File size: 9,317 Bytes
a91d025
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
#!/usr/bin/env python3
"""
Comprehensive benchmark comparing PyTorch vs ONNX models
"""

import torch
import time
import psutil
import os
from transformers import AutoModelForCausalLM, AutoTokenizer
from optimum.onnxruntime import ORTModelForCausalLM
import numpy as np

def get_memory_usage():
    """Get current memory usage in GB"""
    process = psutil.Process(os.getpid())
    return process.memory_info().rss / (1024 ** 3)

def benchmark_pytorch():
    """Benchmark PyTorch model"""
    print("="*70)
    print("PyTorch Model Benchmark")
    print("="*70)

    model_name = "shisa-ai/shisa-v2-qwen2.5-7b"

    print("\n๐Ÿ“ฆ Loading PyTorch model...")
    start_mem = get_memory_usage()
    load_start = time.time()

    model = AutoModelForCausalLM.from_pretrained(
        model_name,
        torch_dtype=torch.float32,
        device_map="cpu",
        trust_remote_code=True,
        low_cpu_mem_usage=True
    )
    tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)

    load_time = time.time() - load_start
    load_mem = get_memory_usage() - start_mem

    print(f"โœ… Loaded in {load_time:.2f}s")
    print(f"๐Ÿ“Š Memory used: {load_mem:.2f} GB")

    # Test prompts
    test_prompts = [
        "ใ“ใ‚“ใซใกใฏ",
        "Hello, how are you?",
        "ๆ—ฅๆœฌใฎ้ฆ–้ƒฝใฏ๏ผŸ",
        "What is 2+2?",
        "Explain AI in simple terms."
    ]

    results = {
        "load_time": load_time,
        "memory_gb": load_mem,
        "latencies": [],
        "tokens_generated": [],
        "speeds": []
    }

    print("\n๐Ÿ”ฅ Running benchmarks...")
    for i, prompt in enumerate(test_prompts, 1):
        print(f"\n  Test {i}/{len(test_prompts)}: {prompt[:30]}...")

        inputs = tokenizer(prompt, return_tensors="pt")

        start = time.time()
        with torch.no_grad():
            outputs = model.generate(
                **inputs,
                max_new_tokens=50,
                do_sample=False,
                pad_token_id=tokenizer.eos_token_id
            )
        latency = time.time() - start

        tokens = len(outputs[0]) - len(inputs['input_ids'][0])
        speed = tokens / latency

        results["latencies"].append(latency)
        results["tokens_generated"].append(tokens)
        results["speeds"].append(speed)

        print(f"    โฑ๏ธ  {latency:.2f}s | ๐Ÿ“Š {tokens} tokens | ๐Ÿš€ {speed:.2f} tok/s")

    # Summary
    print("\n" + "="*70)
    print("PyTorch Summary")
    print("="*70)
    print(f"Model size: 7.62B parameters")
    print(f"Load time: {results['load_time']:.2f}s")
    print(f"Memory usage: {results['memory_gb']:.2f} GB")
    print(f"Avg latency: {np.mean(results['latencies']):.2f}s")
    print(f"Avg speed: {np.mean(results['speeds']):.2f} tokens/sec")
    print(f"P95 latency: {np.percentile(results['latencies'], 95):.2f}s")

    # Cleanup
    del model
    torch.cuda.empty_cache() if torch.cuda.is_available() else None

    return results

def benchmark_onnx():
    """Benchmark ONNX model"""
    print("\n" + "="*70)
    print("ONNX Model Benchmark")
    print("="*70)

    model_path = "models/Shisa_ONNX"

    print("\n๐Ÿ“ฆ Loading ONNX model...")
    start_mem = get_memory_usage()
    load_start = time.time()

    model = ORTModelForCausalLM.from_pretrained(model_path)
    tokenizer = AutoTokenizer.from_pretrained(model_path)

    load_time = time.time() - load_start
    load_mem = get_memory_usage() - start_mem

    print(f"โœ… Loaded in {load_time:.2f}s")
    print(f"๐Ÿ“Š Memory used: {load_mem:.2f} GB")

    # Test prompts (same as PyTorch)
    test_prompts = [
        "ใ“ใ‚“ใซใกใฏ",
        "Hello, how are you?",
        "ๆ—ฅๆœฌใฎ้ฆ–้ƒฝใฏ๏ผŸ",
        "What is 2+2?",
        "Explain AI in simple terms."
    ]

    results = {
        "load_time": load_time,
        "memory_gb": load_mem,
        "latencies": [],
        "tokens_generated": [],
        "speeds": []
    }

    print("\n๐Ÿ”ฅ Running benchmarks...")
    for i, prompt in enumerate(test_prompts, 1):
        print(f"\n  Test {i}/{len(test_prompts)}: {prompt[:30]}...")

        inputs = tokenizer(prompt, return_tensors="pt")

        start = time.time()
        outputs = model.generate(
            **inputs,
            max_new_tokens=50,
            do_sample=False,
            pad_token_id=tokenizer.eos_token_id
        )
        latency = time.time() - start

        tokens = len(outputs[0]) - len(inputs['input_ids'][0])
        speed = tokens / latency

        results["latencies"].append(latency)
        results["tokens_generated"].append(tokens)
        results["speeds"].append(speed)

        print(f"    โฑ๏ธ  {latency:.2f}s | ๐Ÿ“Š {tokens} tokens | ๐Ÿš€ {speed:.2f} tok/s")

    # Summary
    print("\n" + "="*70)
    print("ONNX Summary")
    print("="*70)
    print(f"Model size: ~29GB (FP32 ONNX)")
    print(f"Load time: {results['load_time']:.2f}s")
    print(f"Memory usage: {results['memory_gb']:.2f} GB")
    print(f"Avg latency: {np.mean(results['latencies']):.2f}s")
    print(f"Avg speed: {np.mean(results['speeds']):.2f} tokens/sec")
    print(f"P95 latency: {np.percentile(results['latencies'], 95):.2f}s")

    return results

def compare_results(pytorch_results, onnx_results):
    """Compare PyTorch vs ONNX results"""
    print("\n" + "="*70)
    print("๐Ÿ“Š Comparative Analysis")
    print("="*70)

    # Load time comparison
    load_speedup = pytorch_results["load_time"] / onnx_results["load_time"]
    print(f"\n๐Ÿš€ Load Time:")
    print(f"  PyTorch: {pytorch_results['load_time']:.2f}s")
    print(f"  ONNX:    {onnx_results['load_time']:.2f}s")
    print(f"  Speedup: {load_speedup:.2f}x {'(ONNX faster)' if load_speedup > 1 else '(PyTorch faster)'}")

    # Memory comparison
    mem_ratio = pytorch_results["memory_gb"] / onnx_results["memory_gb"]
    print(f"\n๐Ÿ’พ Memory Usage:")
    print(f"  PyTorch: {pytorch_results['memory_gb']:.2f} GB")
    print(f"  ONNX:    {onnx_results['memory_gb']:.2f} GB")
    print(f"  Ratio:   {mem_ratio:.2f}x {'(ONNX uses less)' if mem_ratio > 1 else '(PyTorch uses less)'}")

    # Speed comparison
    pytorch_avg_speed = np.mean(pytorch_results["speeds"])
    onnx_avg_speed = np.mean(onnx_results["speeds"])
    speed_ratio = pytorch_avg_speed / onnx_avg_speed

    print(f"\nโšก Inference Speed:")
    print(f"  PyTorch: {pytorch_avg_speed:.2f} tokens/sec")
    print(f"  ONNX:    {onnx_avg_speed:.2f} tokens/sec")
    print(f"  Ratio:   {speed_ratio:.2f}x {'(PyTorch faster)' if speed_ratio > 1 else '(ONNX faster)'}")

    # Latency comparison
    pytorch_avg_latency = np.mean(pytorch_results["latencies"])
    onnx_avg_latency = np.mean(onnx_results["latencies"])

    print(f"\nโฑ๏ธ  Average Latency:")
    print(f"  PyTorch: {pytorch_avg_latency:.2f}s")
    print(f"  ONNX:    {onnx_avg_latency:.2f}s")
    print(f"  Diff:    {abs(pytorch_avg_latency - onnx_avg_latency):.2f}s")

    # Create comparison table
    print("\n" + "="*70)
    print("๐Ÿ“‹ Comparison Table")
    print("="*70)
    print(f"{'Metric':<25} {'PyTorch':<20} {'ONNX':<20} {'Winner':<10}")
    print("-"*70)
    print(f"{'Load Time (s)':<25} {pytorch_results['load_time']:<20.2f} {onnx_results['load_time']:<20.2f} {'ONNX' if onnx_results['load_time'] < pytorch_results['load_time'] else 'PyTorch':<10}")
    print(f"{'Memory (GB)':<25} {pytorch_results['memory_gb']:<20.2f} {onnx_results['memory_gb']:<20.2f} {'ONNX' if onnx_results['memory_gb'] < pytorch_results['memory_gb'] else 'PyTorch':<10}")
    print(f"{'Avg Speed (tok/s)':<25} {pytorch_avg_speed:<20.2f} {onnx_avg_speed:<20.2f} {'ONNX' if onnx_avg_speed > pytorch_avg_speed else 'PyTorch':<10}")
    print(f"{'Avg Latency (s)':<25} {pytorch_avg_latency:<20.2f} {onnx_avg_latency:<20.2f} {'ONNX' if onnx_avg_latency < pytorch_avg_latency else 'PyTorch':<10}")

    print("\n" + "="*70)
    print("๐Ÿ“ Recommendations")
    print("="*70)

    if onnx_avg_speed > pytorch_avg_speed:
        print("โœ… ONNX provides better inference speed")
        print("   Recommended for production deployment")
    else:
        print("โœ… PyTorch provides better inference speed")
        print("   Consider using PyTorch for deployment")

    print("\n๐Ÿ’ก For Qualcomm QNN deployment:")
    print("   - Use ONNX model as base")
    print("   - Apply INT8 quantization")
    print("   - Expected: 10-20x speedup on Snapdragon 8 Gen 3")
    print("   - Expected: 50-100ms per token")

def main():
    """Main benchmark runner"""
    print("\n" + "="*70)
    print("๐ŸŽฏ Shisa v2 Qwen2.5-7B Comprehensive Benchmark")
    print("="*70)
    print("\nThis will benchmark both PyTorch and ONNX models")
    print("Estimated time: 10-15 minutes")
    print()

    response = input("Continue? [y/N]: ").strip().lower()
    if response not in ['y', 'yes']:
        print("Benchmark cancelled.")
        return

    try:
        # Benchmark PyTorch
        pytorch_results = benchmark_pytorch()

        # Benchmark ONNX
        onnx_results = benchmark_onnx()

        # Compare
        compare_results(pytorch_results, onnx_results)

        print("\n" + "="*70)
        print("โœ… Benchmark Complete!")
        print("="*70)

    except Exception as e:
        print(f"\nโŒ Benchmark failed: {e}")
        import traceback
        traceback.print_exc()

if __name__ == "__main__":
    main()