.activation_type == ActivationType.silu:
455
+ return cast(Activation, SiLU(inplace=False))
456
+ elif config.activation_type == ActivationType.swiglu:
457
+ return SwiGLU(config)
458
+ else:
459
+ raise NotImplementedError(f"Unknown activation: '{config.activation_type}'")
460
+
461
+
462
+ class GELU(nn.GELU):
463
+ @property
464
+ def output_multiplier(self) -> float:
465
+ return 1.0
466
+
467
+
468
+ class ReLU(nn.ReLU):
469
+ @property
470
+ def output_multiplier(self) -> float:
471
+ return 1.0
472
+
473
+ class SiLU(nn.SiLU):
474
+ @property
475
+ def output_multiplier(self) -> float:
476
+ return 1.0
477
+
478
+ class SwiGLU(Activation):
479
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
480
+ x, gate = x.chunk(2, dim=-1)
481
+ return F.silu(gate) * x
482
+
483
+ @property
484
+ def output_multiplier(self) -> float:
485
+ return 0.5
486
+
487
+
488
+ def causal_attention_bias(seq_len: int, device: torch.device) -> torch.FloatTensor:
489
+ att_bias = torch.triu(
490
+ torch.ones(seq_len, seq_len, device=device, dtype=torch.float),
491
+ diagonal=1,
492
+ )
493
+ att_bias.masked_fill_(att_bias == 1, torch.finfo(att_bias.dtype).min)
494
+ return att_bias.view(1, 1, seq_len, seq_len) # type: ignore
495
+
496
+
497
+ def get_causal_attention_bias(cache: BufferCache, seq_len: int, device: torch.device) -> torch.Tensor:
498
+ if (causal_bias := cache.get("causal_attention_bias")) is not None and causal_bias.shape[-1] >= seq_len:
499
+ if causal_bias.device != device:
500
+ causal_bias = causal_bias.to(device)
501
+ cache["causal_attention_bias"] = causal_bias
502
+ return causal_bias
503
+ with torch.autocast(device.type, enabled=False):
504
+ causal_bias = causal_attention_bias(seq_len, device)
505
+ cache["causal_attention_bias"] = causal_bias
506
+ return causal_bias
507
+
508
+
509
+ def alibi_attention_bias(seq_len: int, config: ModelConfig, device: torch.device) -> torch.FloatTensor:
510
+ alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.float, device=device).view(1, 1, 1, seq_len)
511
+
512
+ # shape: (1, 1, seq_len, seq_len)
513
+ alibi_bias = alibi_bias - torch.arange(1 - seq_len, 1, dtype=torch.float, device=device).view(1, 1, seq_len, 1)
514
+ alibi_bias.abs_().mul_(-1)
515
+
516
+ # shape: (n_heads,)
517
+ m = torch.arange(1, config.n_heads + 1, dtype=torch.float, device=device)
518
+ m.mul_(config.alibi_bias_max / config.n_heads)
519
+
520
+ # shape: (1, n_heads, seq_len, seq_len)
521
+ return alibi_bias * (1.0 / (2 ** m.view(1, config.n_heads, 1, 1))) # type: ignore
522
+
523
+
524
+ class LLaDABlock(nn.Module):
525
+ """
526
+ A base class for transformer block implementations.
527
+ """
528
+
529
+ def __init__(self, layer_id: int, config: ModelConfig, cache: BufferCache):
530
+ super().__init__()
531
+ self.layer_id = layer_id
532
+ self.config = config
533
+ self.hidden_size = (
534
+ config.mlp_hidden_size if config.mlp_hidden_size is not None else config.mlp_ratio * config.d_model
535
+ )
536
+ self.__cache = cache
537
+ assert config.d_model % config.n_heads == 0
538
+
539
+ self._activation_checkpoint_fn = None
540
+
541
+ # Dropout.
542
+ self.dropout = Dropout(config.residual_dropout)
543
+
544
+ # Layer norms.
545
+ self.k_norm: Optional[LayerNormBase] = None
546
+ self.q_norm: Optional[LayerNormBase] = None
547
+ if config.attention_layer_norm:
548
+ self.k_norm = LayerNormBase.build(
549
+ config,
550
+ size=(config.d_model // config.n_heads) * config.effective_n_kv_heads,
551
+ elementwise_affine=config.attention_layer_norm_with_affine,
552
+ )
553
+ self.q_norm = LayerNormBase.build(config, elementwise_affine=config.attention_layer_norm_with_affine)
554
+
555
+ # Activation function.
556
+ self.act = Activation.build(config)
557
+ assert (self.act.output_multiplier * self.hidden_size) % 1 == 0
558
+
559
+ # Attention output projection.
560
+ self.attn_out = nn.Linear(
561
+ config.d_model, config.d_model, bias=config.include_bias, device=config.init_device
562
+ )
563
+
564
+ # Feed-forward output projection.
565
+ self.ff_out = nn.Linear(
566
+ int(self.act.output_multiplier * self.hidden_size),
567
+ config.d_model,
568
+ bias=config.include_bias,
569
+ device=config.init_device,
570
+ )
571
+ self.ff_out._is_residual = True # type: ignore
572
+
573
+ # Rotary embeddings.
574
+ if self.config.rope:
575
+ self.rotary_emb = RotaryEmbedding(config, self.__cache)
576
+ self.flash_attn_func = None
577
+ if config.flash_attention:
578
+ try:
579
+ # 先尝试导入 flash attention 3
580
+ from flash_attn_interface import flash_attn_func # flash attention 3
581
+ self.flash_attn_func = flash_attn_func
582
+ if self.layer_id==0:
583
+ print("成功导入 flash attention 3,仅仅适配 hopper 架构")
584
+ except ModuleNotFoundError:
585
+ try:
586
+ # 如果 flash attention 3 没有安装,则尝试导入 flash attention 2
587
+ from flash_attn import flash_attn_func # flash attention 2
588
+ self.flash_attn_func = flash_attn_func
589
+ if self.layer_id==0:
590
+ print("成功导入 flash_attn (flash attention 2)")
591
+ except ModuleNotFoundError:
592
+ if self.layer_id==0:
593
+ print(f"config.flash_attention 为 True,但 flash_attn_func 未安装(fla3、fla2均未找到)")
594
+ pass
595
+
596
+ def reset_parameters(self):
597
+ if self.k_norm is not None:
598
+ self.k_norm.reset_parameters()
599
+ if self.q_norm is not None:
600
+ self.q_norm.reset_parameters()
601
+ init_weights(
602
+ self.config,
603
+ self.attn_out,
604
+ d=self.config.d_model,
605
+ layer_id=self.layer_id,
606
+ type_of_module=ModuleType.out_module,
607
+ )
608
+ init_weights(
609
+ self.config,
610
+ self.ff_out,
611
+ d=self.ff_out.in_features,
612
+ layer_id=self.layer_id,
613
+ type_of_module=ModuleType.out_module,
614
+ )
615
+
616
+ def set_activation_checkpointing(self, strategy: Optional[ActivationCheckpointingStrategy]):
617
+ if strategy == ActivationCheckpointingStrategy.fine_grained:
618
+ self._activation_checkpoint_fn = activation_checkpoint_function(self.config)
619
+ else:
620
+ self._activation_checkpoint_fn = None
621
+
622
+ @classmethod
623
+ def _cast_attn_bias(cls, bias: torch.Tensor, input_dtype: torch.dtype) -> torch.Tensor:
624
+ target_dtype = input_dtype
625
+ # NOTE: `is_autocast_enabled()` only checks for CUDA autocast, so we use the separate function
626
+ # `is_autocast_cpu_enabled()` for CPU autocast.
627
+ # See https://github.com/pytorch/pytorch/issues/110966.
628
+ if bias.device.type == "cuda" and torch.is_autocast_enabled():
629
+ target_dtype = torch.get_autocast_gpu_dtype()
630
+ elif bias.device.type == "cpu" and torch.is_autocast_cpu_enabled():
631
+ target_dtype = torch.get_autocast_cpu_dtype()
632
+ if bias.dtype != target_dtype:
633
+ bias = bias.to(target_dtype)
634
+ ensure_finite_(bias, check_neg_inf=True, check_pos_inf=False)
635
+ return bias
636
+
637
+ def _scaled_dot_product_attention(
638
+ self,
639
+ q: torch.Tensor,
640
+ k: torch.Tensor,
641
+ v: torch.Tensor,
642
+ attn_mask: Optional[torch.Tensor] = None,
643
+ dropout_p: float = 0.0,
644
+ is_causal: bool = False,
645
+ ) -> torch.Tensor:
646
+ """
647
+ Computes scaled dot product attention on query, key and value tensors, using an optional
648
+ attention mask if passed, and applying dropout if a probability greater than 0.0 is specified.
649
+ """
650
+ if self.flash_attn_func is not None and attn_mask is None:
651
+ # r = self.flash_attn_func(
652
+ # q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), dropout_p=dropout_p, causal=False
653
+ # )
654
+ r = self.flash_attn_func(
655
+ q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), causal=False
656
+ )
657
+ return r.transpose(1, 2)
658
+ else:
659
+ # torch's sdpa doesn't support GQA, so we're doing this
660
+ assert k.size(1) == v.size(1)
661
+ num_kv_heads = k.size(1)
662
+ num_q_heads = q.size(1)
663
+ if num_q_heads != num_kv_heads:
664
+ assert num_q_heads % num_kv_heads == 0
665
+ k = k.repeat_interleave(num_q_heads // num_kv_heads, dim=1, output_size=num_q_heads)
666
+ v = v.repeat_interleave(num_q_heads // num_kv_heads, dim=1, output_size=num_q_heads)
667
+
668
+ # Modify: MDM set causal to False, and with no attn_mask.
669
+ return F.scaled_dot_product_attention(
670
+ q,
671
+ k,
672
+ v,
673
+ attn_mask=None,
674
+ dropout_p=dropout_p,
675
+ is_causal=False,
676
+ )
677
+
678
+ def attention(
679
+ self,
680
+ q: torch.Tensor,
681
+ k: torch.Tensor,
682
+ v: torch.Tensor,
683
+ attention_bias: Optional[torch.Tensor] = None,
684
+ layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
685
+ use_cache: bool = False,
686
+ ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
687
+ B, T, C = q.size() # batch size, sequence length, d_model
688
+ dtype = k.dtype
689
+
690
+ # Optionally apply layer norm to keys and queries.
691
+ if self.q_norm is not None and self.k_norm is not None:
692
+ q = self.q_norm(q).to(dtype=dtype)
693
+ k = self.k_norm(k).to(dtype=dtype)
694
+
695
+ # Move head forward to be next to the batch dim.
696
+ # shape: (B, nh, T, hs)
697
+ q = q.view(B, T, self.config.n_heads, C // self.config.n_heads).transpose(1, 2)
698
+ # shape: (B, n_kv_h, T, hs)
699
+ k = k.view(B, T, self.config.effective_n_kv_heads, C // self.config.n_heads).transpose(1, 2)
700
+ # shape: (B, n_kv_h, T, hs)
701
+ v = v.view(B, T, self.config.effective_n_kv_heads, C // self.config.n_heads).transpose(1, 2)
702
+
703
+ if layer_past is not None:
704
+ past_key, past_value = layer_past
705
+ k = torch.cat((past_key, k), dim=-2)
706
+ v = torch.cat((past_value, v), dim=-2)
707
+
708
+ present = (k, v) if use_cache else None
709
+ query_len, key_len = q.shape[-2], k.shape[-2] # could be different if layer_past not None
710
+
711
+ if self.config.rope:
712
+ # Apply rotary embeddings.
713
+ # 进入之前先变成这样
714
+ # q: [B, T, H, D]
715
+ # k: [B, T, H, D]
716
+ # q, k = q.transpose(1, 2), k.transpose(1, 2)
717
+ q, k = self.rotary_emb(q, k)
718
+ # q, k = q.transpose(1, 2), k.transpose(1, 2)
719
+ # 出来之后变为
720
+
721
+ if attention_bias is not None:
722
+ # Resize and cast attention bias.
723
+ # The current dtype of the attention bias might not match the dtype that the SDP attn function will
724
+ # run in if AMP is enabled, and this can be a problem if some tokens are masked out due to padding
725
+ # as down-casting the attention bias to the autocast precision will result in -infs, which will
726
+ # cause the SDP attn function to produce NaNs.
727
+ attention_bias = self._cast_attn_bias(
728
+ attention_bias[:, :, key_len - query_len : key_len, :key_len], dtype
729
+ )
730
+
731
+ # Get the attention scores.
732
+ # shape: (B, nh, T, hs)
733
+ # promp _length = 1000
734
+ # blocksize = 64
735
+ # decoding_block =64
736
+ # q[64] kv[1000+64+64] decoding
737
+ # q[1000+64+64+64] kv[1000+64+64+64] prefill
738
+ att = self._scaled_dot_product_attention(
739
+ q,
740
+ k,
741
+ v,
742
+ attn_mask=None,
743
+ dropout_p=0.0 if not self.training else self.config.attention_dropout,
744
+ is_causal=False,
745
+ )
746
+
747
+ # Re-assemble all head outputs side-by-side.
748
+ att = att.transpose(1, 2).contiguous().view(B, T, C)
749
+
750
+ # Apply output projection.
751
+ return self.attn_out(att), present
752
+
753
+ @abstractmethod
754
+ def forward(
755
+ self,
756
+ x: torch.Tensor,
757
+ attention_bias: Optional[torch.FloatTensor] = None,
758
+ layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
759
+ use_cache: bool = False,
760
+ ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
761
+ raise NotImplementedError
762
+
763
+ @classmethod
764
+ def build(cls, layer_id: int, config: ModelConfig, cache: BufferCache) -> LLaDABlock:
765
+ if config.block_type == BlockType.sequential:
766
+ return LLaDASequentialBlock(layer_id, config, cache)
767
+ elif config.block_type == BlockType.llama:
768
+ return LLaDALlamaBlock(layer_id, config, cache)
769
+ else:
770
+ raise NotImplementedError(f"Unknown block type: '{config.block_type}'")
771
+
772
+
773
+ class LLaDASequentialBlock(LLaDABlock):
774
+ """
775
+ This is a typical transformer block where the output is computed as ``MLP(LN(x + Attention(LN(x))))``
776
+ (plus another skip connection).
777
+ """
778
+
779
+ def __init__(self, layer_id: int, config: ModelConfig, cache: BufferCache):
780
+ super().__init__(layer_id, config, cache)
781
+ # Layer norms.
782
+ self.attn_norm = LayerNorm.build(config)
783
+ self.ff_norm = LayerNorm.build(config)
784
+ # Attention input projection. Projects x -> (q, k, v)
785
+ head_dim = config.d_model // config.n_heads
786
+ self.fused_dims = (
787
+ config.d_model,
788
+ config.effective_n_kv_heads * head_dim,
789
+ config.effective_n_kv_heads * head_dim,
790
+ )
791
+ self.att_proj = nn.Linear(
792
+ config.d_model, sum(self.fused_dims), bias=config.include_bias | config.include_qkv_bias, device=config.init_device
793
+ )
794
+ # Feed-forward input projection.
795
+ self.ff_proj = nn.Linear(
796
+ config.d_model, self.hidden_size, bias=config.include_bias, device=config.init_device
797
+ )
798
+
799
+ def reset_parameters(self):
800
+ super().reset_parameters()
801
+ self.attn_norm.reset_parameters()
802
+ self.ff_norm.reset_parameters()
803
+ # NOTE: the standard deviation for these weights does not depend on the layer.
804
+ init_weights(
805
+ self.config, self.att_proj, d=self.config.d_model, layer_id=None, type_of_module=ModuleType.in_module
806
+ )
807
+ init_weights(
808
+ self.config, self.ff_proj, d=self.config.d_model, layer_id=None, type_of_module=ModuleType.in_module
809
+ )
810
+
811
+ def forward(
812
+ self,
813
+ x: torch.Tensor,
814
+ attention_bias: Optional[torch.Tensor] = None,
815
+ layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
816
+ use_cache: bool = False,
817
+ ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
818
+ # Get query, key, value projections.
819
+ # shape:
820
+ # - for regular attn q, k, v: (batch_size, seq_len, d_model)
821
+ # - for multi-query attn q: (batch_size, seq_len, d_model)
822
+ # k, v: (batch_size, seq_len, d_model // n_heads)
823
+ # - for group query attn q: (batch_size, seq_len, d_model)
824
+ # k, v: (batch_size, seq_len, d_model // n_kv_heads)
825
+ if self._activation_checkpoint_fn is not None:
826
+ q, k, v = self.att_proj(self._activation_checkpoint_fn(self.attn_norm, x)).split(
827
+ self.fused_dims, dim=-1
828
+ )
829
+ else:
830
+ q, k, v = self.att_proj(self.attn_norm(x)).split(self.fused_dims, dim=-1)
831
+
832
+ # Get attention scores.
833
+ if self._activation_checkpoint_fn is not None:
834
+ att, cache = self._activation_checkpoint_fn( # type: ignore
835
+ self.attention, q, k, v, attention_bias, layer_past=layer_past, use_cache=use_cache
836
+ )
837
+ else:
838
+ att, cache = self.attention(q, k, v, attention_bias, layer_past=layer_past, use_cache=use_cache)
839
+
840
+ # Add attention scores.
841
+ # shape: (B, T, C)
842
+ x = x + self.dropout(att)
843
+
844
+ # Add feed-forward projection.
845
+ # shape: (batch_size, seq_len, d_model)
846
+ og_x = x
847
+ if self._activation_checkpoint_fn is not None:
848
+ x = self._activation_checkpoint_fn(self.ff_norm, x) # type: ignore
849
+ else:
850
+ x = self.ff_norm(x)
851
+ x = self.ff_proj(x)
852
+ if self._activation_checkpoint_fn is not None:
853
+ x = self._activation_checkpoint_fn(self.act, x) # type: ignore
854
+ else:
855
+ x = self.act(x)
856
+ x = self.ff_out(x)
857
+ x = self.dropout(x)
858
+ x = og_x + x
859
+ LigerSiLUMulFunction
860
+
861
+ return x, cache
862
+
863
+
864
+ class LLaDALlamaBlock(LLaDABlock):
865
+ """
866
+ This is a transformer block where the output is computed as ``MLP(LN(x + Attention(LN(x))))``
867
+ (plus another skip connection). This block is similar to `LLaDASequentialBlock`
868
+ but some operations have slightly different implementations to imitate the
869
+ behavior of Llama.
870
+ """
871
+
872
+ def __init__(self, layer_id: int, config: ModelConfig, cache: BufferCache):
873
+ super().__init__(layer_id, config, cache)
874
+ # Layer norms.
875
+ self.attn_norm = LayerNorm.build(config)
876
+ self.ff_norm = LayerNorm.build(config)
877
+ self.__cache = cache
878
+
879
+ # Attention input projection. Projects x -> (q, k, v)
880
+ head_dim = config.d_model // config.n_heads
881
+ q_proj_out_dim = config.d_model
882
+ k_proj_out_dim = config.effective_n_kv_heads * head_dim
883
+ v_proj_out_dim = config.effective_n_kv_heads * head_dim
884
+ self.q_proj = nn.Linear(
885
+ config.d_model, q_proj_out_dim, bias=config.include_bias | config.include_qkv_bias, device=config.init_device
886
+ )
887
+ self.k_proj = nn.Linear(
888
+ config.d_model, k_proj_out_dim, bias=config.include_bias | config.include_qkv_bias, device=config.init_device
889
+ )
890
+ self.v_proj = nn.Linear(
891
+ config.d_model, v_proj_out_dim, bias=config.include_bias | config.include_qkv_bias, device=config.init_device
892
+ )
893
+
894
+ # Feed-forward input projection.
895
+ self.ff_proj = nn.Linear(
896
+ config.d_model, self.hidden_size, bias=config.include_bias, device=config.init_device
897
+ )
898
+ # new add
899
+ self.up_proj = nn.Linear(
900
+ config.d_model, self.hidden_size, bias=config.include_bias, device=config.init_device
901
+ )
902
+
903
+ def reset_parameters(self):
904
+ super().reset_parameters()
905
+ self.attn_norm.reset_parameters()
906
+ self.ff_norm.reset_parameters()
907
+ # NOTE: the standard deviation for these weights does not depend on the layer.
908
+ init_weights(self.config, self.q_proj, d=self.config.d_model, layer_id=None)
909
+ init_weights(self.config, self.k_proj, d=self.config.d_model, layer_id=None)
910
+ init_weights(self.config, self.v_proj, d=self.config.d_model, layer_id=None)
911
+ init_weights(self.config, self.ff_proj, d=self.config.d_model, layer_id=None)
912
+ init_weights(self.config, self.up_proj, d=self.config.d_model, layer_id=None) # new add
913
+
914
+ def forward(
915
+ self,
916
+ x: torch.Tensor,
917
+ attention_bias: Optional[torch.Tensor] = None,
918
+ layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
919
+ use_cache: bool = False,
920
+ ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
921
+ # --- Attention Block (No changes here) ---
922
+ x_normed = self.attn_norm(x)
923
+ q = self.q_proj(x_normed)
924
+ k = self.k_proj(x_normed)
925
+ v = self.v_proj(x_normed)
926
+
927
+ if self._activation_checkpoint_fn is not None:
928
+ att, cache = self._activation_checkpoint_fn(
929
+ self.attention, q, k, v, attention_bias, layer_past=layer_past, use_cache=use_cache
930
+ )
931
+ else:
932
+ att, cache = self.attention(q, k, v, attention_bias, layer_past=layer_past, use_cache=use_cache)
933
+ x = x + self.dropout(att)
934
+
935
+ og_x = x
936
+ if self._activation_checkpoint_fn is not None:
937
+ x = self._activation_checkpoint_fn(self.ff_norm, x) # type: ignore
938
+ else:
939
+ x = self.ff_norm(x)
940
+ x, x_up = self.ff_proj(x), self.up_proj(x) # new add
941
+ if self._activation_checkpoint_fn is not None:
942
+ x = self._activation_checkpoint_fn(self.act, x) # type: ignore
943
+ else:
944
+ x = self.act(x)
945
+ x = x * x_up # new add
946
+ x = self.ff_out(x)
947
+ x = self.dropout(x)
948
+ x = og_x + x
949
+
950
+ return x, cache
951
+
952
+ class LLaDAOutput(NamedTuple):
953
+ logits: torch.FloatTensor
954
+ """
955
+ A tensor of shape `(batch_size, seq_len, vocab_size)` representing the log probabilities
956
+ for the next token *before* normalization via (log) softmax.
957
+ """
958
+
959
+ attn_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]]
960
+ """
961
+ Attention keys and values from each block.
962
+ """
963
+
964
+ hidden_states: Optional[Tuple[torch.Tensor]]
965
+ """
966
+ Hidden states from each block.
967
+ """
968
+
969
+
970
+ class LLaDAGenerateOutput(NamedTuple):
971
+ token_ids: torch.LongTensor
972
+ """
973
+ The generated token IDs, a tensor of shape `(batch_size, beam_size, max_steps)`.
974
+ These do *not* include the original input IDs.
975
+ """
976
+
977
+ scores: torch.FloatTensor
978
+ """
979
+ The scores of the generated sequences, a tensor of shape `(batch_size, beam_size)`.
980
+ """
981
+
982
+
983
+ class LLaDABlockGroup(nn.ModuleList):
984
+ def __init__(self, config: ModelConfig, layer_offset: int, modules: Optional[Iterable[nn.Module]] = None):
985
+ super().__init__(modules)
986
+ self.config = config
987
+ self.layer_offset = layer_offset
988
+ self.activation_checkpointing_strategy: Optional[ActivationCheckpointingStrategy] = None
989
+ self._activation_checkpoint_fn = activation_checkpoint_function(self.config)
990
+
991
+ def forward(
992
+ self,
993
+ x: torch.Tensor,
994
+ attention_bias: Optional[torch.FloatTensor] = None,
995
+ layers_past: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None,
996
+ use_cache: bool = False,
997
+ ) -> Tuple[torch.Tensor, Optional[List[Tuple[torch.Tensor, torch.Tensor]]]]:
998
+ attn_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = [] if use_cache else None
999
+ for block_idx, block in enumerate(self):
1000
+ layer_past = None if layers_past is None else layers_past[block_idx]
1001
+ block_idx += self.layer_offset
1002
+ if (
1003
+ (self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.whole_layer)
1004
+ or (
1005
+ self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.one_in_two
1006
+ and block_idx % 2 == 0
1007
+ )
1008
+ or (
1009
+ self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.one_in_three
1010
+ and block_idx % 3 == 0
1011
+ )
1012
+ or (
1013
+ self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.one_in_four
1014
+ and block_idx % 4 == 0
1015
+ )
1016
+ ):
1017
+ # shape: (batch_size, seq_len, d_model)
1018
+ x, cache = self._activation_checkpoint_fn( # type: ignore
1019
+ block, x, attention_bias=attention_bias, layer_past=layer_past, use_cache=use_cache
1020
+ )
1021
+ else:
1022
+ # shape: (batch_size, seq_len, d_model)
1023
+ x, cache = block(x, attention_bias=attention_bias, layer_past=layer_past, use_cache=use_cache)
1024
+ if attn_key_values is not None:
1025
+ assert cache is not None
1026
+ attn_key_values.append(cache)
1027
+ return x, attn_key_values
1028
+
1029
+ def reset_parameters(self):
1030
+ for block in self:
1031
+ block.reset_parameters()
1032
+
1033
+ def set_activation_checkpointing(self, strategy: Optional[ActivationCheckpointingStrategy]):
1034
+ self.activation_checkpointing_strategy = strategy
1035
+ for block in self:
1036
+ block.set_activation_checkpointing(strategy)
1037
+
1038
+
1039
+ class LLaDAModel(nn.Module):
1040
+ def __init__(self, config: ModelConfig, init_params: bool = True):
1041
+ super().__init__()
1042
+ self.config = config
1043
+ self.__cache = BufferCache()
1044
+
1045
+ # Validate config.
1046
+ if self.config.alibi and self.config.flash_attention:
1047
+ raise Exception("ALiBi is currently not supported with FlashAttention")
1048
+
1049
+ if self.config.alibi and self.config.rope:
1050
+ raise Exception("ALiBi and RoPE are mutually exclusive")
1051
+
1052
+ if self.config.embedding_size is not None and self.config.embedding_size != self.config.vocab_size:
1053
+ if self.config.embedding_size < self.config.vocab_size:
1054
+ raise Exception("embedding size should be at least as big as vocab size")
1055
+ elif self.config.embedding_size % 128 != 0:
1056
+ import warnings
1057
+
1058
+ warnings.warn(
1059
+ "Embedding size is not a multiple of 128! This could hurt throughput performance.", UserWarning
1060
+ )
1061
+
1062
+ self.activation_checkpointing_strategy: Optional[ActivationCheckpointingStrategy] = None
1063
+ self._activation_checkpoint_fn: Callable = activation_checkpoint_function(self.config)
1064
+
1065
+ if not (
1066
+ 0 < self.config.block_group_size <= self.config.n_layers
1067
+ and self.config.n_layers % self.config.block_group_size == 0
1068
+ ):
1069
+ raise Exception("n layers must be divisible by block group size")
1070
+
1071
+ torch.backends.cuda.enable_flash_sdp(True)
1072
+ torch.backends.cuda.enable_mem_efficient_sdp(False) # this is super slow so make sure torch won't use it
1073
+
1074
+ self.transformer = nn.ModuleDict(
1075
+ dict(
1076
+ wte=nn.Embedding(
1077
+ config.embedding_size or config.vocab_size, config.d_model, device=config.init_device
1078
+ ),
1079
+ emb_drop=Dropout(config.embedding_dropout),
1080
+ ln_f=LayerNorm.build(config),
1081
+ )
1082
+ )
1083
+
1084
+ blocks = [LLaDABlock.build(i, config, self.__cache) for i in range(config.n_layers)]
1085
+ if self.config.block_group_size > 1:
1086
+ block_groups = [
1087
+ LLaDABlockGroup(config, i, blocks[i : i + config.block_group_size])
1088
+ for i in range(0, config.n_layers, config.block_group_size)
1089
+ ]
1090
+ self.transformer.update({"block_groups": nn.ModuleList(block_groups)})
1091
+ else:
1092
+ self.transformer.update({"blocks": nn.ModuleList(blocks)})
1093
+
1094
+ if not (self.config.alibi or self.config.rope):
1095
+ self.transformer.update(
1096
+ {"wpe": nn.Embedding(config.max_sequence_length, config.d_model, device=config.init_device)}
1097
+ )
1098
+ if not config.weight_tying:
1099
+ self.transformer.update(
1100
+ {
1101
+ "ff_out": nn.Linear(
1102
+ config.d_model,
1103
+ config.embedding_size or config.vocab_size,
1104
+ bias=config.include_bias,
1105
+ device=config.init_device,
1106
+ )
1107
+ }
1108
+ )
1109
+ # When `init_device="meta"` FSDP will call `reset_parameters()` to initialize weights.
1110
+ if init_params and self.config.init_device != "meta":
1111
+ self.reset_parameters()
1112
+ self.__num_fwd_flops: Optional[int] = None
1113
+
1114
+ # Warm up cache.
1115
+ if self.config.alibi:
1116
+ get_causal_attention_bias(self.__cache, config.max_sequence_length, _non_meta_init_device(config))
1117
+ self.get_alibi_attention_bias(config.max_sequence_length, _non_meta_init_device(config))
1118
+
1119
+ def set_activation_checkpointing(self, strategy: Optional[ActivationCheckpointingStrategy]):
1120
+ self.activation_checkpointing_strategy = strategy
1121
+ if self.config.block_group_size != 1:
1122
+ for block_group in self.transformer.block_groups:
1123
+ block_group.set_activation_checkpointing(strategy)
1124
+ else:
1125
+ for block in self.transformer.blocks:
1126
+ block.set_activation_checkpointing(strategy)
1127
+
1128
+ @property
1129
+ def device(self) -> torch.device:
1130
+ device: torch.device = self.transformer.wte.weight.device # type: ignore
1131
+ if device.type == "meta":
1132
+ return _non_meta_init_device(self.config)
1133
+ else:
1134
+ return device
1135
+
1136
+ def reset_parameters(self):
1137
+ log.info("Initializing model parameters...")
1138
+ # Top-level embeddings / linear layers.
1139
+ init_weights(
1140
+ self.config,
1141
+ self.transformer.wte, # type: ignore
1142
+ std_factor=(0.5 * math.sqrt(self.config.d_model)) if self.config.scale_logits else 1.0,
1143
+ type_of_module=ModuleType.emb,
1144
+ )
1145
+ if hasattr(self.transformer, "wpe"):
1146
+ init_weights(self.config, self.transformer.wpe, type_of_module=ModuleType.emb) # type: ignore
1147
+
1148
+ # Top-level layer norm.
1149
+ self.transformer.ln_f.reset_parameters() # type: ignore
1150
+
1151
+ # Output weights.
1152
+ if hasattr(self.transformer, "ff_out"):
1153
+ init_weights(self.config, self.transformer.ff_out, type_of_module=ModuleType.final_out) # type: ignore
1154
+
1155
+ # Let the blocks handle themselves.
1156
+ if self.config.block_group_size == 1:
1157
+ for block in self.transformer.blocks:
1158
+ block.reset_parameters()
1159
+ else:
1160
+ for block_group in self.transformer.block_groups:
1161
+ block_group.reset_parameters()
1162
+
1163
+ def get_alibi_attention_bias(self, seq_len: int, device: torch.device) -> torch.Tensor:
1164
+ if (alibi_bias := self.__cache.get("alibi_attention_bias")) is not None and alibi_bias.shape[
1165
+ -1
1166
+ ] >= seq_len:
1167
+ if alibi_bias.device != device:
1168
+ alibi_bias = alibi_bias.to(device)
1169
+ self.__cache["alibi_attention_bias"] = alibi_bias
1170
+ return alibi_bias
1171
+ with torch.autocast(device.type, enabled=False):
1172
+ alibi_bias = alibi_attention_bias(seq_len, self.config, device)
1173
+ self.__cache["alibi_attention_bias"] = alibi_bias
1174
+ return alibi_bias
1175
+
1176
+ def forward(
1177
+ self,
1178
+ input_ids: torch.LongTensor,
1179
+ input_embeddings: Optional[torch.FloatTensor] = None,
1180
+ attention_mask: Optional[torch.Tensor] = None,
1181
+ attention_bias: Optional[torch.Tensor] = None,
1182
+ past_key_values: Optional[Sequence[Tuple[torch.Tensor, torch.Tensor]]] = None,
1183
+ use_cache: bool = False,
1184
+ last_block_logits_only: bool = False,
1185
+ block_length: int = 64,
1186
+ output_hidden_states: Optional[bool] = None,
1187
+ ) -> LLaDAOutput:
1188
+ """
1189
+ :param input_ids: A tensor of shape `(batch_size, seq_len)`.
1190
+ :param input_embeddings: A tensor of shape `(batch_size, seq_len, d_model)` with input
1191
+ embeddings. When provided, it is treated as the output of the input embedding layer.
1192
+ :param attention_mask: A tensor of shape `(batch_size, seq_len)` that indicates
1193
+ which input IDs are masked. A `1` value in the mask means that
1194
+ the corresponding input ID should *not* be ignored. A `0` means
1195
+ that the corresponding input ID is masked.
1196
+
1197
+ This has the same meaning as the `attention_mask` in HuggingFace's `transformers`
1198
+ library.
1199
+ :param attention_bias: A tensor of shape `(batch_size, 1, seq_len, seq_len)`,
1200
+ `(1, 1, seq_len, seq_len)`, or `(seq_len, seq_len)`. This is used
1201
+ to introduce causal or other biases.
1202
+
1203
+ If the tensor is a bool or byte tensor, a `True` or `1` at `attention_bias[:, :, i, j]`
1204
+ indicates that the i-th element in the sequence is allowed to attend to the j-th
1205
+ element in the sequence.
1206
+
1207
+ If the tensor is a float tensor, it will just be added to the attention
1208
+ scores before the softmax.
1209
+
1210
+ The default is causal, which corresponds to a lower-diagonal byte matrix of ones.
1211
+ :param past_key_values: Pre-computed keys and values for each attention block.
1212
+ Can be used to speed up sequential decoding. The `input_ids` which have
1213
+ their past given to this model should not be passed as `input_ids` as they have already been computed.
1214
+ :param use_cache: If `True`, return key and value tensors for each block.
1215
+ :param last_logits_only: If `True`, only compute the logits for the last token of each sequence.
1216
+ This can speed up decoding when you only care about the next token.
1217
+ """
1218
+ # Add Basic MDM Model config check
1219
+ assert not self.config.alibi, "Alibi length extrapolation is not supported for MDM."
1220
+ assert self.config.rope, "Rope must be used in Llama-Encoder for MDM."
1221
+ # assert (past_key_values is None and not use_cache), "The kvcache is not suppotred for MDM."
1222
+
1223
+ output_hidden_states = output_hidden_states if output_hidden_states is not None else False
1224
+
1225
+ if past_key_values:
1226
+ assert len(past_key_values) == self.config.n_layers
1227
+
1228
+ batch_size, seq_len = input_ids.size() if input_embeddings is None else input_embeddings.size()[:2]
1229
+ if past_key_values is None:
1230
+ past_length = 0
1231
+ else:
1232
+ past_length = past_key_values[0][0].size(-2)
1233
+
1234
+ # Get embeddings of input.
1235
+ # shape: (batch_size, seq_len, d_model)
1236
+ x = self.transformer.wte(input_ids) if input_embeddings is None else input_embeddings # type: ignore
1237
+
1238
+ if self.config.input_emb_norm:
1239
+ x = x * (self.config.d_model**0.5)
1240
+
1241
+ if not (self.config.alibi or self.config.rope):
1242
+ # Get positional embeddings.
1243
+ # shape: (1, seq_len)
1244
+ pos = torch.arange(past_length, past_length + seq_len, dtype=torch.long, device=x.device).unsqueeze(0)
1245
+ # shape: (1, seq_len, d_model)
1246
+ pos_emb = self.transformer.wpe(pos) # type: ignore
1247
+ x = pos_emb + x
1248
+
1249
+ # Add input + positional embeddings and apply dropout.
1250
+ # shape: (batch_size, seq_len, d_model)
1251
+ x = self.transformer.emb_drop(x) # type: ignore
1252
+ # Transform the attention mask into what the blocks expect.
1253
+ if attention_mask is not None and 0.0 in attention_mask:
1254
+ # shape: (batch_size, 1, 1, seq_len)
1255
+ attention_mask = attention_mask.to(dtype=torch.float).view(batch_size, -1)[:, None, None, :]
1256
+ attention_mask = (1.0 - attention_mask) * torch.finfo(attention_mask.dtype).min
1257
+ else:
1258
+ attention_mask = None
1259
+
1260
+ # Merge attention mask with attention bias.
1261
+ if (
1262
+ attention_bias is not None
1263
+ or attention_mask is not None
1264
+ or self.config.alibi
1265
+ # NOTE (epwalsh): we need to initialize the attn bias in order for attn to work properly
1266
+ # with key+value cache. Otherwise `F.scaled_dot_product_attention()` doesn't seem to compute
1267
+ # scores correctly.
1268
+ or past_key_values is not None
1269
+ ):
1270
+ if attention_bias is None and self.config.alibi:
1271
+ attention_bias = get_causal_attention_bias(
1272
+ self.__cache, past_length + seq_len, x.device
1273
+ ) + self.get_alibi_attention_bias(past_length + seq_len, x.device)
1274
+ elif attention_bias is None:
1275
+ attention_bias = get_causal_attention_bias(self.__cache, past_length + seq_len, x.device)
1276
+ elif attention_bias.dtype in (torch.int8, torch.bool):
1277
+ attention_bias = attention_bias.to(dtype=torch.float)
1278
+ attention_bias.masked_fill_(attention_bias == 0.0, torch.finfo(attention_bias.dtype).min)
1279
+
1280
+ # Transform to the right shape and data type.
1281
+ mask_len = seq_len
1282
+ if attention_mask is not None:
1283
+ mask_len = attention_mask.shape[-1]
1284
+ elif past_key_values is not None:
1285
+ mask_len = past_key_values[0][0].shape[-2] + seq_len
1286
+ attention_bias = attention_bias[:, :, :mask_len, :mask_len].to(dtype=torch.float)
1287
+
1288
+ # Add in the masking bias.
1289
+ if attention_mask is not None:
1290
+ attention_bias = attention_bias + attention_mask
1291
+ # Might get -infs after adding attention mask, since dtype.min + dtype.min = -inf.
1292
+ # `F.scaled_dot_product_attention()` doesn't handle -inf like you'd expect, instead
1293
+ # it can produce NaNs.
1294
+ ensure_finite_(attention_bias, check_neg_inf=True, check_pos_inf=False)
1295
+
1296
+ attn_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = [] if use_cache else None
1297
+
1298
+ # decoder layers
1299
+ all_hidden_states = []
1300
+
1301
+ # Apply blocks one-by-one.
1302
+ if self.config.block_group_size == 1:
1303
+ for block_idx, block in enumerate(self.transformer.blocks):
1304
+ if output_hidden_states:
1305
+ # add hidden states
1306
+ all_hidden_states.append(x)
1307
+
1308
+ layer_past = None if past_key_values is None else past_key_values[block_idx]
1309
+ if (
1310
+ (self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.whole_layer)
1311
+ or (
1312
+ self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.one_in_two
1313
+ and block_idx % 2 == 0
1314
+ )
1315
+ or (
1316
+ self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.one_in_three
1317
+ and block_idx % 3 == 0
1318
+ )
1319
+ or (
1320
+ self.activation_checkpointing_strategy == ActivationCheckpointingStrategy.one_in_four
1321
+ and block_idx % 4 == 0
1322
+ )
1323
+ ):
1324
+ # shape: (batch_size, seq_len, d_model)
1325
+ x, cache = self._activation_checkpoint_fn(
1326
+ block, x, attention_bias=attention_bias, layer_past=layer_past, use_cache=use_cache
1327
+ )
1328
+ else:
1329
+ # shape: (batch_size, seq_len, d_model)
1330
+
1331
+ x, cache = block(x, attention_bias=attention_bias, layer_past=layer_past, use_cache=use_cache)
1332
+ if attn_key_values is not None:
1333
+ assert cache is not None
1334
+ attn_key_values.append(cache)
1335
+ else:
1336
+ for group_idx, block_group in enumerate(self.transformer.block_groups):
1337
+ if output_hidden_states:
1338
+ # add hidden states
1339
+ all_hidden_states.append(x)
1340
+
1341
+ layers_past = (
1342
+ None
1343
+ if past_key_values is None
1344
+ else past_key_values[
1345
+ group_idx * self.config.block_group_size : (group_idx + 1) * self.config.block_group_size
1346
+ ]
1347
+ )
1348
+ x, cache = block_group(
1349
+ x, attention_bias=attention_bias, layers_past=layers_past, use_cache=use_cache
1350
+ )
1351
+ if attn_key_values is not None:
1352
+ assert cache is not None
1353
+ attn_key_values.extend(cache)
1354
+
1355
+ if last_block_logits_only:
1356
+ # shape: (batch_size, block_length, d_model)
1357
+ x = x[:, -block_length:, :]
1358
+ # Apply final layer norm.
1359
+ # shape: (batch_size, seq_len or 1, d_model)
1360
+ x = self.transformer.ln_f(x) # type: ignore
1361
+ if output_hidden_states:
1362
+ # add final hidden state post-final-layernorm, following HuggingFace's convention
1363
+ all_hidden_states.append(x)
1364
+
1365
+ # Get logits.
1366
+ # shape: (batch_size, seq_len or 1, vocab_size)
1367
+ if self.config.weight_tying:
1368
+ logits = F.linear(x, self.transformer.wte.weight, None) # type: ignore
1369
+ else:
1370
+ logits = self.transformer.ff_out(x) # type: ignore
1371
+ if self.config.scale_logits:
1372
+ logits.mul_(1 / math.sqrt(self.config.d_model))
1373
+
1374
+ return LLaDAOutput(logits=logits, attn_key_values=attn_key_values, hidden_states=tuple(all_hidden_states) if output_hidden_states else None) # type: ignore[arg-type]
1375
+
1376
+
1377
+ def create_model_config_from_pretrained_config(config: LLaDAConfig):
1378
+ """
1379
+ Utility function
1380
+ """
1381
+
1382
+ kwargs = {}
1383
+ for field in fields(ModelConfig):
1384
+ kwargs[field.name] = getattr(config, field.name)
1385
+
1386
+ model_config = ModelConfig(**kwargs)
1387
+ return model_config
1388
+
1389
+
1390
+ class LLaDAModelLM(PreTrainedModel):
1391
+ """
1392
+ Extremely barebones HF model wrapper.
1393
+ """
1394
+
1395
+ config_class = LLaDAConfig
1396
+ base_model_prefix = "model"
1397
+ _no_split_modules = ["LLaDABlock", "LLaDASequentialBlock", "LLaDALlamaBlock"]
1398
+
1399
+ def __init__(self, config: LLaDAConfig, model: Optional[LLaDAModel] = None, init_params: bool = False):
1400
+ super().__init__(config)
1401
+
1402
+ if not model:
1403
+ model_config = create_model_config_from_pretrained_config(config)
1404
+ # Initialize model (always on CPU to start with so we don't run out of GPU memory).
1405
+ model_config.init_device = "cpu"
1406
+ self.model = LLaDAModel(model_config, init_params=init_params)
1407
+ else:
1408
+ self.model = model
1409
+ self.mask_id = model_config.mask_token_id
1410
+
1411
+ def forward(
1412
+ self,
1413
+ input_ids: torch.LongTensor = None,
1414
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1415
+ attention_mask: Optional[torch.Tensor] = None,
1416
+ attention_bias: Optional[torch.Tensor] = None,
1417
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1418
+ labels: Optional[torch.LongTensor] = None,
1419
+ use_cache: Optional[bool] = None,
1420
+ output_attentions: Optional[bool] = None,
1421
+ output_hidden_states: Optional[bool] = None,
1422
+ return_dict: Optional[bool] = None,
1423
+ last_block_logits_only: bool = False,
1424
+ block_length: int = 64,
1425
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1426
+ if use_cache is None:
1427
+ use_cache = self.config.use_cache
1428
+
1429
+ if output_attentions:
1430
+ raise ValueError("output_attentions is not yet supported in LLaDA")
1431
+
1432
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1433
+
1434
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1435
+ outputs = self.model.forward(
1436
+ input_ids=input_ids,
1437
+ input_embeddings=inputs_embeds,
1438
+ attention_mask=attention_mask,
1439
+ attention_bias=attention_bias,
1440
+ past_key_values=past_key_values,
1441
+ use_cache=use_cache,
1442
+ output_hidden_states=output_hidden_states,
1443
+ last_block_logits_only=last_block_logits_only,
1444
+ block_length=block_length,
1445
+ )
1446
+
1447
+ logits = outputs.logits
1448
+ hidden_states = outputs.hidden_states
1449
+
1450
+ loss = None
1451
+ if labels is not None:
1452
+ loss = F.cross_entropy(logits.view(-1, logits.shape[-1]), labels.view(-1), reduction="mean")
1453
+ if not return_dict:
1454
+ output = (logits,) + outputs[1:]
1455
+ return (loss,) + output if loss is not None else output
1456
+
1457
+ return CausalLMOutputWithPast(
1458
+ loss=loss,
1459
+ logits=logits,
1460
+ past_key_values=outputs.attn_key_values,
1461
+ hidden_states=hidden_states,
1462
+ )
1463
+
1464
+ def get_input_embeddings(self) -> torch.nn.Module:
1465
+ return self.model.transformer.wte
1466
+
1467
+ def set_input_embeddings(self, value: torch.nn.Module):
1468
+ self.model.transformer.wte = value
1469
+
1470
+ def get_output_embeddings(self):
1471
+ if self.config.weight_tying:
1472
+ return self.model.transformer.wte
1473
+ else:
1474
+ return self.model.transformer.ff_out
1475
+
1476
+ def set_output_embeddings(self, value: torch.nn.Module):
1477
+ if self.config.weight_tying:
1478
+ self.model.transformer.wte = value
1479
+ else:
1480
+ self.model.transformer.ff_out = value
1481
+
1482
+ def tie_weights(self):
1483
+ if self.config.weight_tying:
1484
+ self.model.transformer.ff_out = self.model.transformer.wte
1485
+
1486
+
1487
+ def prefill_phase(self, input_ids, block_length):
1488
+ """Prefill phase: Process initial prompt and generate KV cache."""
1489
+ with torch.no_grad():
1490
+ outputs = self(
1491
+ input_ids=input_ids,
1492
+ use_cache=True,
1493
+ return_dict=True,
1494
+ last_block_logits_only=True,
1495
+ block_length=block_length
1496
+ )
1497
+ output_past_key_values = []
1498
+ for i in range(len(outputs.past_key_values)):
1499
+ k,v = outputs.past_key_values[i]
1500
+ new_k,new_v = k[:,:,:-block_length,:],v[:,:,:-block_length,:]
1501
+ output_past_key_values.append((new_k,new_v))
1502
+ output_past_key_values = tuple(output_past_key_values)
1503
+ return {
1504
+ 'input_ids': input_ids,
1505
+ 'logits': outputs.logits,
1506
+ 'past_key_values': output_past_key_values,
1507
+ }
1508
+
1509
+ def unmask_function_greedy(self, logits, x, threshold=0.9):
1510
+ """Greedy unmasking function with confidence threshold."""
1511
+ mask_index = x == self.mask_id
1512
+ x_top_0 = torch.argmax(logits, dim=-1)
1513
+ p = F.softmax(logits, dim=-1)
1514
+ confidence = torch.squeeze(torch.gather(p, dim=-1, index=torch.unsqueeze(x_top_0, -1)), -1)
1515
+ transfer_index = torch.zeros_like(x_top_0, dtype=torch.bool, device=x_top_0.device)
1516
+ confidence = torch.where(mask_index, confidence, -torch.inf)
1517
+ for j in range(confidence.shape[0]):
1518
+ mask = confidence[j] > threshold
1519
+ if mask.sum() == 0:
1520
+ max_conf_idx = torch.argmax(confidence[j])
1521
+ mask[max_conf_idx] = True
1522
+ transfer_index[j] = mask
1523
+ x[transfer_index] = x_top_0[transfer_index]
1524
+ return x
1525
+
1526
+ @torch.no_grad()
1527
+ def generate(self, input_ids, attention_mask, max_gen_length=1024, block_length=64, threshold=0.9,eos_token_id=126081):
1528
+ batchsize, prompt_length = input_ids.shape
1529
+ max_num_blocks = max_gen_length // block_length
1530
+ output_ids = input_ids
1531
+ block_x = torch.full((batchsize, block_length), self.mask_id, dtype=torch.long).to(self.device)
1532
+ output_ids = torch.cat([output_ids, block_x], dim=-1)
1533
+ # prefilling block loop
1534
+ prefill_outputs = self.prefill_phase(output_ids, block_length)
1535
+ past_key_values = prefill_outputs['past_key_values']
1536
+ logits = prefill_outputs['logits']
1537
+ output_ids[:,-block_length:] = self.unmask_function_greedy(logits=logits, x=output_ids[:,-block_length:], threshold=threshold)
1538
+ # decoding block loop
1539
+ for j in range(max_num_blocks):
1540
+ while (output_ids[:,-block_length:] == self.mask_id).sum():
1541
+ outputs = self(
1542
+ input_ids=output_ids[:,-block_length:],
1543
+ past_key_values=past_key_values,
1544
+ use_cache=True,
1545
+ return_dict=True
1546
+ )
1547
+ output_ids[:,-block_length:] = self.unmask_function_greedy(logits=outputs.logits, x=output_ids[:,-block_length:], threshold=threshold)
1548
+ past_key_values = outputs.past_key_values
1549
+ if (output_ids[:,-block_length:] == eos_token_id).any():
1550
+ return output_ids[:, prompt_length:]
1551
+ block_x = torch.full((batchsize, block_length), self.mask_id, dtype=torch.long).to(self.device)
1552
+ output_ids = torch.cat([output_ids, block_x], dim=-1)
1553
+ return output_ids[:, prompt_length:]
1554
+
1555
+ # Register the model so that it is available for transformer pipelines, auto-loading, etc.
1556
+ AutoModel.register(LLaDAConfig, LLaDAModelLM)
special_tokens_map.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|mdm_mask|>",
4
+ "<role>",
5
+ "</role>",
6
+ "<|arithmetic_start|>",
7
+ "<|arithmetic_end|>",
8
+ "<|number_start|>",
9
+ "<|number_end|>"
10
+ ],
11
+ "bos_token": {
12
+ "content": "<|startoftext|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "cls_token": {
19
+ "content": "[CLS]",
20
+ "lstrip": false,
21
+ "normalized": false,
22
+ "rstrip": false,
23
+ "single_word": false
24
+ },
25
+ "eos_token": {
26
+ "content": "<|endoftext|>",
27
+ "lstrip": false,
28
+ "normalized": false,
29
+ "rstrip": false,
30
+ "single_word": false
31
+ },
32
+ "pad_token": {
33
+ "content": "<|endoftext|>",
34
+ "lstrip": false,
35
+ "normalized": false,
36
+ "rstrip": false,
37
+ "single_word": false
38
+ }
39
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,2202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "126080": {
6
+ "content": "<|startoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "126081": {
14
+ "content": "<|endoftext|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "126082": {
22
+ "content": "[CLS]",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "126083": {
30
+ "content": "[gMASK]",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "126084": {
38
+ "content": "<|reserved_token_0|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "126085": {
46
+ "content": "<|reserved_token_1|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "126086": {
54
+ "content": "<|reserved_token_2|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "126087": {
62
+ "content": "<|reserved_token_3|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "126088": {
70
+ "content": "<|reserved_token_4|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "126089": {
78
+ "content": "<|reserved_token_5|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "126090": {
86
+ "content": "<|reserved_token_6|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "126091": {
94
+ "content": "<|reserved_token_7|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "126092": {
102
+ "content": "<|reserved_token_8|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "126093": {
110
+ "content": "<|reserved_token_9|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "126094": {
118
+ "content": "<|reserved_token_10|>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": true
124
+ },
125
+ "126095": {
126
+ "content": "<|reserved_token_11|>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": true
132
+ },
133
+ "126096": {
134
+ "content": "<|reserved_token_12|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": true
140
+ },
141
+ "126097": {
142
+ "content": "<|reserved_token_13|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": true
148
+ },
149
+ "126098": {
150
+ "content": "<|reserved_token_14|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": true
156
+ },
157
+ "126099": {
158
+ "content": "<|reserved_token_15|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": true
164
+ },
165
+ "126100": {
166
+ "content": "<|reserved_token_16|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": true
172
+ },
173
+ "126101": {
174
+ "content": "<|reserved_token_17|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": true
180
+ },
181
+ "126102": {
182
+ "content": "<|reserved_token_18|>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": true
188
+ },
189
+ "126103": {
190
+ "content": "<|reserved_token_19|>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": true
196
+ },
197
+ "126104": {
198
+ "content": "<|reserved_token_20|>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": true
204
+ },
205
+ "126105": {
206
+ "content": "<|reserved_token_21|>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": true
212
+ },
213
+ "126106": {
214
+ "content": "<|reserved_token_22|>",
215
+ "lstrip": false,
216
+ "normalized": false,
217
+ "rstrip": false,
218
+ "single_word": false,
219
+ "special": true
220
+ },
221
+ "126107": {
222
+ "content": "<|reserved_token_23|>",
223
+ "lstrip": false,
224
+ "normalized": false,
225
+ "rstrip": false,
226
+ "single_word": false,
227
+ "special": true
228
+ },
229
+ "126108": {
230
+ "content": "<|reserved_token_24|>",
231
+ "lstrip": false,
232
+ "normalized": false,
233
+ "rstrip": false,
234
+ "single_word": false,
235
+ "special": true
236
+ },
237
+ "126109": {
238
+ "content": "<|reserved_token_25|>",
239
+ "lstrip": false,
240
+ "normalized": false,
241
+ "rstrip": false,
242
+ "single_word": false,
243
+ "special": true
244
+ },
245
+ "126110": {
246
+ "content": "<|reserved_token_26|>",
247
+ "lstrip": false,
248
+ "normalized": false,
249
+ "rstrip": false,
250
+ "single_word": false,
251
+ "special": true
252
+ },
253
+ "126111": {
254
+ "content": "<|reserved_token_27|>",
255
+ "lstrip": false,
256
+ "normalized": false,
257
+ "rstrip": false,
258
+ "single_word": false,
259
+ "special": true
260
+ },
261
+ "126112": {
262
+ "content": "<|reserved_token_28|>",
263
+ "lstrip": false,
264
+ "normalized": false,
265
+ "rstrip": false,
266
+ "single_word": false,
267
+ "special": true
268
+ },
269
+ "126113": {
270
+ "content": "<|reserved_token_29|>",
271
+ "lstrip": false,
272
+ "normalized": false,
273
+ "rstrip": false,
274
+ "single_word": false,
275
+ "special": true
276
+ },
277
+ "126114": {
278
+ "content": "<|reserved_token_30|>",
279
+ "lstrip": false,
280
+ "normalized": false,
281
+ "rstrip": false,
282
+ "single_word": false,
283
+ "special": true
284
+ },
285
+ "126115": {
286
+ "content": "<|reserved_token_31|>",
287
+ "lstrip": false,
288
+ "normalized": false,
289
+ "rstrip": false,
290
+ "single_word": false,
291
+ "special": true
292
+ },
293
+ "126116": {
294
+ "content": "<|reserved_token_32|>",
295
+ "lstrip": false,
296
+ "normalized": false,
297
+ "rstrip": false,
298
+ "single_word": false,
299
+ "special": true
300
+ },
301
+ "126117": {
302
+ "content": "<|reserved_token_33|>",
303
+ "lstrip": false,
304
+ "normalized": false,
305
+ "rstrip": false,
306
+ "single_word": false,
307
+ "special": true
308
+ },
309
+ "126118": {
310
+ "content": "<|reserved_token_34|>",
311
+ "lstrip": false,
312
+ "normalized": false,
313
+ "rstrip": false,
314
+ "single_word": false,
315
+ "special": true
316
+ },
317
+ "126119": {
318
+ "content": "<|reserved_token_35|>",
319
+ "lstrip": false,
320
+ "normalized": false,
321
+ "rstrip": false,
322
+ "single_word": false,
323
+ "special": true
324
+ },
325
+ "126120": {
326
+ "content": "<|reserved_token_36|>",
327
+ "lstrip": false,
328
+ "normalized": false,
329
+ "rstrip": false,
330
+ "single_word": false,
331
+ "special": true
332
+ },
333
+ "126121": {
334
+ "content": "<|reserved_token_37|>",
335
+ "lstrip": false,
336
+ "normalized": false,
337
+ "rstrip": false,
338
+ "single_word": false,
339
+ "special": true
340
+ },
341
+ "126122": {
342
+ "content": "<|reserved_token_38|>",
343
+ "lstrip": false,
344
+ "normalized": false,
345
+ "rstrip": false,
346
+ "single_word": false,
347
+ "special": true
348
+ },
349
+ "126123": {
350
+ "content": "<|reserved_token_39|>",
351
+ "lstrip": false,
352
+ "normalized": false,
353
+ "rstrip": false,
354
+ "single_word": false,
355
+ "special": true
356
+ },
357
+ "126124": {
358
+ "content": "<|reserved_token_40|>",
359
+ "lstrip": false,
360
+ "normalized": false,
361
+ "rstrip": false,
362
+ "single_word": false,
363
+ "special": true
364
+ },
365
+ "126125": {
366
+ "content": "<|reserved_token_41|>",
367
+ "lstrip": false,
368
+ "normalized": false,
369
+ "rstrip": false,
370
+ "single_word": false,
371
+ "special": true
372
+ },
373
+ "126126": {
374
+ "content": "<|reserved_token_42|>",
375
+ "lstrip": false,
376
+ "normalized": false,
377
+ "rstrip": false,
378
+ "single_word": false,
379
+ "special": true
380
+ },
381
+ "126127": {
382
+ "content": "<|reserved_token_43|>",
383
+ "lstrip": false,
384
+ "normalized": false,
385
+ "rstrip": false,
386
+ "single_word": false,
387
+ "special": true
388
+ },
389
+ "126128": {
390
+ "content": "<|reserved_token_44|>",
391
+ "lstrip": false,
392
+ "normalized": false,
393
+ "rstrip": false,
394
+ "single_word": false,
395
+ "special": true
396
+ },
397
+ "126129": {
398
+ "content": "<|reserved_token_45|>",
399
+ "lstrip": false,
400
+ "normalized": false,
401
+ "rstrip": false,
402
+ "single_word": false,
403
+ "special": true
404
+ },
405
+ "126130": {
406
+ "content": "<|reserved_token_46|>",
407
+ "lstrip": false,
408
+ "normalized": false,
409
+ "rstrip": false,
410
+ "single_word": false,
411
+ "special": true
412
+ },
413
+ "126131": {
414
+ "content": "<|reserved_token_47|>",
415
+ "lstrip": false,
416
+ "normalized": false,
417
+ "rstrip": false,
418
+ "single_word": false,
419
+ "special": true
420
+ },
421
+ "126132": {
422
+ "content": "<|reserved_token_48|>",
423
+ "lstrip": false,
424
+ "normalized": false,
425
+ "rstrip": false,
426
+ "single_word": false,
427
+ "special": true
428
+ },
429
+ "126133": {
430
+ "content": "<|reserved_token_49|>",
431
+ "lstrip": false,
432
+ "normalized": false,
433
+ "rstrip": false,
434
+ "single_word": false,
435
+ "special": true
436
+ },
437
+ "126134": {
438
+ "content": "<|reserved_token_50|>",
439
+ "lstrip": false,
440
+ "normalized": false,
441
+ "rstrip": false,
442
+ "single_word": false,
443
+ "special": true
444
+ },
445
+ "126135": {
446
+ "content": "<|reserved_token_51|>",
447
+ "lstrip": false,
448
+ "normalized": false,
449
+ "rstrip": false,
450
+ "single_word": false,
451
+ "special": true
452
+ },
453
+ "126136": {
454
+ "content": "<|reserved_token_52|>",
455
+ "lstrip": false,
456
+ "normalized": false,
457
+ "rstrip": false,
458
+ "single_word": false,
459
+ "special": true
460
+ },
461
+ "126137": {
462
+ "content": "<|reserved_token_53|>",
463
+ "lstrip": false,
464
+ "normalized": false,
465
+ "rstrip": false,
466
+ "single_word": false,
467
+ "special": true
468
+ },
469
+ "126138": {
470
+ "content": "<|reserved_token_54|>",
471
+ "lstrip": false,
472
+ "normalized": false,
473
+ "rstrip": false,
474
+ "single_word": false,
475
+ "special": true
476
+ },
477
+ "126139": {
478
+ "content": "<|reserved_token_55|>",
479
+ "lstrip": false,
480
+ "normalized": false,
481
+ "rstrip": false,
482
+ "single_word": false,
483
+ "special": true
484
+ },
485
+ "126140": {
486
+ "content": "<|reserved_token_56|>",
487
+ "lstrip": false,
488
+ "normalized": false,
489
+ "rstrip": false,
490
+ "single_word": false,
491
+ "special": true
492
+ },
493
+ "126141": {
494
+ "content": "<|reserved_token_57|>",
495
+ "lstrip": false,
496
+ "normalized": false,
497
+ "rstrip": false,
498
+ "single_word": false,
499
+ "special": true
500
+ },
501
+ "126142": {
502
+ "content": "<|reserved_token_58|>",
503
+ "lstrip": false,
504
+ "normalized": false,
505
+ "rstrip": false,
506
+ "single_word": false,
507
+ "special": true
508
+ },
509
+ "126143": {
510
+ "content": "<|reserved_token_59|>",
511
+ "lstrip": false,
512
+ "normalized": false,
513
+ "rstrip": false,
514
+ "single_word": false,
515
+ "special": true
516
+ },
517
+ "126144": {
518
+ "content": "<|reserved_token_60|>",
519
+ "lstrip": false,
520
+ "normalized": false,
521
+ "rstrip": false,
522
+ "single_word": false,
523
+ "special": true
524
+ },
525
+ "126145": {
526
+ "content": "<|reserved_token_61|>",
527
+ "lstrip": false,
528
+ "normalized": false,
529
+ "rstrip": false,
530
+ "single_word": false,
531
+ "special": true
532
+ },
533
+ "126146": {
534
+ "content": "<|reserved_token_62|>",
535
+ "lstrip": false,
536
+ "normalized": false,
537
+ "rstrip": false,
538
+ "single_word": false,
539
+ "special": true
540
+ },
541
+ "126147": {
542
+ "content": "<|reserved_token_63|>",
543
+ "lstrip": false,
544
+ "normalized": false,
545
+ "rstrip": false,
546
+ "single_word": false,
547
+ "special": true
548
+ },
549
+ "126148": {
550
+ "content": "<|reserved_token_64|>",
551
+ "lstrip": false,
552
+ "normalized": false,
553
+ "rstrip": false,
554
+ "single_word": false,
555
+ "special": true
556
+ },
557
+ "126149": {
558
+ "content": "<|reserved_token_65|>",
559
+ "lstrip": false,
560
+ "normalized": false,
561
+ "rstrip": false,
562
+ "single_word": false,
563
+ "special": true
564
+ },
565
+ "126150": {
566
+ "content": "<|reserved_token_66|>",
567
+ "lstrip": false,
568
+ "normalized": false,
569
+ "rstrip": false,
570
+ "single_word": false,
571
+ "special": true
572
+ },
573
+ "126151": {
574
+ "content": "<|reserved_token_67|>",
575
+ "lstrip": false,
576
+ "normalized": false,
577
+ "rstrip": false,
578
+ "single_word": false,
579
+ "special": true
580
+ },
581
+ "126152": {
582
+ "content": "<|reserved_token_68|>",
583
+ "lstrip": false,
584
+ "normalized": false,
585
+ "rstrip": false,
586
+ "single_word": false,
587
+ "special": true
588
+ },
589
+ "126153": {
590
+ "content": "<|reserved_token_69|>",
591
+ "lstrip": false,
592
+ "normalized": false,
593
+ "rstrip": false,
594
+ "single_word": false,
595
+ "special": true
596
+ },
597
+ "126154": {
598
+ "content": "<|reserved_token_70|>",
599
+ "lstrip": false,
600
+ "normalized": false,
601
+ "rstrip": false,
602
+ "single_word": false,
603
+ "special": true
604
+ },
605
+ "126155": {
606
+ "content": "<|reserved_token_71|>",
607
+ "lstrip": false,
608
+ "normalized": false,
609
+ "rstrip": false,
610
+ "single_word": false,
611
+ "special": true
612
+ },
613
+ "126156": {
614
+ "content": "<|reserved_token_72|>",
615
+ "lstrip": false,
616
+ "normalized": false,
617
+ "rstrip": false,
618
+ "single_word": false,
619
+ "special": true
620
+ },
621
+ "126157": {
622
+ "content": "<|reserved_token_73|>",
623
+ "lstrip": false,
624
+ "normalized": false,
625
+ "rstrip": false,
626
+ "single_word": false,
627
+ "special": true
628
+ },
629
+ "126158": {
630
+ "content": "<|reserved_token_74|>",
631
+ "lstrip": false,
632
+ "normalized": false,
633
+ "rstrip": false,
634
+ "single_word": false,
635
+ "special": true
636
+ },
637
+ "126159": {
638
+ "content": "<|reserved_token_75|>",
639
+ "lstrip": false,
640
+ "normalized": false,
641
+ "rstrip": false,
642
+ "single_word": false,
643
+ "special": true
644
+ },
645
+ "126160": {
646
+ "content": "<|reserved_token_76|>",
647
+ "lstrip": false,
648
+ "normalized": false,
649
+ "rstrip": false,
650
+ "single_word": false,
651
+ "special": true
652
+ },
653
+ "126161": {
654
+ "content": "<|reserved_token_77|>",
655
+ "lstrip": false,
656
+ "normalized": false,
657
+ "rstrip": false,
658
+ "single_word": false,
659
+ "special": true
660
+ },
661
+ "126162": {
662
+ "content": "<|reserved_token_78|>",
663
+ "lstrip": false,
664
+ "normalized": false,
665
+ "rstrip": false,
666
+ "single_word": false,
667
+ "special": true
668
+ },
669
+ "126163": {
670
+ "content": "<|reserved_token_79|>",
671
+ "lstrip": false,
672
+ "normalized": false,
673
+ "rstrip": false,
674
+ "single_word": false,
675
+ "special": true
676
+ },
677
+ "126164": {
678
+ "content": "<|reserved_token_80|>",
679
+ "lstrip": false,
680
+ "normalized": false,
681
+ "rstrip": false,
682
+ "single_word": false,
683
+ "special": true
684
+ },
685
+ "126165": {
686
+ "content": "<|reserved_token_81|>",
687
+ "lstrip": false,
688
+ "normalized": false,
689
+ "rstrip": false,
690
+ "single_word": false,
691
+ "special": true
692
+ },
693
+ "126166": {
694
+ "content": "<|reserved_token_82|>",
695
+ "lstrip": false,
696
+ "normalized": false,
697
+ "rstrip": false,
698
+ "single_word": false,
699
+ "special": true
700
+ },
701
+ "126167": {
702
+ "content": "<|reserved_token_83|>",
703
+ "lstrip": false,
704
+ "normalized": false,
705
+ "rstrip": false,
706
+ "single_word": false,
707
+ "special": true
708
+ },
709
+ "126168": {
710
+ "content": "<|reserved_token_84|>",
711
+ "lstrip": false,
712
+ "normalized": false,
713
+ "rstrip": false,
714
+ "single_word": false,
715
+ "special": true
716
+ },
717
+ "126169": {
718
+ "content": "<|reserved_token_85|>",
719
+ "lstrip": false,
720
+ "normalized": false,
721
+ "rstrip": false,
722
+ "single_word": false,
723
+ "special": true
724
+ },
725
+ "126170": {
726
+ "content": "<|reserved_token_86|>",
727
+ "lstrip": false,
728
+ "normalized": false,
729
+ "rstrip": false,
730
+ "single_word": false,
731
+ "special": true
732
+ },
733
+ "126171": {
734
+ "content": "<|reserved_token_87|>",
735
+ "lstrip": false,
736
+ "normalized": false,
737
+ "rstrip": false,
738
+ "single_word": false,
739
+ "special": true
740
+ },
741
+ "126172": {
742
+ "content": "<|reserved_token_88|>",
743
+ "lstrip": false,
744
+ "normalized": false,
745
+ "rstrip": false,
746
+ "single_word": false,
747
+ "special": true
748
+ },
749
+ "126173": {
750
+ "content": "<|reserved_token_89|>",
751
+ "lstrip": false,
752
+ "normalized": false,
753
+ "rstrip": false,
754
+ "single_word": false,
755
+ "special": true
756
+ },
757
+ "126174": {
758
+ "content": "<|reserved_token_90|>",
759
+ "lstrip": false,
760
+ "normalized": false,
761
+ "rstrip": false,
762
+ "single_word": false,
763
+ "special": true
764
+ },
765
+ "126175": {
766
+ "content": "<|reserved_token_91|>",
767
+ "lstrip": false,
768
+ "normalized": false,
769
+ "rstrip": false,
770
+ "single_word": false,
771
+ "special": true
772
+ },
773
+ "126176": {
774
+ "content": "<|reserved_token_92|>",
775
+ "lstrip": false,
776
+ "normalized": false,
777
+ "rstrip": false,
778
+ "single_word": false,
779
+ "special": true
780
+ },
781
+ "126177": {
782
+ "content": "<|reserved_token_93|>",
783
+ "lstrip": false,
784
+ "normalized": false,
785
+ "rstrip": false,
786
+ "single_word": false,
787
+ "special": true
788
+ },
789
+ "126178": {
790
+ "content": "<|reserved_token_94|>",
791
+ "lstrip": false,
792
+ "normalized": false,
793
+ "rstrip": false,
794
+ "single_word": false,
795
+ "special": true
796
+ },
797
+ "126179": {
798
+ "content": "<|reserved_token_95|>",
799
+ "lstrip": false,
800
+ "normalized": false,
801
+ "rstrip": false,
802
+ "single_word": false,
803
+ "special": true
804
+ },
805
+ "126180": {
806
+ "content": "<|reserved_token_96|>",
807
+ "lstrip": false,
808
+ "normalized": false,
809
+ "rstrip": false,
810
+ "single_word": false,
811
+ "special": true
812
+ },
813
+ "126181": {
814
+ "content": "<|reserved_token_97|>",
815
+ "lstrip": false,
816
+ "normalized": false,
817
+ "rstrip": false,
818
+ "single_word": false,
819
+ "special": true
820
+ },
821
+ "126182": {
822
+ "content": "<|reserved_token_98|>",
823
+ "lstrip": false,
824
+ "normalized": false,
825
+ "rstrip": false,
826
+ "single_word": false,
827
+ "special": true
828
+ },
829
+ "126183": {
830
+ "content": "<|reserved_token_99|>",
831
+ "lstrip": false,
832
+ "normalized": false,
833
+ "rstrip": false,
834
+ "single_word": false,
835
+ "special": true
836
+ },
837
+ "126184": {
838
+ "content": "<|reserved_token_100|>",
839
+ "lstrip": false,
840
+ "normalized": false,
841
+ "rstrip": false,
842
+ "single_word": false,
843
+ "special": true
844
+ },
845
+ "126185": {
846
+ "content": "<|reserved_token_101|>",
847
+ "lstrip": false,
848
+ "normalized": false,
849
+ "rstrip": false,
850
+ "single_word": false,
851
+ "special": true
852
+ },
853
+ "126186": {
854
+ "content": "<|reserved_token_102|>",
855
+ "lstrip": false,
856
+ "normalized": false,
857
+ "rstrip": false,
858
+ "single_word": false,
859
+ "special": true
860
+ },
861
+ "126187": {
862
+ "content": "<|reserved_token_103|>",
863
+ "lstrip": false,
864
+ "normalized": false,
865
+ "rstrip": false,
866
+ "single_word": false,
867
+ "special": true
868
+ },
869
+ "126188": {
870
+ "content": "<|reserved_token_104|>",
871
+ "lstrip": false,
872
+ "normalized": false,
873
+ "rstrip": false,
874
+ "single_word": false,
875
+ "special": true
876
+ },
877
+ "126189": {
878
+ "content": "<|reserved_token_105|>",
879
+ "lstrip": false,
880
+ "normalized": false,
881
+ "rstrip": false,
882
+ "single_word": false,
883
+ "special": true
884
+ },
885
+ "126190": {
886
+ "content": "<|reserved_token_106|>",
887
+ "lstrip": false,
888
+ "normalized": false,
889
+ "rstrip": false,
890
+ "single_word": false,
891
+ "special": true
892
+ },
893
+ "126191": {
894
+ "content": "<|reserved_token_107|>",
895
+ "lstrip": false,
896
+ "normalized": false,
897
+ "rstrip": false,
898
+ "single_word": false,
899
+ "special": true
900
+ },
901
+ "126192": {
902
+ "content": "<|reserved_token_108|>",
903
+ "lstrip": false,
904
+ "normalized": false,
905
+ "rstrip": false,
906
+ "single_word": false,
907
+ "special": true
908
+ },
909
+ "126193": {
910
+ "content": "<|reserved_token_109|>",
911
+ "lstrip": false,
912
+ "normalized": false,
913
+ "rstrip": false,
914
+ "single_word": false,
915
+ "special": true
916
+ },
917
+ "126194": {
918
+ "content": "<|reserved_token_110|>",
919
+ "lstrip": false,
920
+ "normalized": false,
921
+ "rstrip": false,
922
+ "single_word": false,
923
+ "special": true
924
+ },
925
+ "126195": {
926
+ "content": "<|reserved_token_111|>",
927
+ "lstrip": false,
928
+ "normalized": false,
929
+ "rstrip": false,
930
+ "single_word": false,
931
+ "special": true
932
+ },
933
+ "126196": {
934
+ "content": "<|reserved_token_112|>",
935
+ "lstrip": false,
936
+ "normalized": false,
937
+ "rstrip": false,
938
+ "single_word": false,
939
+ "special": true
940
+ },
941
+ "126197": {
942
+ "content": "<|reserved_token_113|>",
943
+ "lstrip": false,
944
+ "normalized": false,
945
+ "rstrip": false,
946
+ "single_word": false,
947
+ "special": true
948
+ },
949
+ "126198": {
950
+ "content": "<|reserved_token_114|>",
951
+ "lstrip": false,
952
+ "normalized": false,
953
+ "rstrip": false,
954
+ "single_word": false,
955
+ "special": true
956
+ },
957
+ "126199": {
958
+ "content": "<|reserved_token_115|>",
959
+ "lstrip": false,
960
+ "normalized": false,
961
+ "rstrip": false,
962
+ "single_word": false,
963
+ "special": true
964
+ },
965
+ "126200": {
966
+ "content": "<|reserved_token_116|>",
967
+ "lstrip": false,
968
+ "normalized": false,
969
+ "rstrip": false,
970
+ "single_word": false,
971
+ "special": true
972
+ },
973
+ "126201": {
974
+ "content": "<|reserved_token_117|>",
975
+ "lstrip": false,
976
+ "normalized": false,
977
+ "rstrip": false,
978
+ "single_word": false,
979
+ "special": true
980
+ },
981
+ "126202": {
982
+ "content": "<|reserved_token_118|>",
983
+ "lstrip": false,
984
+ "normalized": false,
985
+ "rstrip": false,
986
+ "single_word": false,
987
+ "special": true
988
+ },
989
+ "126203": {
990
+ "content": "<|reserved_token_119|>",
991
+ "lstrip": false,
992
+ "normalized": false,
993
+ "rstrip": false,
994
+ "single_word": false,
995
+ "special": true
996
+ },
997
+ "126204": {
998
+ "content": "<|reserved_token_120|>",
999
+ "lstrip": false,
1000
+ "normalized": false,
1001
+ "rstrip": false,
1002
+ "single_word": false,
1003
+ "special": true
1004
+ },
1005
+ "126205": {
1006
+ "content": "<|reserved_token_121|>",
1007
+ "lstrip": false,
1008
+ "normalized": false,
1009
+ "rstrip": false,
1010
+ "single_word": false,
1011
+ "special": true
1012
+ },
1013
+ "126206": {
1014
+ "content": "<|reserved_token_122|>",
1015
+ "lstrip": false,
1016
+ "normalized": false,
1017
+ "rstrip": false,
1018
+ "single_word": false,
1019
+ "special": true
1020
+ },
1021
+ "126207": {
1022
+ "content": "<|reserved_token_123|>",
1023
+ "lstrip": false,
1024
+ "normalized": false,
1025
+ "rstrip": false,
1026
+ "single_word": false,
1027
+ "special": true
1028
+ },
1029
+ "126208": {
1030
+ "content": "<|reserved_token_124|>",
1031
+ "lstrip": false,
1032
+ "normalized": false,
1033
+ "rstrip": false,
1034
+ "single_word": false,
1035
+ "special": true
1036
+ },
1037
+ "126209": {
1038
+ "content": "<|reserved_token_125|>",
1039
+ "lstrip": false,
1040
+ "normalized": false,
1041
+ "rstrip": false,
1042
+ "single_word": false,
1043
+ "special": true
1044
+ },
1045
+ "126210": {
1046
+ "content": "<|reserved_token_126|>",
1047
+ "lstrip": false,
1048
+ "normalized": false,
1049
+ "rstrip": false,
1050
+ "single_word": false,
1051
+ "special": true
1052
+ },
1053
+ "126211": {
1054
+ "content": "<|reserved_token_127|>",
1055
+ "lstrip": false,
1056
+ "normalized": false,
1057
+ "rstrip": false,
1058
+ "single_word": false,
1059
+ "special": true
1060
+ },
1061
+ "126212": {
1062
+ "content": "<|reserved_token_128|>",
1063
+ "lstrip": false,
1064
+ "normalized": false,
1065
+ "rstrip": false,
1066
+ "single_word": false,
1067
+ "special": true
1068
+ },
1069
+ "126213": {
1070
+ "content": "<|reserved_token_129|>",
1071
+ "lstrip": false,
1072
+ "normalized": false,
1073
+ "rstrip": false,
1074
+ "single_word": false,
1075
+ "special": true
1076
+ },
1077
+ "126214": {
1078
+ "content": "<|reserved_token_130|>",
1079
+ "lstrip": false,
1080
+ "normalized": false,
1081
+ "rstrip": false,
1082
+ "single_word": false,
1083
+ "special": true
1084
+ },
1085
+ "126215": {
1086
+ "content": "<|reserved_token_131|>",
1087
+ "lstrip": false,
1088
+ "normalized": false,
1089
+ "rstrip": false,
1090
+ "single_word": false,
1091
+ "special": true
1092
+ },
1093
+ "126216": {
1094
+ "content": "<|reserved_token_132|>",
1095
+ "lstrip": false,
1096
+ "normalized": false,
1097
+ "rstrip": false,
1098
+ "single_word": false,
1099
+ "special": true
1100
+ },
1101
+ "126217": {
1102
+ "content": "<|reserved_token_133|>",
1103
+ "lstrip": false,
1104
+ "normalized": false,
1105
+ "rstrip": false,
1106
+ "single_word": false,
1107
+ "special": true
1108
+ },
1109
+ "126218": {
1110
+ "content": "<|reserved_token_134|>",
1111
+ "lstrip": false,
1112
+ "normalized": false,
1113
+ "rstrip": false,
1114
+ "single_word": false,
1115
+ "special": true
1116
+ },
1117
+ "126219": {
1118
+ "content": "<|reserved_token_135|>",
1119
+ "lstrip": false,
1120
+ "normalized": false,
1121
+ "rstrip": false,
1122
+ "single_word": false,
1123
+ "special": true
1124
+ },
1125
+ "126220": {
1126
+ "content": "<|reserved_token_136|>",
1127
+ "lstrip": false,
1128
+ "normalized": false,
1129
+ "rstrip": false,
1130
+ "single_word": false,
1131
+ "special": true
1132
+ },
1133
+ "126221": {
1134
+ "content": "<|reserved_token_137|>",
1135
+ "lstrip": false,
1136
+ "normalized": false,
1137
+ "rstrip": false,
1138
+ "single_word": false,
1139
+ "special": true
1140
+ },
1141
+ "126222": {
1142
+ "content": "<|reserved_token_138|>",
1143
+ "lstrip": false,
1144
+ "normalized": false,
1145
+ "rstrip": false,
1146
+ "single_word": false,
1147
+ "special": true
1148
+ },
1149
+ "126223": {
1150
+ "content": "<|reserved_token_139|>",
1151
+ "lstrip": false,
1152
+ "normalized": false,
1153
+ "rstrip": false,
1154
+ "single_word": false,
1155
+ "special": true
1156
+ },
1157
+ "126224": {
1158
+ "content": "<|reserved_token_140|>",
1159
+ "lstrip": false,
1160
+ "normalized": false,
1161
+ "rstrip": false,
1162
+ "single_word": false,
1163
+ "special": true
1164
+ },
1165
+ "126225": {
1166
+ "content": "<|reserved_token_141|>",
1167
+ "lstrip": false,
1168
+ "normalized": false,
1169
+ "rstrip": false,
1170
+ "single_word": false,
1171
+ "special": true
1172
+ },
1173
+ "126226": {
1174
+ "content": "<|reserved_token_142|>",
1175
+ "lstrip": false,
1176
+ "normalized": false,
1177
+ "rstrip": false,
1178
+ "single_word": false,
1179
+ "special": true
1180
+ },
1181
+ "126227": {
1182
+ "content": "<|reserved_token_143|>",
1183
+ "lstrip": false,
1184
+ "normalized": false,
1185
+ "rstrip": false,
1186
+ "single_word": false,
1187
+ "special": true
1188
+ },
1189
+ "126228": {
1190
+ "content": "<|reserved_token_144|>",
1191
+ "lstrip": false,
1192
+ "normalized": false,
1193
+ "rstrip": false,
1194
+ "single_word": false,
1195
+ "special": true
1196
+ },
1197
+ "126229": {
1198
+ "content": "<|reserved_token_145|>",
1199
+ "lstrip": false,
1200
+ "normalized": false,
1201
+ "rstrip": false,
1202
+ "single_word": false,
1203
+ "special": true
1204
+ },
1205
+ "126230": {
1206
+ "content": "<|reserved_token_146|>",
1207
+ "lstrip": false,
1208
+ "normalized": false,
1209
+ "rstrip": false,
1210
+ "single_word": false,
1211
+ "special": true
1212
+ },
1213
+ "126231": {
1214
+ "content": "<|reserved_token_147|>",
1215
+ "lstrip": false,
1216
+ "normalized": false,
1217
+ "rstrip": false,
1218
+ "single_word": false,
1219
+ "special": true
1220
+ },
1221
+ "126232": {
1222
+ "content": "<|reserved_token_148|>",
1223
+ "lstrip": false,
1224
+ "normalized": false,
1225
+ "rstrip": false,
1226
+ "single_word": false,
1227
+ "special": true
1228
+ },
1229
+ "126233": {
1230
+ "content": "<|reserved_token_149|>",
1231
+ "lstrip": false,
1232
+ "normalized": false,
1233
+ "rstrip": false,
1234
+ "single_word": false,
1235
+ "special": true
1236
+ },
1237
+ "126234": {
1238
+ "content": "<|reserved_token_150|>",
1239
+ "lstrip": false,
1240
+ "normalized": false,
1241
+ "rstrip": false,
1242
+ "single_word": false,
1243
+ "special": true
1244
+ },
1245
+ "126235": {
1246
+ "content": "<|reserved_token_151|>",
1247
+ "lstrip": false,
1248
+ "normalized": false,
1249
+ "rstrip": false,
1250
+ "single_word": false,
1251
+ "special": true
1252
+ },
1253
+ "126236": {
1254
+ "content": "<|reserved_token_152|>",
1255
+ "lstrip": false,
1256
+ "normalized": false,
1257
+ "rstrip": false,
1258
+ "single_word": false,
1259
+ "special": true
1260
+ },
1261
+ "126237": {
1262
+ "content": "<|reserved_token_153|>",
1263
+ "lstrip": false,
1264
+ "normalized": false,
1265
+ "rstrip": false,
1266
+ "single_word": false,
1267
+ "special": true
1268
+ },
1269
+ "126238": {
1270
+ "content": "<|reserved_token_154|>",
1271
+ "lstrip": false,
1272
+ "normalized": false,
1273
+ "rstrip": false,
1274
+ "single_word": false,
1275
+ "special": true
1276
+ },
1277
+ "126239": {
1278
+ "content": "<|reserved_token_155|>",
1279
+ "lstrip": false,
1280
+ "normalized": false,
1281
+ "rstrip": false,
1282
+ "single_word": false,
1283
+ "special": true
1284
+ },
1285
+ "126240": {
1286
+ "content": "<|reserved_token_156|>",
1287
+ "lstrip": false,
1288
+ "normalized": false,
1289
+ "rstrip": false,
1290
+ "single_word": false,
1291
+ "special": true
1292
+ },
1293
+ "126241": {
1294
+ "content": "<|reserved_token_157|>",
1295
+ "lstrip": false,
1296
+ "normalized": false,
1297
+ "rstrip": false,
1298
+ "single_word": false,
1299
+ "special": true
1300
+ },
1301
+ "126242": {
1302
+ "content": "<|reserved_token_158|>",
1303
+ "lstrip": false,
1304
+ "normalized": false,
1305
+ "rstrip": false,
1306
+ "single_word": false,
1307
+ "special": true
1308
+ },
1309
+ "126243": {
1310
+ "content": "<|reserved_token_159|>",
1311
+ "lstrip": false,
1312
+ "normalized": false,
1313
+ "rstrip": false,
1314
+ "single_word": false,
1315
+ "special": true
1316
+ },
1317
+ "126244": {
1318
+ "content": "<|reserved_token_160|>",
1319
+ "lstrip": false,
1320
+ "normalized": false,
1321
+ "rstrip": false,
1322
+ "single_word": false,
1323
+ "special": true
1324
+ },
1325
+ "126245": {
1326
+ "content": "<|reserved_token_161|>",
1327
+ "lstrip": false,
1328
+ "normalized": false,
1329
+ "rstrip": false,
1330
+ "single_word": false,
1331
+ "special": true
1332
+ },
1333
+ "126246": {
1334
+ "content": "<|reserved_token_162|>",
1335
+ "lstrip": false,
1336
+ "normalized": false,
1337
+ "rstrip": false,
1338
+ "single_word": false,
1339
+ "special": true
1340
+ },
1341
+ "126247": {
1342
+ "content": "<|reserved_token_163|>",
1343
+ "lstrip": false,
1344
+ "normalized": false,
1345
+ "rstrip": false,
1346
+ "single_word": false,
1347
+ "special": true
1348
+ },
1349
+ "126248": {
1350
+ "content": "<|reserved_token_164|>",
1351
+ "lstrip": false,
1352
+ "normalized": false,
1353
+ "rstrip": false,
1354
+ "single_word": false,
1355
+ "special": true
1356
+ },
1357
+ "126249": {
1358
+ "content": "<|reserved_token_165|>",
1359
+ "lstrip": false,
1360
+ "normalized": false,
1361
+ "rstrip": false,
1362
+ "single_word": false,
1363
+ "special": true
1364
+ },
1365
+ "126250": {
1366
+ "content": "<|reserved_token_166|>",
1367
+ "lstrip": false,
1368
+ "normalized": false,
1369
+ "rstrip": false,
1370
+ "single_word": false,
1371
+ "special": true
1372
+ },
1373
+ "126251": {
1374
+ "content": "<|reserved_token_167|>",
1375
+ "lstrip": false,
1376
+ "normalized": false,
1377
+ "rstrip": false,
1378
+ "single_word": false,
1379
+ "special": true
1380
+ },
1381
+ "126252": {
1382
+ "content": "<|reserved_token_168|>",
1383
+ "lstrip": false,
1384
+ "normalized": false,
1385
+ "rstrip": false,
1386
+ "single_word": false,
1387
+ "special": true
1388
+ },
1389
+ "126253": {
1390
+ "content": "<|reserved_token_169|>",
1391
+ "lstrip": false,
1392
+ "normalized": false,
1393
+ "rstrip": false,
1394
+ "single_word": false,
1395
+ "special": true
1396
+ },
1397
+ "126254": {
1398
+ "content": "<|reserved_token_170|>",
1399
+ "lstrip": false,
1400
+ "normalized": false,
1401
+ "rstrip": false,
1402
+ "single_word": false,
1403
+ "special": true
1404
+ },
1405
+ "126255": {
1406
+ "content": "<|reserved_token_171|>",
1407
+ "lstrip": false,
1408
+ "normalized": false,
1409
+ "rstrip": false,
1410
+ "single_word": false,
1411
+ "special": true
1412
+ },
1413
+ "126256": {
1414
+ "content": "<|reserved_token_172|>",
1415
+ "lstrip": false,
1416
+ "normalized": false,
1417
+ "rstrip": false,
1418
+ "single_word": false,
1419
+ "special": true
1420
+ },
1421
+ "126257": {
1422
+ "content": "<|reserved_token_173|>",
1423
+ "lstrip": false,
1424
+ "normalized": false,
1425
+ "rstrip": false,
1426
+ "single_word": false,
1427
+ "special": true
1428
+ },
1429
+ "126258": {
1430
+ "content": "<|reserved_token_174|>",
1431
+ "lstrip": false,
1432
+ "normalized": false,
1433
+ "rstrip": false,
1434
+ "single_word": false,
1435
+ "special": true
1436
+ },
1437
+ "126259": {
1438
+ "content": "<|reserved_token_175|>",
1439
+ "lstrip": false,
1440
+ "normalized": false,
1441
+ "rstrip": false,
1442
+ "single_word": false,
1443
+ "special": true
1444
+ },
1445
+ "126260": {
1446
+ "content": "<|reserved_token_176|>",
1447
+ "lstrip": false,
1448
+ "normalized": false,
1449
+ "rstrip": false,
1450
+ "single_word": false,
1451
+ "special": true
1452
+ },
1453
+ "126261": {
1454
+ "content": "<|reserved_token_177|>",
1455
+ "lstrip": false,
1456
+ "normalized": false,
1457
+ "rstrip": false,
1458
+ "single_word": false,
1459
+ "special": true
1460
+ },
1461
+ "126262": {
1462
+ "content": "<|reserved_token_178|>",
1463
+ "lstrip": false,
1464
+ "normalized": false,
1465
+ "rstrip": false,
1466
+ "single_word": false,
1467
+ "special": true
1468
+ },
1469
+ "126263": {
1470
+ "content": "<|reserved_token_179|>",
1471
+ "lstrip": false,
1472
+ "normalized": false,
1473
+ "rstrip": false,
1474
+ "single_word": false,
1475
+ "special": true
1476
+ },
1477
+ "126264": {
1478
+ "content": "<|reserved_token_180|>",
1479
+ "lstrip": false,
1480
+ "normalized": false,
1481
+ "rstrip": false,
1482
+ "single_word": false,
1483
+ "special": true
1484
+ },
1485
+ "126265": {
1486
+ "content": "<|reserved_token_181|>",
1487
+ "lstrip": false,
1488
+ "normalized": false,
1489
+ "rstrip": false,
1490
+ "single_word": false,
1491
+ "special": true
1492
+ },
1493
+ "126266": {
1494
+ "content": "<|reserved_token_182|>",
1495
+ "lstrip": false,
1496
+ "normalized": false,
1497
+ "rstrip": false,
1498
+ "single_word": false,
1499
+ "special": true
1500
+ },
1501
+ "126267": {
1502
+ "content": "<|reserved_token_183|>",
1503
+ "lstrip": false,
1504
+ "normalized": false,
1505
+ "rstrip": false,
1506
+ "single_word": false,
1507
+ "special": true
1508
+ },
1509
+ "126268": {
1510
+ "content": "<|reserved_token_184|>",
1511
+ "lstrip": false,
1512
+ "normalized": false,
1513
+ "rstrip": false,
1514
+ "single_word": false,
1515
+ "special": true
1516
+ },
1517
+ "126269": {
1518
+ "content": "<|reserved_token_185|>",
1519
+ "lstrip": false,
1520
+ "normalized": false,
1521
+ "rstrip": false,
1522
+ "single_word": false,
1523
+ "special": true
1524
+ },
1525
+ "126270": {
1526
+ "content": "<|reserved_token_186|>",
1527
+ "lstrip": false,
1528
+ "normalized": false,
1529
+ "rstrip": false,
1530
+ "single_word": false,
1531
+ "special": true
1532
+ },
1533
+ "126271": {
1534
+ "content": "<|reserved_token_187|>",
1535
+ "lstrip": false,
1536
+ "normalized": false,
1537
+ "rstrip": false,
1538
+ "single_word": false,
1539
+ "special": true
1540
+ },
1541
+ "126272": {
1542
+ "content": "<|reserved_token_188|>",
1543
+ "lstrip": false,
1544
+ "normalized": false,
1545
+ "rstrip": false,
1546
+ "single_word": false,
1547
+ "special": true
1548
+ },
1549
+ "126273": {
1550
+ "content": "<|reserved_token_189|>",
1551
+ "lstrip": false,
1552
+ "normalized": false,
1553
+ "rstrip": false,
1554
+ "single_word": false,
1555
+ "special": true
1556
+ },
1557
+ "126274": {
1558
+ "content": "<|reserved_token_190|>",
1559
+ "lstrip": false,
1560
+ "normalized": false,
1561
+ "rstrip": false,
1562
+ "single_word": false,
1563
+ "special": true
1564
+ },
1565
+ "126275": {
1566
+ "content": "<|reserved_token_191|>",
1567
+ "lstrip": false,
1568
+ "normalized": false,
1569
+ "rstrip": false,
1570
+ "single_word": false,
1571
+ "special": true
1572
+ },
1573
+ "126276": {
1574
+ "content": "<|reserved_token_192|>",
1575
+ "lstrip": false,
1576
+ "normalized": false,
1577
+ "rstrip": false,
1578
+ "single_word": false,
1579
+ "special": true
1580
+ },
1581
+ "126277": {
1582
+ "content": "<|reserved_token_193|>",
1583
+ "lstrip": false,
1584
+ "normalized": false,
1585
+ "rstrip": false,
1586
+ "single_word": false,
1587
+ "special": true
1588
+ },
1589
+ "126278": {
1590
+ "content": "<|reserved_token_194|>",
1591
+ "lstrip": false,
1592
+ "normalized": false,
1593
+ "rstrip": false,
1594
+ "single_word": false,
1595
+ "special": true
1596
+ },
1597
+ "126279": {
1598
+ "content": "<|reserved_token_195|>",
1599
+ "lstrip": false,
1600
+ "normalized": false,
1601
+ "rstrip": false,
1602
+ "single_word": false,
1603
+ "special": true
1604
+ },
1605
+ "126280": {
1606
+ "content": "<|reserved_token_196|>",
1607
+ "lstrip": false,
1608
+ "normalized": false,
1609
+ "rstrip": false,
1610
+ "single_word": false,
1611
+ "special": true
1612
+ },
1613
+ "126281": {
1614
+ "content": "<|reserved_token_197|>",
1615
+ "lstrip": false,
1616
+ "normalized": false,
1617
+ "rstrip": false,
1618
+ "single_word": false,
1619
+ "special": true
1620
+ },
1621
+ "126282": {
1622
+ "content": "<|reserved_token_198|>",
1623
+ "lstrip": false,
1624
+ "normalized": false,
1625
+ "rstrip": false,
1626
+ "single_word": false,
1627
+ "special": true
1628
+ },
1629
+ "126283": {
1630
+ "content": "<|reserved_token_199|>",
1631
+ "lstrip": false,
1632
+ "normalized": false,
1633
+ "rstrip": false,
1634
+ "single_word": false,
1635
+ "special": true
1636
+ },
1637
+ "126284": {
1638
+ "content": "<|reserved_token_200|>",
1639
+ "lstrip": false,
1640
+ "normalized": false,
1641
+ "rstrip": false,
1642
+ "single_word": false,
1643
+ "special": true
1644
+ },
1645
+ "126285": {
1646
+ "content": "<|reserved_token_201|>",
1647
+ "lstrip": false,
1648
+ "normalized": false,
1649
+ "rstrip": false,
1650
+ "single_word": false,
1651
+ "special": true
1652
+ },
1653
+ "126286": {
1654
+ "content": "<|reserved_token_202|>",
1655
+ "lstrip": false,
1656
+ "normalized": false,
1657
+ "rstrip": false,
1658
+ "single_word": false,
1659
+ "special": true
1660
+ },
1661
+ "126287": {
1662
+ "content": "<|reserved_token_203|>",
1663
+ "lstrip": false,
1664
+ "normalized": false,
1665
+ "rstrip": false,
1666
+ "single_word": false,
1667
+ "special": true
1668
+ },
1669
+ "126288": {
1670
+ "content": "<|reserved_token_204|>",
1671
+ "lstrip": false,
1672
+ "normalized": false,
1673
+ "rstrip": false,
1674
+ "single_word": false,
1675
+ "special": true
1676
+ },
1677
+ "126289": {
1678
+ "content": "<|reserved_token_205|>",
1679
+ "lstrip": false,
1680
+ "normalized": false,
1681
+ "rstrip": false,
1682
+ "single_word": false,
1683
+ "special": true
1684
+ },
1685
+ "126290": {
1686
+ "content": "<|reserved_token_206|>",
1687
+ "lstrip": false,
1688
+ "normalized": false,
1689
+ "rstrip": false,
1690
+ "single_word": false,
1691
+ "special": true
1692
+ },
1693
+ "126291": {
1694
+ "content": "<|reserved_token_207|>",
1695
+ "lstrip": false,
1696
+ "normalized": false,
1697
+ "rstrip": false,
1698
+ "single_word": false,
1699
+ "special": true
1700
+ },
1701
+ "126292": {
1702
+ "content": "<|reserved_token_208|>",
1703
+ "lstrip": false,
1704
+ "normalized": false,
1705
+ "rstrip": false,
1706
+ "single_word": false,
1707
+ "special": true
1708
+ },
1709
+ "126293": {
1710
+ "content": "<|reserved_token_209|>",
1711
+ "lstrip": false,
1712
+ "normalized": false,
1713
+ "rstrip": false,
1714
+ "single_word": false,
1715
+ "special": true
1716
+ },
1717
+ "126294": {
1718
+ "content": "<|reserved_token_210|>",
1719
+ "lstrip": false,
1720
+ "normalized": false,
1721
+ "rstrip": false,
1722
+ "single_word": false,
1723
+ "special": true
1724
+ },
1725
+ "126295": {
1726
+ "content": "<|reserved_token_211|>",
1727
+ "lstrip": false,
1728
+ "normalized": false,
1729
+ "rstrip": false,
1730
+ "single_word": false,
1731
+ "special": true
1732
+ },
1733
+ "126296": {
1734
+ "content": "<|reserved_token_212|>",
1735
+ "lstrip": false,
1736
+ "normalized": false,
1737
+ "rstrip": false,
1738
+ "single_word": false,
1739
+ "special": true
1740
+ },
1741
+ "126297": {
1742
+ "content": "<|reserved_token_213|>",
1743
+ "lstrip": false,
1744
+ "normalized": false,
1745
+ "rstrip": false,
1746
+ "single_word": false,
1747
+ "special": true
1748
+ },
1749
+ "126298": {
1750
+ "content": "<|reserved_token_214|>",
1751
+ "lstrip": false,
1752
+ "normalized": false,
1753
+ "rstrip": false,
1754
+ "single_word": false,
1755
+ "special": true
1756
+ },
1757
+ "126299": {
1758
+ "content": "<|reserved_token_215|>",
1759
+ "lstrip": false,
1760
+ "normalized": false,
1761
+ "rstrip": false,
1762
+ "single_word": false,
1763
+ "special": true
1764
+ },
1765
+ "126300": {
1766
+ "content": "<|reserved_token_216|>",
1767
+ "lstrip": false,
1768
+ "normalized": false,
1769
+ "rstrip": false,
1770
+ "single_word": false,
1771
+ "special": true
1772
+ },
1773
+ "126301": {
1774
+ "content": "<|reserved_token_217|>",
1775
+ "lstrip": false,
1776
+ "normalized": false,
1777
+ "rstrip": false,
1778
+ "single_word": false,
1779
+ "special": true
1780
+ },
1781
+ "126302": {
1782
+ "content": "<|reserved_token_218|>",
1783
+ "lstrip": false,
1784
+ "normalized": false,
1785
+ "rstrip": false,
1786
+ "single_word": false,
1787
+ "special": true
1788
+ },
1789
+ "126303": {
1790
+ "content": "<|reserved_token_219|>",
1791
+ "lstrip": false,
1792
+ "normalized": false,
1793
+ "rstrip": false,
1794
+ "single_word": false,
1795
+ "special": true
1796
+ },
1797
+ "126304": {
1798
+ "content": "<|reserved_token_220|>",
1799
+ "lstrip": false,
1800
+ "normalized": false,
1801
+ "rstrip": false,
1802
+ "single_word": false,
1803
+ "special": true
1804
+ },
1805
+ "126305": {
1806
+ "content": "<|reserved_token_221|>",
1807
+ "lstrip": false,
1808
+ "normalized": false,
1809
+ "rstrip": false,
1810
+ "single_word": false,
1811
+ "special": true
1812
+ },
1813
+ "126306": {
1814
+ "content": "<|reserved_token_222|>",
1815
+ "lstrip": false,
1816
+ "normalized": false,
1817
+ "rstrip": false,
1818
+ "single_word": false,
1819
+ "special": true
1820
+ },
1821
+ "126307": {
1822
+ "content": "<|reserved_token_223|>",
1823
+ "lstrip": false,
1824
+ "normalized": false,
1825
+ "rstrip": false,
1826
+ "single_word": false,
1827
+ "special": true
1828
+ },
1829
+ "126308": {
1830
+ "content": "<|reserved_token_224|>",
1831
+ "lstrip": false,
1832
+ "normalized": false,
1833
+ "rstrip": false,
1834
+ "single_word": false,
1835
+ "special": true
1836
+ },
1837
+ "126309": {
1838
+ "content": "<|reserved_token_225|>",
1839
+ "lstrip": false,
1840
+ "normalized": false,
1841
+ "rstrip": false,
1842
+ "single_word": false,
1843
+ "special": true
1844
+ },
1845
+ "126310": {
1846
+ "content": "<|reserved_token_226|>",
1847
+ "lstrip": false,
1848
+ "normalized": false,
1849
+ "rstrip": false,
1850
+ "single_word": false,
1851
+ "special": true
1852
+ },
1853
+ "126311": {
1854
+ "content": "<|reserved_token_227|>",
1855
+ "lstrip": false,
1856
+ "normalized": false,
1857
+ "rstrip": false,
1858
+ "single_word": false,
1859
+ "special": true
1860
+ },
1861
+ "126312": {
1862
+ "content": "<|reserved_token_228|>",
1863
+ "lstrip": false,
1864
+ "normalized": false,
1865
+ "rstrip": false,
1866
+ "single_word": false,
1867
+ "special": true
1868
+ },
1869
+ "126313": {
1870
+ "content": "<|reserved_token_229|>",
1871
+ "lstrip": false,
1872
+ "normalized": false,
1873
+ "rstrip": false,
1874
+ "single_word": false,
1875
+ "special": true
1876
+ },
1877
+ "126314": {
1878
+ "content": "<|reserved_token_230|>",
1879
+ "lstrip": false,
1880
+ "normalized": false,
1881
+ "rstrip": false,
1882
+ "single_word": false,
1883
+ "special": true
1884
+ },
1885
+ "126315": {
1886
+ "content": "<|reserved_token_231|>",
1887
+ "lstrip": false,
1888
+ "normalized": false,
1889
+ "rstrip": false,
1890
+ "single_word": false,
1891
+ "special": true
1892
+ },
1893
+ "126316": {
1894
+ "content": "<|reserved_token_232|>",
1895
+ "lstrip": false,
1896
+ "normalized": false,
1897
+ "rstrip": false,
1898
+ "single_word": false,
1899
+ "special": true
1900
+ },
1901
+ "126317": {
1902
+ "content": "<|reserved_token_233|>",
1903
+ "lstrip": false,
1904
+ "normalized": false,
1905
+ "rstrip": false,
1906
+ "single_word": false,
1907
+ "special": true
1908
+ },
1909
+ "126318": {
1910
+ "content": "<|reserved_token_234|>",
1911
+ "lstrip": false,
1912
+ "normalized": false,
1913
+ "rstrip": false,
1914
+ "single_word": false,
1915
+ "special": true
1916
+ },
1917
+ "126319": {
1918
+ "content": "<|reserved_token_235|>",
1919
+ "lstrip": false,
1920
+ "normalized": false,
1921
+ "rstrip": false,
1922
+ "single_word": false,
1923
+ "special": true
1924
+ },
1925
+ "126320": {
1926
+ "content": "<|reserved_token_236|>",
1927
+ "lstrip": false,
1928
+ "normalized": false,
1929
+ "rstrip": false,
1930
+ "single_word": false,
1931
+ "special": true
1932
+ },
1933
+ "126321": {
1934
+ "content": "<|reserved_token_237|>",
1935
+ "lstrip": false,
1936
+ "normalized": false,
1937
+ "rstrip": false,
1938
+ "single_word": false,
1939
+ "special": true
1940
+ },
1941
+ "126322": {
1942
+ "content": "<|reserved_token_238|>",
1943
+ "lstrip": false,
1944
+ "normalized": false,
1945
+ "rstrip": false,
1946
+ "single_word": false,
1947
+ "special": true
1948
+ },
1949
+ "126323": {
1950
+ "content": "<|reserved_token_239|>",
1951
+ "lstrip": false,
1952
+ "normalized": false,
1953
+ "rstrip": false,
1954
+ "single_word": false,
1955
+ "special": true
1956
+ },
1957
+ "126324": {
1958
+ "content": "<|reserved_token_240|>",
1959
+ "lstrip": false,
1960
+ "normalized": false,
1961
+ "rstrip": false,
1962
+ "single_word": false,
1963
+ "special": true
1964
+ },
1965
+ "126325": {
1966
+ "content": "<|reserved_token_241|>",
1967
+ "lstrip": false,
1968
+ "normalized": false,
1969
+ "rstrip": false,
1970
+ "single_word": false,
1971
+ "special": true
1972
+ },
1973
+ "126326": {
1974
+ "content": "<|reserved_token_242|>",
1975
+ "lstrip": false,
1976
+ "normalized": false,
1977
+ "rstrip": false,
1978
+ "single_word": false,
1979
+ "special": true
1980
+ },
1981
+ "126327": {
1982
+ "content": "<|reserved_token_243|>",
1983
+ "lstrip": false,
1984
+ "normalized": false,
1985
+ "rstrip": false,
1986
+ "single_word": false,
1987
+ "special": true
1988
+ },
1989
+ "126328": {
1990
+ "content": "<|reserved_token_244|>",
1991
+ "lstrip": false,
1992
+ "normalized": false,
1993
+ "rstrip": false,
1994
+ "single_word": false,
1995
+ "special": true
1996
+ },
1997
+ "126329": {
1998
+ "content": "<|reserved_token_245|>",
1999
+ "lstrip": false,
2000
+ "normalized": false,
2001
+ "rstrip": false,
2002
+ "single_word": false,
2003
+ "special": true
2004
+ },
2005
+ "126330": {
2006
+ "content": "<|reserved_token_246|>",
2007
+ "lstrip": false,
2008
+ "normalized": false,
2009
+ "rstrip": false,
2010
+ "single_word": false,
2011
+ "special": true
2012
+ },
2013
+ "126331": {
2014
+ "content": "<|reserved_token_247|>",
2015
+ "lstrip": false,
2016
+ "normalized": false,
2017
+ "rstrip": false,
2018
+ "single_word": false,
2019
+ "special": true
2020
+ },
2021
+ "126332": {
2022
+ "content": "<|reserved_token_248|>",
2023
+ "lstrip": false,
2024
+ "normalized": false,
2025
+ "rstrip": false,
2026
+ "single_word": false,
2027
+ "special": true
2028
+ },
2029
+ "126333": {
2030
+ "content": "<|reserved_token_249|>",
2031
+ "lstrip": false,
2032
+ "normalized": false,
2033
+ "rstrip": false,
2034
+ "single_word": false,
2035
+ "special": true
2036
+ },
2037
+ "126334": {
2038
+ "content": "<|reserved_token_250|>",
2039
+ "lstrip": false,
2040
+ "normalized": false,
2041
+ "rstrip": false,
2042
+ "single_word": false,
2043
+ "special": true
2044
+ },
2045
+ "126335": {
2046
+ "content": "<|reserved_token_251|>",
2047
+ "lstrip": false,
2048
+ "normalized": false,
2049
+ "rstrip": false,
2050
+ "single_word": false,
2051
+ "special": true
2052
+ },
2053
+ "126336": {
2054
+ "content": "<|mdm_mask|>",
2055
+ "lstrip": false,
2056
+ "normalized": false,
2057
+ "rstrip": false,
2058
+ "single_word": false,
2059
+ "special": true
2060
+ },
2061
+ "126337": {
2062
+ "content": "<|reserved_token_253|>",
2063
+ "lstrip": false,
2064
+ "normalized": false,
2065
+ "rstrip": false,
2066
+ "single_word": false,
2067
+ "special": true
2068
+ },
2069
+ "126338": {
2070
+ "content": "<|reserved_token_254|>",
2071
+ "lstrip": false,
2072
+ "normalized": false,
2073
+ "rstrip": false,
2074
+ "single_word": false,
2075
+ "special": true
2076
+ },
2077
+ "126339": {
2078
+ "content": "<|reserved_token_255|>",
2079
+ "lstrip": false,
2080
+ "normalized": false,
2081
+ "rstrip": false,
2082
+ "single_word": false,
2083
+ "special": true
2084
+ },
2085
+ "126340": {
2086
+ "content": "<role>",
2087
+ "lstrip": false,
2088
+ "normalized": false,
2089
+ "rstrip": false,
2090
+ "single_word": false,
2091
+ "special": true
2092
+ },
2093
+ "126341": {
2094
+ "content": "</role>",
2095
+ "lstrip": false,
2096
+ "normalized": false,
2097
+ "rstrip": false,
2098
+ "single_word": false,
2099
+ "special": true
2100
+ },
2101
+ "126342": {
2102
+ "content": "<|arithmetic_start|>",
2103
+ "lstrip": false,
2104
+ "normalized": false,
2105
+ "rstrip": false,
2106
+ "single_word": false,
2107
+ "special": true
2108
+ },
2109
+ "126343": {
2110
+ "content": "<|arithmetic_end|>",
2111
+ "lstrip": false,
2112
+ "normalized": false,
2113
+ "rstrip": false,
2114
+ "single_word": false,
2115
+ "special": true
2116
+ },
2117
+ "126344": {
2118
+ "content": "<|number_start|>",
2119
+ "lstrip": false,
2120
+ "normalized": false,
2121
+ "rstrip": false,
2122
+ "single_word": false,
2123
+ "special": true
2124
+ },
2125
+ "126345": {
2126
+ "content": "<|number_end|>",
2127
+ "lstrip": false,
2128
+ "normalized": false,
2129
+ "rstrip": false,
2130
+ "single_word": false,
2131
+ "special": true
2132
+ },
2133
+ "126346": {
2134
+ "content": "<|start_header_id|>",
2135
+ "lstrip": false,
2136
+ "normalized": false,
2137
+ "rstrip": false,
2138
+ "single_word": false,
2139
+ "special": true
2140
+ },
2141
+ "126347": {
2142
+ "content": "<|end_header_id|>",
2143
+ "lstrip": false,
2144
+ "normalized": false,
2145
+ "rstrip": false,
2146
+ "single_word": false,
2147
+ "special": true
2148
+ },
2149
+ "126348": {
2150
+ "content": "<|eot_id|>",
2151
+ "lstrip": false,
2152
+ "normalized": false,
2153
+ "rstrip": false,
2154
+ "single_word": false,
2155
+ "special": true
2156
+ },
2157
+ "126349": {
2158
+ "content": "<|deleteoftext|>",
2159
+ "lstrip": false,
2160
+ "normalized": false,
2161
+ "rstrip": false,
2162
+ "single_word": false,
2163
+ "special": true
2164
+ },
2165
+ "126350": {
2166
+ "content": "<|insertoftext|>",
2167
+ "lstrip": false,
2168
+ "normalized": false,
2169
+ "rstrip": false,
2170
+ "single_word": false,
2171
+ "special": true
2172
+ }
2173
+ },
2174
+ "additional_special_tokens": [
2175
+ "<|mdm_mask|>",
2176
+ "<role>",
2177
+ "</role>",
2178
+ "<|arithmetic_start|>",
2179
+ "<|arithmetic_end|>",
2180
+ "<|number_start|>",
2181
+ "<|number_end|>"
2182
+ ],
2183
+ "bos_token": "<|startoftext|>",
2184
+ "clean_up_tokenization_spaces": false,
2185
+ "cls_token": "[CLS]",
2186
+ "delete_token": "<|deleteoftext|>",
2187
+ "eos_token": "<|endoftext|>",
2188
+ "extra_special_tokens": {},
2189
+ "fast_tokenizer": true,
2190
+ "gmask_token": "[gMASK]",
2191
+ "insert_token": "<|insertoftext|>",
2192
+ "merges_file": null,
2193
+ "model_input_names": [
2194
+ "input_ids",
2195
+ "attention_mask"
2196
+ ],
2197
+ "model_max_length": 1000000000000000019884624838656,
2198
+ "pad_token": "<|endoftext|>",
2199
+ "padding_side": "right",
2200
+ "tokenizer_class": "PreTrainedTokenizerFast",
2201
+ "trust_remote_code": true
2202
+ }