File size: 9,317 Bytes
a91d025 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
#!/usr/bin/env python3
"""
Comprehensive benchmark comparing PyTorch vs ONNX models
"""
import torch
import time
import psutil
import os
from transformers import AutoModelForCausalLM, AutoTokenizer
from optimum.onnxruntime import ORTModelForCausalLM
import numpy as np
def get_memory_usage():
"""Get current memory usage in GB"""
process = psutil.Process(os.getpid())
return process.memory_info().rss / (1024 ** 3)
def benchmark_pytorch():
"""Benchmark PyTorch model"""
print("="*70)
print("PyTorch Model Benchmark")
print("="*70)
model_name = "shisa-ai/shisa-v2-qwen2.5-7b"
print("\n๐ฆ Loading PyTorch model...")
start_mem = get_memory_usage()
load_start = time.time()
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float32,
device_map="cpu",
trust_remote_code=True,
low_cpu_mem_usage=True
)
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
load_time = time.time() - load_start
load_mem = get_memory_usage() - start_mem
print(f"โ
Loaded in {load_time:.2f}s")
print(f"๐ Memory used: {load_mem:.2f} GB")
# Test prompts
test_prompts = [
"ใใใซใกใฏ",
"Hello, how are you?",
"ๆฅๆฌใฎ้ฆ้ฝใฏ๏ผ",
"What is 2+2?",
"Explain AI in simple terms."
]
results = {
"load_time": load_time,
"memory_gb": load_mem,
"latencies": [],
"tokens_generated": [],
"speeds": []
}
print("\n๐ฅ Running benchmarks...")
for i, prompt in enumerate(test_prompts, 1):
print(f"\n Test {i}/{len(test_prompts)}: {prompt[:30]}...")
inputs = tokenizer(prompt, return_tensors="pt")
start = time.time()
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=50,
do_sample=False,
pad_token_id=tokenizer.eos_token_id
)
latency = time.time() - start
tokens = len(outputs[0]) - len(inputs['input_ids'][0])
speed = tokens / latency
results["latencies"].append(latency)
results["tokens_generated"].append(tokens)
results["speeds"].append(speed)
print(f" โฑ๏ธ {latency:.2f}s | ๐ {tokens} tokens | ๐ {speed:.2f} tok/s")
# Summary
print("\n" + "="*70)
print("PyTorch Summary")
print("="*70)
print(f"Model size: 7.62B parameters")
print(f"Load time: {results['load_time']:.2f}s")
print(f"Memory usage: {results['memory_gb']:.2f} GB")
print(f"Avg latency: {np.mean(results['latencies']):.2f}s")
print(f"Avg speed: {np.mean(results['speeds']):.2f} tokens/sec")
print(f"P95 latency: {np.percentile(results['latencies'], 95):.2f}s")
# Cleanup
del model
torch.cuda.empty_cache() if torch.cuda.is_available() else None
return results
def benchmark_onnx():
"""Benchmark ONNX model"""
print("\n" + "="*70)
print("ONNX Model Benchmark")
print("="*70)
model_path = "models/Shisa_ONNX"
print("\n๐ฆ Loading ONNX model...")
start_mem = get_memory_usage()
load_start = time.time()
model = ORTModelForCausalLM.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)
load_time = time.time() - load_start
load_mem = get_memory_usage() - start_mem
print(f"โ
Loaded in {load_time:.2f}s")
print(f"๐ Memory used: {load_mem:.2f} GB")
# Test prompts (same as PyTorch)
test_prompts = [
"ใใใซใกใฏ",
"Hello, how are you?",
"ๆฅๆฌใฎ้ฆ้ฝใฏ๏ผ",
"What is 2+2?",
"Explain AI in simple terms."
]
results = {
"load_time": load_time,
"memory_gb": load_mem,
"latencies": [],
"tokens_generated": [],
"speeds": []
}
print("\n๐ฅ Running benchmarks...")
for i, prompt in enumerate(test_prompts, 1):
print(f"\n Test {i}/{len(test_prompts)}: {prompt[:30]}...")
inputs = tokenizer(prompt, return_tensors="pt")
start = time.time()
outputs = model.generate(
**inputs,
max_new_tokens=50,
do_sample=False,
pad_token_id=tokenizer.eos_token_id
)
latency = time.time() - start
tokens = len(outputs[0]) - len(inputs['input_ids'][0])
speed = tokens / latency
results["latencies"].append(latency)
results["tokens_generated"].append(tokens)
results["speeds"].append(speed)
print(f" โฑ๏ธ {latency:.2f}s | ๐ {tokens} tokens | ๐ {speed:.2f} tok/s")
# Summary
print("\n" + "="*70)
print("ONNX Summary")
print("="*70)
print(f"Model size: ~29GB (FP32 ONNX)")
print(f"Load time: {results['load_time']:.2f}s")
print(f"Memory usage: {results['memory_gb']:.2f} GB")
print(f"Avg latency: {np.mean(results['latencies']):.2f}s")
print(f"Avg speed: {np.mean(results['speeds']):.2f} tokens/sec")
print(f"P95 latency: {np.percentile(results['latencies'], 95):.2f}s")
return results
def compare_results(pytorch_results, onnx_results):
"""Compare PyTorch vs ONNX results"""
print("\n" + "="*70)
print("๐ Comparative Analysis")
print("="*70)
# Load time comparison
load_speedup = pytorch_results["load_time"] / onnx_results["load_time"]
print(f"\n๐ Load Time:")
print(f" PyTorch: {pytorch_results['load_time']:.2f}s")
print(f" ONNX: {onnx_results['load_time']:.2f}s")
print(f" Speedup: {load_speedup:.2f}x {'(ONNX faster)' if load_speedup > 1 else '(PyTorch faster)'}")
# Memory comparison
mem_ratio = pytorch_results["memory_gb"] / onnx_results["memory_gb"]
print(f"\n๐พ Memory Usage:")
print(f" PyTorch: {pytorch_results['memory_gb']:.2f} GB")
print(f" ONNX: {onnx_results['memory_gb']:.2f} GB")
print(f" Ratio: {mem_ratio:.2f}x {'(ONNX uses less)' if mem_ratio > 1 else '(PyTorch uses less)'}")
# Speed comparison
pytorch_avg_speed = np.mean(pytorch_results["speeds"])
onnx_avg_speed = np.mean(onnx_results["speeds"])
speed_ratio = pytorch_avg_speed / onnx_avg_speed
print(f"\nโก Inference Speed:")
print(f" PyTorch: {pytorch_avg_speed:.2f} tokens/sec")
print(f" ONNX: {onnx_avg_speed:.2f} tokens/sec")
print(f" Ratio: {speed_ratio:.2f}x {'(PyTorch faster)' if speed_ratio > 1 else '(ONNX faster)'}")
# Latency comparison
pytorch_avg_latency = np.mean(pytorch_results["latencies"])
onnx_avg_latency = np.mean(onnx_results["latencies"])
print(f"\nโฑ๏ธ Average Latency:")
print(f" PyTorch: {pytorch_avg_latency:.2f}s")
print(f" ONNX: {onnx_avg_latency:.2f}s")
print(f" Diff: {abs(pytorch_avg_latency - onnx_avg_latency):.2f}s")
# Create comparison table
print("\n" + "="*70)
print("๐ Comparison Table")
print("="*70)
print(f"{'Metric':<25} {'PyTorch':<20} {'ONNX':<20} {'Winner':<10}")
print("-"*70)
print(f"{'Load Time (s)':<25} {pytorch_results['load_time']:<20.2f} {onnx_results['load_time']:<20.2f} {'ONNX' if onnx_results['load_time'] < pytorch_results['load_time'] else 'PyTorch':<10}")
print(f"{'Memory (GB)':<25} {pytorch_results['memory_gb']:<20.2f} {onnx_results['memory_gb']:<20.2f} {'ONNX' if onnx_results['memory_gb'] < pytorch_results['memory_gb'] else 'PyTorch':<10}")
print(f"{'Avg Speed (tok/s)':<25} {pytorch_avg_speed:<20.2f} {onnx_avg_speed:<20.2f} {'ONNX' if onnx_avg_speed > pytorch_avg_speed else 'PyTorch':<10}")
print(f"{'Avg Latency (s)':<25} {pytorch_avg_latency:<20.2f} {onnx_avg_latency:<20.2f} {'ONNX' if onnx_avg_latency < pytorch_avg_latency else 'PyTorch':<10}")
print("\n" + "="*70)
print("๐ Recommendations")
print("="*70)
if onnx_avg_speed > pytorch_avg_speed:
print("โ
ONNX provides better inference speed")
print(" Recommended for production deployment")
else:
print("โ
PyTorch provides better inference speed")
print(" Consider using PyTorch for deployment")
print("\n๐ก For Qualcomm QNN deployment:")
print(" - Use ONNX model as base")
print(" - Apply INT8 quantization")
print(" - Expected: 10-20x speedup on Snapdragon 8 Gen 3")
print(" - Expected: 50-100ms per token")
def main():
"""Main benchmark runner"""
print("\n" + "="*70)
print("๐ฏ Shisa v2 Qwen2.5-7B Comprehensive Benchmark")
print("="*70)
print("\nThis will benchmark both PyTorch and ONNX models")
print("Estimated time: 10-15 minutes")
print()
response = input("Continue? [y/N]: ").strip().lower()
if response not in ['y', 'yes']:
print("Benchmark cancelled.")
return
try:
# Benchmark PyTorch
pytorch_results = benchmark_pytorch()
# Benchmark ONNX
onnx_results = benchmark_onnx()
# Compare
compare_results(pytorch_results, onnx_results)
print("\n" + "="*70)
print("โ
Benchmark Complete!")
print("="*70)
except Exception as e:
print(f"\nโ Benchmark failed: {e}")
import traceback
traceback.print_exc()
if __name__ == "__main__":
main()
|