File size: 5,138 Bytes
929223c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
#!/usr/bin/env python3
"""
Test Shisa v2 Qwen2.5-7B ONNX model
Includes QNN provider compatibility check
"""
from optimum.onnxruntime import ORTModelForCausalLM
from transformers import AutoTokenizer
import time
import onnxruntime as ort
def check_qnn_support():
"""Check if QNN execution provider is available"""
print("="*70)
print("Checking ONNX Runtime Providers")
print("="*70)
providers = ort.get_available_providers()
print("\nAvailable providers:")
for provider in providers:
print(f" โ {provider}")
if "QNNExecutionProvider" in providers:
print("\nโ
QNN Execution Provider is available!")
print(" Ready for Qualcomm hardware acceleration")
return True
else:
print("\nโ ๏ธ QNN Execution Provider not available")
print(" Note: QNN requires Qualcomm's QNN SDK")
print(" Model will run on CPU for now")
return False
def test_onnx_model():
"""Test the ONNX model"""
print("\n" + "="*70)
print("Testing Shisa v2 Qwen2.5-7B ONNX Model")
print("="*70)
print()
model_path = "models/Shisa_ONNX"
print(f"๐ Loading model from: {model_path}")
# Load model and tokenizer
print("Loading ONNX model...")
load_start = time.time()
model = ORTModelForCausalLM.from_pretrained(model_path)
load_time = time.time() - load_start
print(f"โ
Model loaded in {load_time:.2f} seconds")
print("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(model_path)
print("โ
Tokenizer loaded")
# Test cases (Japanese and English)
test_cases = [
{
"prompt": "ใใใซใกใฏ๏ผ่ชฟๅญใฏใฉใใงใใ๏ผ",
"description": "Japanese greeting",
"max_tokens": 50
},
{
"prompt": "Hello! How are you today?",
"description": "English greeting",
"max_tokens": 50
},
{
"prompt": "ๆฅๆฌใฎ้ฆ้ฝใฏไฝใงใใ๏ผ",
"description": "Japanese factual question",
"max_tokens": 30
},
{
"prompt": "What is 2+2?",
"description": "Simple math",
"max_tokens": 20
}
]
print("\n" + "="*70)
print("Running Test Cases")
print("="*70)
total_tokens = 0
total_time = 0
for i, test_case in enumerate(test_cases, 1):
print(f"\n{'โ'*70}")
print(f"Test {i}/{len(test_cases)}: {test_case['description']}")
print(f"{'โ'*70}")
prompt = test_case["prompt"]
print(f"Prompt: {prompt}")
# Apply chat template if available
if hasattr(tokenizer, 'apply_chat_template') and tokenizer.chat_template:
messages = [{"role": "user", "content": prompt}]
formatted_prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
else:
formatted_prompt = prompt
# Tokenize
inputs = tokenizer(formatted_prompt, return_tensors="pt")
input_length = len(inputs['input_ids'][0])
# Generate
print("\nGenerating...")
start_time = time.time()
outputs = model.generate(
**inputs,
max_new_tokens=test_case["max_tokens"],
do_sample=True,
temperature=0.7,
top_p=0.9,
repetition_penalty=1.1,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id
)
generation_time = time.time() - start_time
# Decode
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
tokens_generated = len(outputs[0]) - input_length
print(f"\nResponse: {response}")
print(f"\nโฑ๏ธ Time: {generation_time:.2f}s")
print(f"๐ Tokens: {tokens_generated}")
print(f"๐ Speed: {tokens_generated/generation_time:.2f} tokens/sec")
total_tokens += tokens_generated
total_time += generation_time
# Summary
print("\n" + "="*70)
print("Test Summary")
print("="*70)
print(f"โ
All {len(test_cases)} tests completed successfully!")
print(f"๐ Total tokens generated: {total_tokens}")
print(f"โฑ๏ธ Total generation time: {total_time:.2f}s")
print(f"๐ Average speed: {total_tokens/total_time:.2f} tokens/sec")
print(f"๐พ Model size: ~527MB (FP32 ONNX)")
print("="*70)
return True
if __name__ == "__main__":
try:
# Check QNN support
qnn_available = check_qnn_support()
# Test model
test_onnx_model()
print("\nโ
ONNX model is ready for deployment!")
if not qnn_available:
print("\n๐ To enable QNN acceleration:")
print(" 1. Install Qualcomm QNN SDK")
print(" 2. Build ONNX Runtime with QNN support")
print(" 3. Deploy to Qualcomm hardware (NPU)")
except Exception as e:
print(f"\nโ Error: {e}")
import traceback
traceback.print_exc()
|