|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """ PyTorch T5 model.""" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import copy | 
					
						
						|  | import math | 
					
						
						|  | import os | 
					
						
						|  | import warnings | 
					
						
						|  | from typing import List, Optional, Tuple, Union | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | from torch import nn | 
					
						
						|  | import torch.nn.functional as F | 
					
						
						|  | from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | 
					
						
						|  | from transformers import PretrainedConfig, add_start_docstrings, PreTrainedModel | 
					
						
						|  | from transformers.activations import ACT2FN | 
					
						
						|  | from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask, \ | 
					
						
						|  | _prepare_4d_attention_mask_for_sdpa, _prepare_4d_causal_attention_mask_for_sdpa | 
					
						
						|  | from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPastAndCrossAttentions, Seq2SeqLMOutput, \ | 
					
						
						|  | Seq2SeqModelOutput, Seq2SeqQuestionAnsweringModelOutput, Seq2SeqSequenceClassifierOutput, TokenClassifierOutput | 
					
						
						|  | from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS, find_pruneable_heads_and_indices, prune_linear_layer | 
					
						
						|  | from transformers.utils import DUMMY_INPUTS, DUMMY_MASK, add_start_docstrings_to_model_forward, is_torch_fx_proxy, \ | 
					
						
						|  | logging, replace_return_docstrings, is_flash_attn_greater_or_equal_2_10, is_flash_attn_2_available | 
					
						
						|  | from transformers.utils.model_parallel_utils import assert_device_map, get_device_map | 
					
						
						|  |  | 
					
						
						|  | if is_flash_attn_2_available(): | 
					
						
						|  | from flash_attn import flash_attn_func, flash_attn_varlen_func | 
					
						
						|  | from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  | _CONFIG_FOR_DOC = "T5Config" | 
					
						
						|  | _CHECKPOINT_FOR_DOC = "google-t5/t5-small" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class T5Config(PretrainedConfig): | 
					
						
						|  | r""" | 
					
						
						|  | This is the configuration class to store the configuration of a [`T5Model`] or a [`TFT5Model`]. It is used to | 
					
						
						|  | instantiate a T5 model according to the specified arguments, defining the model architecture. Instantiating a | 
					
						
						|  | configuration with the defaults will yield a similar configuration to that of the T5 | 
					
						
						|  | [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) architecture. | 
					
						
						|  |  | 
					
						
						|  | Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | 
					
						
						|  | documentation from [`PretrainedConfig`] for more information. | 
					
						
						|  |  | 
					
						
						|  | Arguments: | 
					
						
						|  | vocab_size (`int`, *optional*, defaults to 32128): | 
					
						
						|  | Vocabulary size of the T5 model. Defines the number of different tokens that can be represented by the | 
					
						
						|  | `inputs_ids` passed when calling [`T5Model`] or [`TFT5Model`]. | 
					
						
						|  | d_model (`int`, *optional*, defaults to 512): | 
					
						
						|  | Size of the encoder layers and the pooler layer. | 
					
						
						|  | d_kv (`int`, *optional*, defaults to 64): | 
					
						
						|  | Size of the key, query, value projections per attention head. The `inner_dim` of the projection layer will | 
					
						
						|  | be defined as `num_heads * d_kv`. | 
					
						
						|  | d_ff (`int`, *optional*, defaults to 2048): | 
					
						
						|  | Size of the intermediate feed forward layer in each `T5Block`. | 
					
						
						|  | num_layers (`int`, *optional*, defaults to 6): | 
					
						
						|  | Number of hidden layers in the Transformer encoder. | 
					
						
						|  | num_decoder_layers (`int`, *optional*): | 
					
						
						|  | Number of hidden layers in the Transformer decoder. Will use the same value as `num_layers` if not set. | 
					
						
						|  | num_heads (`int`, *optional*, defaults to 8): | 
					
						
						|  | Number of attention heads for each attention layer in the Transformer encoder. | 
					
						
						|  | relative_attention_num_buckets (`int`, *optional*, defaults to 32): | 
					
						
						|  | The number of buckets to use for each attention layer. | 
					
						
						|  | relative_attention_max_distance (`int`, *optional*, defaults to 128): | 
					
						
						|  | The maximum distance of the longer sequences for the bucket separation. | 
					
						
						|  | dropout_rate (`float`, *optional*, defaults to 0.1): | 
					
						
						|  | The ratio for all dropout layers. | 
					
						
						|  | classifier_dropout (`float`, *optional*, defaults to 0.0): | 
					
						
						|  | The dropout ratio for classifier. | 
					
						
						|  | layer_norm_eps (`float`, *optional*, defaults to 1e-6): | 
					
						
						|  | The epsilon used by the layer normalization layers. | 
					
						
						|  | initializer_factor (`float`, *optional*, defaults to 1): | 
					
						
						|  | A factor for initializing all weight matrices (should be kept to 1, used internally for initialization | 
					
						
						|  | testing). | 
					
						
						|  | feed_forward_proj (`string`, *optional*, defaults to `"relu"`): | 
					
						
						|  | Type of feed forward layer to be used. Should be one of `"relu"` or `"gated-gelu"`. T5v1.1 uses the | 
					
						
						|  | `"gated-gelu"` feed forward projection. Original T5 uses `"relu"`. | 
					
						
						|  | use_cache (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether or not the model should return the last key/values attentions (not used by all models). | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | model_type = "t5" | 
					
						
						|  | keys_to_ignore_at_inference = ["past_key_values"] | 
					
						
						|  | attribute_map = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | vocab_size=32128, | 
					
						
						|  | d_model=512, | 
					
						
						|  | d_kv=64, | 
					
						
						|  | d_ff=2048, | 
					
						
						|  | num_layers=6, | 
					
						
						|  | num_decoder_layers=None, | 
					
						
						|  | num_heads=8, | 
					
						
						|  | relative_attention_num_buckets=32, | 
					
						
						|  | relative_attention_max_distance=128, | 
					
						
						|  | dropout_rate=0.1, | 
					
						
						|  | layer_norm_epsilon=1e-6, | 
					
						
						|  | initializer_factor=1.0, | 
					
						
						|  | feed_forward_proj="relu", | 
					
						
						|  | is_encoder_decoder=True, | 
					
						
						|  | use_cache=True, | 
					
						
						|  | pad_token_id=0, | 
					
						
						|  | eos_token_id=1, | 
					
						
						|  | classifier_dropout=0.0, | 
					
						
						|  | rope_theta=10000.0, | 
					
						
						|  | rope_scaling=None, | 
					
						
						|  | max_position_embeddings=1024, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | self.vocab_size = vocab_size | 
					
						
						|  | self.d_model = d_model | 
					
						
						|  | self.d_kv = d_kv | 
					
						
						|  | self.d_ff = d_ff | 
					
						
						|  | self.num_layers = num_layers | 
					
						
						|  | self.num_decoder_layers = ( | 
					
						
						|  | num_decoder_layers if num_decoder_layers is not None else self.num_layers | 
					
						
						|  | ) | 
					
						
						|  | self.num_heads = num_heads | 
					
						
						|  | self.relative_attention_num_buckets = relative_attention_num_buckets | 
					
						
						|  | self.relative_attention_max_distance = relative_attention_max_distance | 
					
						
						|  | self.dropout_rate = dropout_rate | 
					
						
						|  | self.classifier_dropout = classifier_dropout | 
					
						
						|  | self.layer_norm_epsilon = layer_norm_epsilon | 
					
						
						|  | self.initializer_factor = initializer_factor | 
					
						
						|  | self.feed_forward_proj = feed_forward_proj | 
					
						
						|  | self.use_cache = use_cache | 
					
						
						|  | self.rope_theta = rope_theta | 
					
						
						|  | self.rope_scaling=rope_scaling | 
					
						
						|  | self.max_position_embeddings = max_position_embeddings | 
					
						
						|  |  | 
					
						
						|  | act_info = self.feed_forward_proj.split("-") | 
					
						
						|  | self.dense_act_fn = act_info[-1] | 
					
						
						|  | self.is_gated_act = act_info[0] == "gated" | 
					
						
						|  |  | 
					
						
						|  | if len(act_info) > 1 and act_info[0] != "gated" or len(act_info) > 2: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer. " | 
					
						
						|  | "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " | 
					
						
						|  | "'gated-gelu' or 'relu'" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if feed_forward_proj == "gated-gelu": | 
					
						
						|  | self.dense_act_fn = "gelu_new" | 
					
						
						|  |  | 
					
						
						|  | super().__init__( | 
					
						
						|  | pad_token_id=pad_token_id, | 
					
						
						|  | eos_token_id=eos_token_id, | 
					
						
						|  | is_encoder_decoder=is_encoder_decoder, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  | def load_tf_weights_in_t5(model, config, tf_checkpoint_path): | 
					
						
						|  | """Load tf checkpoints in a pytorch model.""" | 
					
						
						|  | try: | 
					
						
						|  | import re | 
					
						
						|  |  | 
					
						
						|  | import numpy as np | 
					
						
						|  | import tensorflow as tf | 
					
						
						|  | except ImportError: | 
					
						
						|  | logger.error( | 
					
						
						|  | "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " | 
					
						
						|  | "https://www.tensorflow.org/install/ for installation instructions." | 
					
						
						|  | ) | 
					
						
						|  | raise | 
					
						
						|  | tf_path = os.path.abspath(tf_checkpoint_path) | 
					
						
						|  | logger.info(f"Converting TensorFlow checkpoint from {tf_path}") | 
					
						
						|  |  | 
					
						
						|  | init_vars = tf.train.list_variables(tf_path) | 
					
						
						|  | names = [] | 
					
						
						|  | tf_weights = {} | 
					
						
						|  | for name, shape in init_vars: | 
					
						
						|  | logger.info(f"Loading TF weight {name} with shape {shape}") | 
					
						
						|  | array = tf.train.load_variable(tf_path, name) | 
					
						
						|  | names.append(name) | 
					
						
						|  | tf_weights[name] = array | 
					
						
						|  |  | 
					
						
						|  | for txt_name in names: | 
					
						
						|  | name = txt_name.split("/") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if any( | 
					
						
						|  | n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"] | 
					
						
						|  | for n in name | 
					
						
						|  | ): | 
					
						
						|  | logger.info(f"Skipping {'/'.join(name)}") | 
					
						
						|  | tf_weights.pop(txt_name, None) | 
					
						
						|  | continue | 
					
						
						|  | if "_slot_" in name[-1]: | 
					
						
						|  | logger.info(f"Skipping {'/'.join(name)}") | 
					
						
						|  | tf_weights.pop(txt_name, None) | 
					
						
						|  | continue | 
					
						
						|  | pointer = model | 
					
						
						|  | array = tf_weights[txt_name] | 
					
						
						|  |  | 
					
						
						|  | for m_name in name: | 
					
						
						|  | if re.fullmatch(r"[A-Za-z]+_\d+", m_name): | 
					
						
						|  | scope_names = re.split(r"_(\d+)", m_name) | 
					
						
						|  | else: | 
					
						
						|  | scope_names = [m_name] | 
					
						
						|  | if scope_names[0] in ["kernel", "scale", "embedding"]: | 
					
						
						|  | pointer = getattr(pointer, "weight") | 
					
						
						|  | elif scope_names[0] == "self_attention": | 
					
						
						|  | pointer = getattr(pointer, "layer") | 
					
						
						|  | pointer = pointer[0] | 
					
						
						|  | elif scope_names[0] == "enc_dec_attention": | 
					
						
						|  | pointer = getattr(pointer, "layer") | 
					
						
						|  | pointer = pointer[1] | 
					
						
						|  | elif scope_names[0] == "dense_relu_dense": | 
					
						
						|  | pointer = getattr(pointer, "layer") | 
					
						
						|  | pointer = pointer[2] | 
					
						
						|  | elif scope_names[0] == "rms_norm": | 
					
						
						|  | if hasattr(pointer, "layer_norm"): | 
					
						
						|  | pointer = getattr(pointer, "layer_norm") | 
					
						
						|  | elif hasattr(pointer, "final_layer_norm"): | 
					
						
						|  | pointer = getattr(pointer, "final_layer_norm") | 
					
						
						|  | elif scope_names[0] == "scale": | 
					
						
						|  | pointer = getattr(pointer, "weight") | 
					
						
						|  | elif scope_names[0] == "output_bias" or scope_names[0] == "beta": | 
					
						
						|  | pointer = getattr(pointer, "bias") | 
					
						
						|  | elif scope_names[0] == "squad": | 
					
						
						|  | pointer = getattr(pointer, "classifier") | 
					
						
						|  | elif scope_names[0] == "decoder" and name[1] == "logits": | 
					
						
						|  | continue | 
					
						
						|  | elif scope_names[0] == "logits": | 
					
						
						|  | pointer = getattr(pointer, "lm_head") | 
					
						
						|  | elif scope_names[0] == "wi" and len(scope_names) > 1 and scope_names[1].isdigit(): | 
					
						
						|  | pointer = getattr(pointer, f"wi_{scope_names[1]}") | 
					
						
						|  | continue | 
					
						
						|  | else: | 
					
						
						|  | try: | 
					
						
						|  | pointer = getattr(pointer, scope_names[0]) | 
					
						
						|  | except AttributeError: | 
					
						
						|  | logger.info(f"Skipping {'/'.join(name)}") | 
					
						
						|  | continue | 
					
						
						|  | if len(scope_names) >= 2: | 
					
						
						|  | num = int(scope_names[1]) | 
					
						
						|  | pointer = pointer[num] | 
					
						
						|  | if scope_names[0] not in ["kernel", "scale", "embedding"]: | 
					
						
						|  | pointer = getattr(pointer, "weight") | 
					
						
						|  | if scope_names[0] != "embedding": | 
					
						
						|  | logger.info(f"Transposing numpy weight of shape {array.shape} for {name}") | 
					
						
						|  | array = np.transpose(array) | 
					
						
						|  | try: | 
					
						
						|  | if pointer.shape != array.shape: | 
					
						
						|  | raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched") | 
					
						
						|  | except AssertionError as e: | 
					
						
						|  | e.args += (pointer.shape, array.shape) | 
					
						
						|  | raise | 
					
						
						|  | logger.info(f"Initialize PyTorch weight {name}") | 
					
						
						|  | pointer.data = torch.from_numpy(array.astype(np.float32)) | 
					
						
						|  | tf_weights.pop(txt_name, None) | 
					
						
						|  |  | 
					
						
						|  | logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}.") | 
					
						
						|  | return model | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | PARALLELIZE_DOCSTRING = r""" | 
					
						
						|  | This is an experimental feature and is a subject to change at a moment's notice. | 
					
						
						|  |  | 
					
						
						|  | Uses a device map to distribute attention modules of the model across several devices. If no device map is given, | 
					
						
						|  | it will evenly distribute blocks across all devices. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | device_map (`Dict[int, list]`, optional, defaults to None): | 
					
						
						|  | A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always | 
					
						
						|  | automatically mapped to the first device (for esoteric reasons). That means that the first device should | 
					
						
						|  | have fewer attention modules mapped to it than other devices. For reference, the t5 models have the | 
					
						
						|  | following number of attention modules: | 
					
						
						|  |  | 
					
						
						|  | - google-t5/t5-small: 6 | 
					
						
						|  | - google-t5/t5-base: 12 | 
					
						
						|  | - google-t5/t5-large: 24 | 
					
						
						|  | - google-t5/t5-3b: 24 | 
					
						
						|  | - google-t5/t5-11b: 24 | 
					
						
						|  |  | 
					
						
						|  | Example: | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | # Here is an example of a device map on a machine with 4 GPUs using google-t5/t5-3b, which has a total of 24 attention modules: | 
					
						
						|  | model = T5ForConditionalGeneration.from_pretrained("google-t5/t5-3b") | 
					
						
						|  | device_map = { | 
					
						
						|  | 0: [0, 1, 2], | 
					
						
						|  | 1: [3, 4, 5, 6, 7, 8, 9], | 
					
						
						|  | 2: [10, 11, 12, 13, 14, 15, 16], | 
					
						
						|  | 3: [17, 18, 19, 20, 21, 22, 23], | 
					
						
						|  | } | 
					
						
						|  | model.parallelize(device_map) | 
					
						
						|  | ``` | 
					
						
						|  | """ | 
					
						
						|  | DEPARALLELIZE_DOCSTRING = r""" | 
					
						
						|  | Moves the model to cpu from a model parallel state. | 
					
						
						|  |  | 
					
						
						|  | Example: | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | # On a 4 GPU machine with google-t5/t5-3b: | 
					
						
						|  | model = T5ForConditionalGeneration.from_pretrained("google-t5/t5-3b") | 
					
						
						|  | device_map = { | 
					
						
						|  | 0: [0, 1, 2], | 
					
						
						|  | 1: [3, 4, 5, 6, 7, 8, 9], | 
					
						
						|  | 2: [10, 11, 12, 13, 14, 15, 16], | 
					
						
						|  | 3: [17, 18, 19, 20, 21, 22, 23], | 
					
						
						|  | } | 
					
						
						|  | model.parallelize(device_map)  # Splits the model across several devices | 
					
						
						|  | model.deparallelize()  # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache() | 
					
						
						|  | ``` | 
					
						
						|  | """ | 
					
						
						|  | def _get_unpad_data(attention_mask): | 
					
						
						|  | seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) | 
					
						
						|  | indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() | 
					
						
						|  | max_seqlen_in_batch = seqlens_in_batch.max().item() | 
					
						
						|  | cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) | 
					
						
						|  | return ( | 
					
						
						|  | indices, | 
					
						
						|  | cu_seqlens, | 
					
						
						|  | max_seqlen_in_batch, | 
					
						
						|  | ) | 
					
						
						|  | class T5LayerNorm(nn.Module): | 
					
						
						|  | def __init__(self, hidden_size, eps=1e-6): | 
					
						
						|  | """ | 
					
						
						|  | Construct a layernorm module in the T5 style. No bias and no subtraction of mean. | 
					
						
						|  | """ | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.weight = nn.Parameter(torch.ones(hidden_size)) | 
					
						
						|  | self.variance_epsilon = eps | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) | 
					
						
						|  | hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.weight.dtype in [torch.float16, torch.bfloat16]: | 
					
						
						|  | hidden_states = hidden_states.to(self.weight.dtype) | 
					
						
						|  |  | 
					
						
						|  | return self.weight * hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | from apex.normalization import FusedRMSNorm | 
					
						
						|  |  | 
					
						
						|  | T5LayerNorm = FusedRMSNorm | 
					
						
						|  |  | 
					
						
						|  | logger.info("Discovered apex.normalization.FusedRMSNorm - will use it instead of T5LayerNorm") | 
					
						
						|  | except ImportError: | 
					
						
						|  |  | 
					
						
						|  | pass | 
					
						
						|  | except Exception: | 
					
						
						|  | logger.warning("discovered apex but it failed to load, falling back to T5LayerNorm") | 
					
						
						|  | pass | 
					
						
						|  |  | 
					
						
						|  | ALL_LAYERNORM_LAYERS.append(T5LayerNorm) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class T5DenseActDense(nn.Module): | 
					
						
						|  | def __init__(self, config: T5Config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.wi = nn.Linear(config.d_model, config.d_ff, bias=False) | 
					
						
						|  | self.wo = nn.Linear(config.d_ff, config.d_model, bias=False) | 
					
						
						|  | self.dropout = nn.Dropout(config.dropout_rate) | 
					
						
						|  | self.act = ACT2FN[config.dense_act_fn] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states): | 
					
						
						|  | hidden_states = self.wi(hidden_states) | 
					
						
						|  | hidden_states = self.act(hidden_states) | 
					
						
						|  | hidden_states = self.dropout(hidden_states) | 
					
						
						|  | if ( | 
					
						
						|  | isinstance(self.wo.weight, torch.Tensor) | 
					
						
						|  | and hidden_states.dtype != self.wo.weight.dtype | 
					
						
						|  | and self.wo.weight.dtype != torch.int8 | 
					
						
						|  | ): | 
					
						
						|  | hidden_states = hidden_states.to(self.wo.weight.dtype) | 
					
						
						|  | hidden_states = self.wo(hidden_states) | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class T5DenseGatedActDense(nn.Module): | 
					
						
						|  | def __init__(self, config: T5Config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False) | 
					
						
						|  | self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False) | 
					
						
						|  | self.wo = nn.Linear(config.d_ff, config.d_model, bias=False) | 
					
						
						|  | self.dropout = nn.Dropout(config.dropout_rate) | 
					
						
						|  | self.act = ACT2FN[config.dense_act_fn] | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states): | 
					
						
						|  | hidden_gelu = self.act(self.wi_0(hidden_states)) | 
					
						
						|  | hidden_linear = self.wi_1(hidden_states) | 
					
						
						|  | hidden_states = hidden_gelu * hidden_linear | 
					
						
						|  | hidden_states = self.dropout(hidden_states) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if ( | 
					
						
						|  | isinstance(self.wo.weight, torch.Tensor) | 
					
						
						|  | and hidden_states.dtype != self.wo.weight.dtype | 
					
						
						|  | and self.wo.weight.dtype != torch.int8 | 
					
						
						|  | ): | 
					
						
						|  | hidden_states = hidden_states.to(self.wo.weight.dtype) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = self.wo(hidden_states) | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class T5LayerFF(nn.Module): | 
					
						
						|  | def __init__(self, config: T5Config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | if config.is_gated_act: | 
					
						
						|  | self.DenseReluDense = T5DenseGatedActDense(config) | 
					
						
						|  | else: | 
					
						
						|  | self.DenseReluDense = T5DenseActDense(config) | 
					
						
						|  |  | 
					
						
						|  | self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) | 
					
						
						|  | self.dropout = nn.Dropout(config.dropout_rate) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states): | 
					
						
						|  | forwarded_states = self.layer_norm(hidden_states) | 
					
						
						|  | forwarded_states = self.DenseReluDense(forwarded_states) | 
					
						
						|  | hidden_states = hidden_states + self.dropout(forwarded_states) | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  | class T5RotaryEmbedding(nn.Module): | 
					
						
						|  | def __init__(self, dim, max_position_embeddings=512, base=10000, device=None): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | self.dim = dim | 
					
						
						|  | self.max_position_embeddings = max_position_embeddings | 
					
						
						|  | self.base = base | 
					
						
						|  | inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) | 
					
						
						|  | self.register_buffer("inv_freq", inv_freq, persistent=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self._set_cos_sin_cache( | 
					
						
						|  | seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def _set_cos_sin_cache(self, seq_len, device, dtype): | 
					
						
						|  | self.max_seq_len_cached = seq_len | 
					
						
						|  | t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) | 
					
						
						|  |  | 
					
						
						|  | freqs = torch.einsum("i,j->ij", t, self.inv_freq) | 
					
						
						|  | emb = torch.cat((freqs, freqs), dim=-1) | 
					
						
						|  | self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) | 
					
						
						|  | self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, seq_len=None): | 
					
						
						|  | if seq_len > self.max_seq_len_cached: | 
					
						
						|  | self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) | 
					
						
						|  |  | 
					
						
						|  | return ( | 
					
						
						|  | self.cos_cached[:seq_len].to(dtype=x.dtype), | 
					
						
						|  | self.sin_cached[:seq_len].to(dtype=x.dtype), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class T5LinearScalingRotaryEmbedding(T5RotaryEmbedding): | 
					
						
						|  | def __init__(self, dim, max_position_embeddings=512, base=10000, device=None, scaling_factor=1.0): | 
					
						
						|  | self.scaling_factor = scaling_factor | 
					
						
						|  | super().__init__(dim, max_position_embeddings, base, device) | 
					
						
						|  |  | 
					
						
						|  | def _set_cos_sin_cache(self, seq_len, device, dtype): | 
					
						
						|  | self.max_seq_len_cached = seq_len | 
					
						
						|  | t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) | 
					
						
						|  | t = t / self.scaling_factor | 
					
						
						|  |  | 
					
						
						|  | freqs = torch.einsum("i,j->ij", t, self.inv_freq) | 
					
						
						|  |  | 
					
						
						|  | emb = torch.cat((freqs, freqs), dim=-1) | 
					
						
						|  | self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) | 
					
						
						|  | self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class T5DynamicNTKScalingRotaryEmbedding(T5RotaryEmbedding): | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, dim, max_position_embeddings=512, base=10000, device=None, scaling_factor=1.0): | 
					
						
						|  | self.scaling_factor = scaling_factor | 
					
						
						|  | super().__init__(dim, max_position_embeddings, base, device) | 
					
						
						|  |  | 
					
						
						|  | def _set_cos_sin_cache(self, seq_len, device, dtype): | 
					
						
						|  | self.max_seq_len_cached = seq_len | 
					
						
						|  |  | 
					
						
						|  | if seq_len > self.max_position_embeddings: | 
					
						
						|  | base = self.base * ( | 
					
						
						|  | (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1) | 
					
						
						|  | ) ** (self.dim / (self.dim - 2)) | 
					
						
						|  | inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) | 
					
						
						|  | self.register_buffer("inv_freq", inv_freq, persistent=False) | 
					
						
						|  |  | 
					
						
						|  | t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) | 
					
						
						|  |  | 
					
						
						|  | freqs = torch.einsum("i,j->ij", t, self.inv_freq) | 
					
						
						|  | emb = torch.cat((freqs, freqs), dim=-1) | 
					
						
						|  | self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) | 
					
						
						|  | self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def rotate_half(x): | 
					
						
						|  | x1 = x[..., : x.shape[-1] // 2] | 
					
						
						|  | x2 = x[..., x.shape[-1] // 2 :] | 
					
						
						|  | return torch.cat((-x2, x1), dim=-1) | 
					
						
						|  | def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): | 
					
						
						|  | """Applies Rotary Position Embedding to the query and key tensors. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | q (`torch.Tensor`): The query tensor. | 
					
						
						|  | k (`torch.Tensor`): The key tensor. | 
					
						
						|  | cos (`torch.Tensor`): The cosine part of the rotary embedding. | 
					
						
						|  | sin (`torch.Tensor`): The sine part of the rotary embedding. | 
					
						
						|  | position_ids (`torch.Tensor`): | 
					
						
						|  | The position indices of the tokens corresponding to the query and key tensors. For example, this can be | 
					
						
						|  | used to pass offsetted position ids when working with a KV-cache. | 
					
						
						|  | unsqueeze_dim (`int`, *optional*, defaults to 1): | 
					
						
						|  | The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and | 
					
						
						|  | sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note | 
					
						
						|  | that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and | 
					
						
						|  | k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes | 
					
						
						|  | cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have | 
					
						
						|  | the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. | 
					
						
						|  | Returns: | 
					
						
						|  | `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | q_cos = cos[position_ids].unsqueeze(unsqueeze_dim) | 
					
						
						|  | q_sin = sin[position_ids].unsqueeze(unsqueeze_dim) | 
					
						
						|  | q_embed = (q * q_cos) + (rotate_half(q) * q_sin) | 
					
						
						|  | if k.shape[-2] != q.shape[-2]: | 
					
						
						|  | k_position_ids = torch.arange(k.shape[-2], device=k.device).unsqueeze(0) | 
					
						
						|  | k_cos = cos[k_position_ids].unsqueeze(unsqueeze_dim) | 
					
						
						|  | k_sin = sin[k_position_ids].unsqueeze(unsqueeze_dim) | 
					
						
						|  | k_embed = (k * k_cos) + (rotate_half(k) * k_sin) | 
					
						
						|  | else: | 
					
						
						|  | k_embed = (k * q_cos) + (rotate_half(k) * q_sin) | 
					
						
						|  | return q_embed, k_embed | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class T5Attention(nn.Module): | 
					
						
						|  | def __init__(self, config: T5Config, has_relative_attention_bias=False, is_causal=False): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config=config | 
					
						
						|  | self.is_decoder = config.is_decoder | 
					
						
						|  | self.has_relative_attention_bias = False | 
					
						
						|  | self.relative_attention_num_buckets = config.relative_attention_num_buckets | 
					
						
						|  | self.relative_attention_max_distance = config.relative_attention_max_distance | 
					
						
						|  | self.d_model = config.d_model | 
					
						
						|  | self.key_value_proj_dim = config.d_kv | 
					
						
						|  | self.n_heads = config.num_heads | 
					
						
						|  | self.dropout = config.dropout_rate | 
					
						
						|  | self.inner_dim = self.n_heads * self.key_value_proj_dim | 
					
						
						|  | self.rope_theta = config.rope_theta | 
					
						
						|  | self.is_causal = is_causal | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.q = nn.Linear(self.d_model, self.inner_dim, bias=False) | 
					
						
						|  | self.k = nn.Linear(self.d_model, self.inner_dim, bias=False) | 
					
						
						|  | self.v = nn.Linear(self.d_model, self.inner_dim, bias=False) | 
					
						
						|  | self.o = nn.Linear(self.inner_dim, self.d_model, bias=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.pruned_heads = set() | 
					
						
						|  | self.gradient_checkpointing = False | 
					
						
						|  | self._init_rope() | 
					
						
						|  |  | 
					
						
						|  | def _init_rope(self): | 
					
						
						|  | if self.config.rope_scaling is None: | 
					
						
						|  | self.rotary_emb = T5RotaryEmbedding( | 
					
						
						|  | self.key_value_proj_dim, | 
					
						
						|  | max_position_embeddings=self.config.max_position_embeddings, | 
					
						
						|  | base=self.rope_theta, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | scaling_type = self.config.rope_scaling["type"] | 
					
						
						|  | scaling_factor = self.config.rope_scaling["factor"] | 
					
						
						|  | if scaling_type == "linear": | 
					
						
						|  | self.rotary_emb = T5LinearScalingRotaryEmbedding( | 
					
						
						|  | self.attention_head_size, | 
					
						
						|  | max_position_embeddings=self.max_position_embeddings, | 
					
						
						|  | scaling_factor=scaling_factor, | 
					
						
						|  | base=self.rope_theta, | 
					
						
						|  | ) | 
					
						
						|  | elif scaling_type == "dynamic": | 
					
						
						|  | self.rotary_emb = T5DynamicNTKScalingRotaryEmbedding( | 
					
						
						|  | self.attention_head_size, | 
					
						
						|  | max_position_embeddings=self.max_position_embeddings, | 
					
						
						|  | scaling_factor=scaling_factor, | 
					
						
						|  | base=self.rope_theta, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f"Unknown RoPE scaling type {scaling_type}") | 
					
						
						|  |  | 
					
						
						|  | def prune_heads(self, heads): | 
					
						
						|  | if len(heads) == 0: | 
					
						
						|  | return | 
					
						
						|  | heads, index = find_pruneable_heads_and_indices( | 
					
						
						|  | heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.q = prune_linear_layer(self.q, index) | 
					
						
						|  | self.k = prune_linear_layer(self.k, index) | 
					
						
						|  | self.v = prune_linear_layer(self.v, index) | 
					
						
						|  | self.o = prune_linear_layer(self.o, index, dim=1) | 
					
						
						|  |  | 
					
						
						|  | self.n_heads = self.n_heads - len(heads) | 
					
						
						|  | self.inner_dim = self.key_value_proj_dim * self.n_heads | 
					
						
						|  | self.pruned_heads = self.pruned_heads.union(heads) | 
					
						
						|  |  | 
					
						
						|  | @staticmethod | 
					
						
						|  | def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): | 
					
						
						|  | """ | 
					
						
						|  | Adapted from Mesh Tensorflow: | 
					
						
						|  | https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 | 
					
						
						|  |  | 
					
						
						|  | Translate relative position to a bucket number for relative attention. The relative position is defined as | 
					
						
						|  | memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to | 
					
						
						|  | position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for | 
					
						
						|  | small absolute relative_position and larger buckets for larger absolute relative_positions. All relative | 
					
						
						|  | positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. | 
					
						
						|  | This should allow for more graceful generalization to longer sequences than the model has been trained on | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | relative_position: an int32 Tensor | 
					
						
						|  | bidirectional: a boolean - whether the attention is bidirectional | 
					
						
						|  | num_buckets: an integer | 
					
						
						|  | max_distance: an integer | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets) | 
					
						
						|  | """ | 
					
						
						|  | relative_buckets = 0 | 
					
						
						|  | if bidirectional: | 
					
						
						|  | num_buckets //= 2 | 
					
						
						|  | relative_buckets += (relative_position > 0).to(torch.long) * num_buckets | 
					
						
						|  | relative_position = torch.abs(relative_position) | 
					
						
						|  | else: | 
					
						
						|  | relative_position = -torch.min(relative_position, torch.zeros_like(relative_position)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | max_exact = num_buckets // 2 | 
					
						
						|  | is_small = relative_position < max_exact | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | relative_position_if_large = max_exact + ( | 
					
						
						|  | torch.log(relative_position.float() / max_exact) | 
					
						
						|  | / math.log(max_distance / max_exact) | 
					
						
						|  | * (num_buckets - max_exact) | 
					
						
						|  | ).to(torch.long) | 
					
						
						|  | relative_position_if_large = torch.min( | 
					
						
						|  | relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | relative_buckets += torch.where(is_small, relative_position, relative_position_if_large) | 
					
						
						|  | return relative_buckets | 
					
						
						|  |  | 
					
						
						|  | def compute_bias(self, query_length, key_length, device=None): | 
					
						
						|  | """Compute binned relative position bias""" | 
					
						
						|  | if device is None: | 
					
						
						|  | device = self.relative_attention_bias.weight.device | 
					
						
						|  | context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None] | 
					
						
						|  | memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :] | 
					
						
						|  | relative_position = memory_position - context_position | 
					
						
						|  | relative_position_bucket = self._relative_position_bucket( | 
					
						
						|  | relative_position, | 
					
						
						|  | bidirectional=(not self.is_decoder), | 
					
						
						|  | num_buckets=self.relative_attention_num_buckets, | 
					
						
						|  | max_distance=self.relative_attention_max_distance, | 
					
						
						|  | ) | 
					
						
						|  | values = self.relative_attention_bias(relative_position_bucket) | 
					
						
						|  | values = values.permute([2, 0, 1]).unsqueeze(0) | 
					
						
						|  | return values | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states, | 
					
						
						|  | mask=None, | 
					
						
						|  | key_value_states=None, | 
					
						
						|  | position_bias=None, | 
					
						
						|  | past_key_value=None, | 
					
						
						|  | layer_head_mask=None, | 
					
						
						|  | query_length=None, | 
					
						
						|  | use_cache=False, | 
					
						
						|  | output_attentions=False, | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states). | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | batch_size, seq_length = hidden_states.shape[:2] | 
					
						
						|  |  | 
					
						
						|  | real_seq_length = seq_length | 
					
						
						|  |  | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  | if len(past_key_value) != 2: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states" | 
					
						
						|  | ) | 
					
						
						|  | real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length | 
					
						
						|  |  | 
					
						
						|  | key_length = real_seq_length if key_value_states is None else key_value_states.shape[1] | 
					
						
						|  |  | 
					
						
						|  | def shape(states): | 
					
						
						|  | """projection""" | 
					
						
						|  | return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | def unshape(states): | 
					
						
						|  | """reshape""" | 
					
						
						|  | return states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim) | 
					
						
						|  |  | 
					
						
						|  | def project(hidden_states, proj_layer, key_value_states, past_key_value): | 
					
						
						|  | """projects hidden states correctly to key/query states""" | 
					
						
						|  | if key_value_states is None: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states = shape(proj_layer(hidden_states)) | 
					
						
						|  | elif past_key_value is None: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states = shape(proj_layer(key_value_states)) | 
					
						
						|  |  | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  | if key_value_states is None: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states = torch.cat([past_key_value, hidden_states], dim=2) | 
					
						
						|  | elif past_key_value.shape[2] != key_value_states.shape[1]: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states = shape(proj_layer(key_value_states)) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | hidden_states = past_key_value | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | query_states = shape(self.q(hidden_states)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | key_states = project( | 
					
						
						|  | hidden_states, self.k, key_value_states, past_key_value[0] if past_key_value is not None else None | 
					
						
						|  | ) | 
					
						
						|  | value_states = project( | 
					
						
						|  | hidden_states, self.v, key_value_states, past_key_value[1] if past_key_value is not None else None | 
					
						
						|  | ) | 
					
						
						|  | kv_seq_len = key_states.shape[-2] | 
					
						
						|  | cos, sin = self.rotary_emb(value_states, seq_len=max(kv_seq_len, seq_length)) | 
					
						
						|  | query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_bias) | 
					
						
						|  |  | 
					
						
						|  | scores = torch.matmul( | 
					
						
						|  | query_states, key_states.transpose(3, 2) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if mask is not None: | 
					
						
						|  |  | 
					
						
						|  | scores += mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as( | 
					
						
						|  | scores | 
					
						
						|  | ) | 
					
						
						|  | attn_weights = nn.functional.dropout( | 
					
						
						|  | attn_weights, p=self.dropout, training=self.training | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if layer_head_mask is not None: | 
					
						
						|  | attn_weights = attn_weights * layer_head_mask | 
					
						
						|  |  | 
					
						
						|  | attn_output = unshape(torch.matmul(attn_weights, value_states)) | 
					
						
						|  | attn_output = self.o(attn_output) | 
					
						
						|  |  | 
					
						
						|  | present_key_value_state = (key_states, value_states) if (self.is_decoder and use_cache) else None | 
					
						
						|  | outputs = (attn_output,) + (present_key_value_state,) + (position_bias,) | 
					
						
						|  |  | 
					
						
						|  | if output_attentions: | 
					
						
						|  | outputs = outputs + (attn_weights,) | 
					
						
						|  | return outputs | 
					
						
						|  |  | 
					
						
						|  | class T5FlashAttention2(T5Attention): | 
					
						
						|  | def __init__(self, *args, **kwargs): | 
					
						
						|  | super().__init__(*args, **kwargs) | 
					
						
						|  | self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() | 
					
						
						|  |  | 
					
						
						|  | def _init_rope(self): | 
					
						
						|  | if self.config.rope_scaling is None: | 
					
						
						|  | self.rotary_emb = T5RotaryEmbedding( | 
					
						
						|  | self.key_value_proj_dim, | 
					
						
						|  | max_position_embeddings=self.config.max_position_embeddings, | 
					
						
						|  | base=self.rope_theta, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | scaling_type = self.config.rope_scaling["type"] | 
					
						
						|  | scaling_factor = self.config.rope_scaling["factor"] | 
					
						
						|  | if scaling_type == "linear": | 
					
						
						|  | self.rotary_emb = T5LinearScalingRotaryEmbedding( | 
					
						
						|  | self.attention_head_size, | 
					
						
						|  | max_position_embeddings=self.max_position_embeddings, | 
					
						
						|  | scaling_factor=scaling_factor, | 
					
						
						|  | base=self.rope_theta, | 
					
						
						|  | ) | 
					
						
						|  | elif scaling_type == "dynamic": | 
					
						
						|  | self.rotary_emb = T5DynamicNTKScalingRotaryEmbedding( | 
					
						
						|  | self.attention_head_size, | 
					
						
						|  | max_position_embeddings=self.max_position_embeddings, | 
					
						
						|  | scaling_factor=scaling_factor, | 
					
						
						|  | base=self.rope_theta, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f"Unknown RoPE scaling type {scaling_type}") | 
					
						
						|  |  | 
					
						
						|  | def prune_heads(self, heads): | 
					
						
						|  | if len(heads) == 0: | 
					
						
						|  | return | 
					
						
						|  | heads, index = find_pruneable_heads_and_indices( | 
					
						
						|  | heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.q = prune_linear_layer(self.q, index) | 
					
						
						|  | self.k = prune_linear_layer(self.k, index) | 
					
						
						|  | self.v = prune_linear_layer(self.v, index) | 
					
						
						|  | self.o = prune_linear_layer(self.o, index, dim=1) | 
					
						
						|  |  | 
					
						
						|  | self.n_heads = self.n_heads - len(heads) | 
					
						
						|  | self.inner_dim = self.key_value_proj_dim * self.n_heads | 
					
						
						|  | self.pruned_heads = self.pruned_heads.union(heads) | 
					
						
						|  |  | 
					
						
						|  | @staticmethod | 
					
						
						|  | def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): | 
					
						
						|  | """ | 
					
						
						|  | Adapted from Mesh Tensorflow: | 
					
						
						|  | https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 | 
					
						
						|  |  | 
					
						
						|  | Translate relative position to a bucket number for relative attention. The relative position is defined as | 
					
						
						|  | memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to | 
					
						
						|  | position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for | 
					
						
						|  | small absolute relative_position and larger buckets for larger absolute relative_positions. All relative | 
					
						
						|  | positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. | 
					
						
						|  | This should allow for more graceful generalization to longer sequences than the model has been trained on | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | relative_position: an int32 Tensor | 
					
						
						|  | bidirectional: a boolean - whether the attention is bidirectional | 
					
						
						|  | num_buckets: an integer | 
					
						
						|  | max_distance: an integer | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets) | 
					
						
						|  | """ | 
					
						
						|  | relative_buckets = 0 | 
					
						
						|  | if bidirectional: | 
					
						
						|  | num_buckets //= 2 | 
					
						
						|  | relative_buckets += (relative_position > 0).to(torch.long) * num_buckets | 
					
						
						|  | relative_position = torch.abs(relative_position) | 
					
						
						|  | else: | 
					
						
						|  | relative_position = -torch.min(relative_position, torch.zeros_like(relative_position)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | max_exact = num_buckets // 2 | 
					
						
						|  | is_small = relative_position < max_exact | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | relative_position_if_large = max_exact + ( | 
					
						
						|  | torch.log(relative_position.float() / max_exact) | 
					
						
						|  | / math.log(max_distance / max_exact) | 
					
						
						|  | * (num_buckets - max_exact) | 
					
						
						|  | ).to(torch.long) | 
					
						
						|  | relative_position_if_large = torch.min( | 
					
						
						|  | relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | relative_buckets += torch.where(is_small, relative_position, relative_position_if_large) | 
					
						
						|  | return relative_buckets | 
					
						
						|  |  | 
					
						
						|  | def compute_bias(self, query_length, key_length, device=None): | 
					
						
						|  | """Compute binned relative position bias""" | 
					
						
						|  | if device is None: | 
					
						
						|  | device = self.relative_attention_bias.weight.device | 
					
						
						|  | context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None] | 
					
						
						|  | memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :] | 
					
						
						|  | relative_position = memory_position - context_position | 
					
						
						|  | relative_position_bucket = self._relative_position_bucket( | 
					
						
						|  | relative_position, | 
					
						
						|  | bidirectional=(not self.is_decoder), | 
					
						
						|  | num_buckets=self.relative_attention_num_buckets, | 
					
						
						|  | max_distance=self.relative_attention_max_distance, | 
					
						
						|  | ) | 
					
						
						|  | values = self.relative_attention_bias(relative_position_bucket) | 
					
						
						|  | values = values.permute([2, 0, 1]).unsqueeze(0) | 
					
						
						|  | return values | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states, | 
					
						
						|  | mask=None, | 
					
						
						|  | key_value_states=None, | 
					
						
						|  | position_bias=None, | 
					
						
						|  | past_key_value=None, | 
					
						
						|  | layer_head_mask=None, | 
					
						
						|  | query_length=None, | 
					
						
						|  | use_cache=False, | 
					
						
						|  | output_attentions=False, | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states). | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | batch_size, seq_length = hidden_states.shape[:2] | 
					
						
						|  |  | 
					
						
						|  | real_seq_length = seq_length | 
					
						
						|  |  | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  | if len(past_key_value) != 2: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states" | 
					
						
						|  | ) | 
					
						
						|  | real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length | 
					
						
						|  |  | 
					
						
						|  | key_length = real_seq_length if key_value_states is None else key_value_states.shape[1] | 
					
						
						|  |  | 
					
						
						|  | def shape(states): | 
					
						
						|  | """projection""" | 
					
						
						|  | return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | def unshape(states): | 
					
						
						|  | """reshape""" | 
					
						
						|  | return states.contiguous().view(batch_size, -1, self.inner_dim) | 
					
						
						|  |  | 
					
						
						|  | def project(hidden_states, proj_layer, key_value_states, past_key_value): | 
					
						
						|  | """projects hidden states correctly to key/query states""" | 
					
						
						|  | if key_value_states is None: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states = shape(proj_layer(hidden_states)) | 
					
						
						|  | elif past_key_value is None: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states = shape(proj_layer(key_value_states)) | 
					
						
						|  |  | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  | if key_value_states is None: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states = torch.cat([past_key_value, hidden_states], dim=2) | 
					
						
						|  | elif past_key_value.shape[2] != key_value_states.shape[1]: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states = shape(proj_layer(key_value_states)) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | hidden_states = past_key_value | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | query_states = shape(self.q(hidden_states)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | key_states = project( | 
					
						
						|  | hidden_states, self.k, key_value_states, past_key_value[0] if past_key_value is not None else None | 
					
						
						|  | ) | 
					
						
						|  | value_states = project( | 
					
						
						|  | hidden_states, self.v, key_value_states, past_key_value[1] if past_key_value is not None else None | 
					
						
						|  | ) | 
					
						
						|  | kv_seq_len = key_states.shape[-2] | 
					
						
						|  |  | 
					
						
						|  | cos, sin = self.rotary_emb(value_states, seq_len=max(kv_seq_len, seq_length)) | 
					
						
						|  | query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_bias) | 
					
						
						|  |  | 
					
						
						|  | attn_output = self._flash_attention_forward( | 
					
						
						|  | query_states.transpose(1, 2), | 
					
						
						|  | key_states.transpose(1, 2), | 
					
						
						|  | value_states.transpose(1, 2), | 
					
						
						|  | mask, seq_length, dropout=self.dropout | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attn_output = self.o(unshape(attn_output)) | 
					
						
						|  |  | 
					
						
						|  | present_key_value_state = (key_states, value_states) if (self.is_decoder and use_cache) else None | 
					
						
						|  | outputs = (attn_output,) + (present_key_value_state,) + (position_bias,) | 
					
						
						|  |  | 
					
						
						|  | if output_attentions: | 
					
						
						|  | outputs = outputs + (attn_output,) | 
					
						
						|  | return outputs | 
					
						
						|  |  | 
					
						
						|  | def _flash_attention_forward( | 
					
						
						|  | self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None | 
					
						
						|  | ): | 
					
						
						|  | if not self._flash_attn_uses_top_left_mask: | 
					
						
						|  | causal = self.is_causal | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | causal = self.is_causal and query_length != 1 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | batch_size = query_states.shape[0] | 
					
						
						|  | query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( | 
					
						
						|  | query_states, key_states, value_states, attention_mask, query_length | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | cu_seqlens_q, cu_seqlens_k = cu_seq_lens | 
					
						
						|  | max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens | 
					
						
						|  |  | 
					
						
						|  | attn_output_unpad = flash_attn_varlen_func( | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | cu_seqlens_q=cu_seqlens_q, | 
					
						
						|  | cu_seqlens_k=cu_seqlens_k, | 
					
						
						|  | max_seqlen_q=max_seqlen_in_batch_q, | 
					
						
						|  | max_seqlen_k=max_seqlen_in_batch_k, | 
					
						
						|  | dropout_p=dropout, | 
					
						
						|  | softmax_scale=softmax_scale, | 
					
						
						|  | causal=causal, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) | 
					
						
						|  | else: | 
					
						
						|  | attn_output = flash_attn_func( | 
					
						
						|  | query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return attn_output | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): | 
					
						
						|  | indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) | 
					
						
						|  | batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape | 
					
						
						|  |  | 
					
						
						|  | key_layer = index_first_axis( | 
					
						
						|  | key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k | 
					
						
						|  | ) | 
					
						
						|  | value_layer = index_first_axis( | 
					
						
						|  | value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k | 
					
						
						|  | ) | 
					
						
						|  | if query_length == kv_seq_len: | 
					
						
						|  | query_layer = index_first_axis( | 
					
						
						|  | query_layer.reshape(batch_size * kv_seq_len, self.n_heads, head_dim), indices_k | 
					
						
						|  | ) | 
					
						
						|  | cu_seqlens_q = cu_seqlens_k | 
					
						
						|  | max_seqlen_in_batch_q = max_seqlen_in_batch_k | 
					
						
						|  | indices_q = indices_k | 
					
						
						|  | elif query_length == 1: | 
					
						
						|  | max_seqlen_in_batch_q = 1 | 
					
						
						|  | cu_seqlens_q = torch.arange( | 
					
						
						|  | batch_size + 1, dtype=torch.int32, device=query_layer.device | 
					
						
						|  | ) | 
					
						
						|  | indices_q = cu_seqlens_q[:-1] | 
					
						
						|  | query_layer = query_layer.squeeze(1) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | attention_mask = attention_mask[:, -query_length:] | 
					
						
						|  | query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) | 
					
						
						|  |  | 
					
						
						|  | return ( | 
					
						
						|  | query_layer, | 
					
						
						|  | key_layer, | 
					
						
						|  | value_layer, | 
					
						
						|  | indices_q, | 
					
						
						|  | (cu_seqlens_q, cu_seqlens_k), | 
					
						
						|  | (max_seqlen_in_batch_q, max_seqlen_in_batch_k), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | class T5SdpaAttention(T5Attention): | 
					
						
						|  | def _init_rope(self): | 
					
						
						|  | if self.config.rope_scaling is None: | 
					
						
						|  | self.rotary_emb = T5RotaryEmbedding( | 
					
						
						|  | self.key_value_proj_dim, | 
					
						
						|  | max_position_embeddings=self.config.max_position_embeddings, | 
					
						
						|  | base=self.rope_theta, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | scaling_type = self.config.rope_scaling["type"] | 
					
						
						|  | scaling_factor = self.config.rope_scaling["factor"] | 
					
						
						|  | if scaling_type == "linear": | 
					
						
						|  | self.rotary_emb = T5LinearScalingRotaryEmbedding( | 
					
						
						|  | self.attention_head_size, | 
					
						
						|  | max_position_embeddings=self.max_position_embeddings, | 
					
						
						|  | scaling_factor=scaling_factor, | 
					
						
						|  | base=self.rope_theta, | 
					
						
						|  | ) | 
					
						
						|  | elif scaling_type == "dynamic": | 
					
						
						|  | self.rotary_emb = T5DynamicNTKScalingRotaryEmbedding( | 
					
						
						|  | self.attention_head_size, | 
					
						
						|  | max_position_embeddings=self.max_position_embeddings, | 
					
						
						|  | scaling_factor=scaling_factor, | 
					
						
						|  | base=self.rope_theta, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f"Unknown RoPE scaling type {scaling_type}") | 
					
						
						|  |  | 
					
						
						|  | def prune_heads(self, heads): | 
					
						
						|  | if len(heads) == 0: | 
					
						
						|  | return | 
					
						
						|  | heads, index = find_pruneable_heads_and_indices( | 
					
						
						|  | heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.q = prune_linear_layer(self.q, index) | 
					
						
						|  | self.k = prune_linear_layer(self.k, index) | 
					
						
						|  | self.v = prune_linear_layer(self.v, index) | 
					
						
						|  | self.o = prune_linear_layer(self.o, index, dim=1) | 
					
						
						|  |  | 
					
						
						|  | self.n_heads = self.n_heads - len(heads) | 
					
						
						|  | self.inner_dim = self.key_value_proj_dim * self.n_heads | 
					
						
						|  | self.pruned_heads = self.pruned_heads.union(heads) | 
					
						
						|  |  | 
					
						
						|  | @staticmethod | 
					
						
						|  | def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): | 
					
						
						|  | """ | 
					
						
						|  | Adapted from Mesh Tensorflow: | 
					
						
						|  | https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 | 
					
						
						|  |  | 
					
						
						|  | Translate relative position to a bucket number for relative attention. The relative position is defined as | 
					
						
						|  | memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to | 
					
						
						|  | position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for | 
					
						
						|  | small absolute relative_position and larger buckets for larger absolute relative_positions. All relative | 
					
						
						|  | positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. | 
					
						
						|  | This should allow for more graceful generalization to longer sequences than the model has been trained on | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | relative_position: an int32 Tensor | 
					
						
						|  | bidirectional: a boolean - whether the attention is bidirectional | 
					
						
						|  | num_buckets: an integer | 
					
						
						|  | max_distance: an integer | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets) | 
					
						
						|  | """ | 
					
						
						|  | relative_buckets = 0 | 
					
						
						|  | if bidirectional: | 
					
						
						|  | num_buckets //= 2 | 
					
						
						|  | relative_buckets += (relative_position > 0).to(torch.long) * num_buckets | 
					
						
						|  | relative_position = torch.abs(relative_position) | 
					
						
						|  | else: | 
					
						
						|  | relative_position = -torch.min(relative_position, torch.zeros_like(relative_position)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | max_exact = num_buckets // 2 | 
					
						
						|  | is_small = relative_position < max_exact | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | relative_position_if_large = max_exact + ( | 
					
						
						|  | torch.log(relative_position.float() / max_exact) | 
					
						
						|  | / math.log(max_distance / max_exact) | 
					
						
						|  | * (num_buckets - max_exact) | 
					
						
						|  | ).to(torch.long) | 
					
						
						|  | relative_position_if_large = torch.min( | 
					
						
						|  | relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | relative_buckets += torch.where(is_small, relative_position, relative_position_if_large) | 
					
						
						|  | return relative_buckets | 
					
						
						|  |  | 
					
						
						|  | def compute_bias(self, query_length, key_length, device=None): | 
					
						
						|  | """Compute binned relative position bias""" | 
					
						
						|  | if device is None: | 
					
						
						|  | device = self.relative_attention_bias.weight.device | 
					
						
						|  | context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None] | 
					
						
						|  | memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :] | 
					
						
						|  | relative_position = memory_position - context_position | 
					
						
						|  | relative_position_bucket = self._relative_position_bucket( | 
					
						
						|  | relative_position, | 
					
						
						|  | bidirectional=(not self.is_decoder), | 
					
						
						|  | num_buckets=self.relative_attention_num_buckets, | 
					
						
						|  | max_distance=self.relative_attention_max_distance, | 
					
						
						|  | ) | 
					
						
						|  | values = self.relative_attention_bias(relative_position_bucket) | 
					
						
						|  | values = values.permute([2, 0, 1]).unsqueeze(0) | 
					
						
						|  | return values | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states, | 
					
						
						|  | mask=None, | 
					
						
						|  | key_value_states=None, | 
					
						
						|  | position_bias=None, | 
					
						
						|  | past_key_value=None, | 
					
						
						|  | layer_head_mask=None, | 
					
						
						|  | query_length=None, | 
					
						
						|  | use_cache=False, | 
					
						
						|  | output_attentions=False, | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states). | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | batch_size, seq_length = hidden_states.shape[:2] | 
					
						
						|  |  | 
					
						
						|  | real_seq_length = seq_length | 
					
						
						|  |  | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  | if len(past_key_value) != 2: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states" | 
					
						
						|  | ) | 
					
						
						|  | real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length | 
					
						
						|  |  | 
					
						
						|  | key_length = real_seq_length if key_value_states is None else key_value_states.shape[1] | 
					
						
						|  |  | 
					
						
						|  | def shape(states): | 
					
						
						|  | """projection""" | 
					
						
						|  | return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | def unshape(states): | 
					
						
						|  | """reshape""" | 
					
						
						|  | return states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim) | 
					
						
						|  |  | 
					
						
						|  | def project(hidden_states, proj_layer, key_value_states, past_key_value): | 
					
						
						|  | """projects hidden states correctly to key/query states""" | 
					
						
						|  | if key_value_states is None: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states = shape(proj_layer(hidden_states)) | 
					
						
						|  | elif past_key_value is None: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states = shape(proj_layer(key_value_states)) | 
					
						
						|  |  | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  | if key_value_states is None: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states = torch.cat([past_key_value, hidden_states], dim=2) | 
					
						
						|  | elif past_key_value.shape[2] != key_value_states.shape[1]: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states = shape(proj_layer(key_value_states)) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | hidden_states = past_key_value | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | query_states = shape(self.q(hidden_states)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | key_states = project( | 
					
						
						|  | hidden_states, self.k, key_value_states, past_key_value[0] if past_key_value is not None else None | 
					
						
						|  | ) | 
					
						
						|  | value_states = project( | 
					
						
						|  | hidden_states, self.v, key_value_states, past_key_value[1] if past_key_value is not None else None | 
					
						
						|  | ) | 
					
						
						|  | kv_seq_len = key_states.shape[-2] | 
					
						
						|  |  | 
					
						
						|  | cos, sin = self.rotary_emb(value_states, seq_len=max(kv_seq_len, seq_length)) | 
					
						
						|  | query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_bias) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attn_output = torch.nn.functional.scaled_dot_product_attention( | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | attn_mask=mask, | 
					
						
						|  | dropout_p=self.dropout if self.training else 0.0, | 
					
						
						|  | is_causal=self.is_causal and mask is None and seq_length > 1, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attn_output = self.o(unshape(attn_output)) | 
					
						
						|  |  | 
					
						
						|  | present_key_value_state = (key_states, value_states) if (self.is_decoder and use_cache) else None | 
					
						
						|  | outputs = (attn_output,) + (present_key_value_state,) + (position_bias,) | 
					
						
						|  |  | 
					
						
						|  | if output_attentions: | 
					
						
						|  | outputs = outputs + (attn_output,) | 
					
						
						|  | return outputs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | T5_ATTENTION_CLASSES = { | 
					
						
						|  | "eager": T5Attention, | 
					
						
						|  | "flash_attention_2": T5FlashAttention2, | 
					
						
						|  | 'sdpa': T5SdpaAttention | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | class T5LayerSelfAttention(nn.Module): | 
					
						
						|  | def __init__(self, config, has_relative_attention_bias=False): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.SelfAttention = T5_ATTENTION_CLASSES[config._attn_implementation](config, has_relative_attention_bias=has_relative_attention_bias, is_causal=config.is_decoder) | 
					
						
						|  | self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) | 
					
						
						|  | self.dropout = nn.Dropout(config.dropout_rate) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | position_bias=None, | 
					
						
						|  | layer_head_mask=None, | 
					
						
						|  | past_key_value=None, | 
					
						
						|  | use_cache=False, | 
					
						
						|  | output_attentions=False, | 
					
						
						|  | ): | 
					
						
						|  | normed_hidden_states = self.layer_norm(hidden_states) | 
					
						
						|  | attention_output = self.SelfAttention( | 
					
						
						|  | normed_hidden_states, | 
					
						
						|  | mask=attention_mask, | 
					
						
						|  | position_bias=position_bias, | 
					
						
						|  | layer_head_mask=layer_head_mask, | 
					
						
						|  | past_key_value=past_key_value, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | ) | 
					
						
						|  | hidden_states = hidden_states + self.dropout(attention_output[0]) | 
					
						
						|  | outputs = (hidden_states,) + attention_output[1:] | 
					
						
						|  | return outputs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class T5LayerCrossAttention(nn.Module): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.EncDecAttention = T5_ATTENTION_CLASSES[config._attn_implementation](config, has_relative_attention_bias=False) | 
					
						
						|  | self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) | 
					
						
						|  | self.dropout = nn.Dropout(config.dropout_rate) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states, | 
					
						
						|  | key_value_states, | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | position_bias=None, | 
					
						
						|  | layer_head_mask=None, | 
					
						
						|  | past_key_value=None, | 
					
						
						|  | use_cache=False, | 
					
						
						|  | query_length=None, | 
					
						
						|  | output_attentions=False, | 
					
						
						|  | ): | 
					
						
						|  | normed_hidden_states = self.layer_norm(hidden_states) | 
					
						
						|  | attention_output = self.EncDecAttention( | 
					
						
						|  | normed_hidden_states, | 
					
						
						|  | mask=attention_mask, | 
					
						
						|  | key_value_states=key_value_states, | 
					
						
						|  | position_bias=position_bias, | 
					
						
						|  | layer_head_mask=layer_head_mask, | 
					
						
						|  | past_key_value=past_key_value, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | query_length=query_length, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | ) | 
					
						
						|  | layer_output = hidden_states + self.dropout(attention_output[0]) | 
					
						
						|  | outputs = (layer_output,) + attention_output[1:] | 
					
						
						|  | return outputs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class T5Block(nn.Module): | 
					
						
						|  | def __init__(self, config, has_relative_attention_bias=False): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.is_decoder = config.is_decoder | 
					
						
						|  | self.layer = nn.ModuleList() | 
					
						
						|  | self.layer.append(T5LayerSelfAttention(config, has_relative_attention_bias=has_relative_attention_bias)) | 
					
						
						|  | if self.is_decoder: | 
					
						
						|  | self.layer.append(T5LayerCrossAttention(config)) | 
					
						
						|  |  | 
					
						
						|  | self.layer.append(T5LayerFF(config)) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | position_bias=None, | 
					
						
						|  | encoder_hidden_states=None, | 
					
						
						|  | encoder_attention_mask=None, | 
					
						
						|  | encoder_decoder_position_bias=None, | 
					
						
						|  | layer_head_mask=None, | 
					
						
						|  | cross_attn_layer_head_mask=None, | 
					
						
						|  | past_key_value=None, | 
					
						
						|  | use_cache=False, | 
					
						
						|  | output_attentions=False, | 
					
						
						|  | return_dict=True, | 
					
						
						|  | ): | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  | if not self.is_decoder: | 
					
						
						|  | logger.warning("`past_key_values` is passed to the encoder. Please make sure this is intended.") | 
					
						
						|  | expected_num_past_key_values = 2 if encoder_hidden_states is None else 4 | 
					
						
						|  |  | 
					
						
						|  | if len(past_key_value) != expected_num_past_key_values: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"There should be {expected_num_past_key_values} past states. " | 
					
						
						|  | f"{'2 (key / value) for cross attention. ' if expected_num_past_key_values == 4 else ''}" | 
					
						
						|  | f"Got {len(past_key_value)} past key / value states" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self_attn_past_key_value = past_key_value[:2] | 
					
						
						|  | cross_attn_past_key_value = past_key_value[2:] | 
					
						
						|  | else: | 
					
						
						|  | self_attn_past_key_value, cross_attn_past_key_value = None, None | 
					
						
						|  |  | 
					
						
						|  | self_attention_outputs = self.layer[0]( | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_bias=position_bias, | 
					
						
						|  | layer_head_mask=layer_head_mask, | 
					
						
						|  | past_key_value=self_attn_past_key_value, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | ) | 
					
						
						|  | hidden_states, present_key_value_state = self_attention_outputs[:2] | 
					
						
						|  | attention_outputs = self_attention_outputs[2:] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if hidden_states.dtype == torch.float16: | 
					
						
						|  | clamp_value = torch.where( | 
					
						
						|  | torch.isinf(hidden_states).any(), | 
					
						
						|  | torch.finfo(hidden_states.dtype).max - 1000, | 
					
						
						|  | torch.finfo(hidden_states.dtype).max, | 
					
						
						|  | ) | 
					
						
						|  | hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) | 
					
						
						|  |  | 
					
						
						|  | do_cross_attention = self.is_decoder and encoder_hidden_states is not None | 
					
						
						|  | if do_cross_attention: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if present_key_value_state is not None: | 
					
						
						|  | query_length = present_key_value_state[0].shape[2] | 
					
						
						|  | else: | 
					
						
						|  | query_length = None | 
					
						
						|  |  | 
					
						
						|  | cross_attention_outputs = self.layer[1]( | 
					
						
						|  | hidden_states, | 
					
						
						|  | key_value_states=encoder_hidden_states, | 
					
						
						|  | attention_mask=encoder_attention_mask, | 
					
						
						|  | position_bias=position_bias, | 
					
						
						|  | layer_head_mask=cross_attn_layer_head_mask, | 
					
						
						|  | past_key_value=cross_attn_past_key_value, | 
					
						
						|  | query_length=query_length, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | ) | 
					
						
						|  | hidden_states = cross_attention_outputs[0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if hidden_states.dtype == torch.float16: | 
					
						
						|  | clamp_value = torch.where( | 
					
						
						|  | torch.isinf(hidden_states).any(), | 
					
						
						|  | torch.finfo(hidden_states.dtype).max - 1000, | 
					
						
						|  | torch.finfo(hidden_states.dtype).max, | 
					
						
						|  | ) | 
					
						
						|  | hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if present_key_value_state is not None: | 
					
						
						|  | present_key_value_state = present_key_value_state + cross_attention_outputs[1] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attention_outputs = attention_outputs + cross_attention_outputs[2:] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states = self.layer[-1](hidden_states) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if hidden_states.dtype == torch.float16: | 
					
						
						|  | clamp_value = torch.where( | 
					
						
						|  | torch.isinf(hidden_states).any(), | 
					
						
						|  | torch.finfo(hidden_states.dtype).max - 1000, | 
					
						
						|  | torch.finfo(hidden_states.dtype).max, | 
					
						
						|  | ) | 
					
						
						|  | hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) | 
					
						
						|  |  | 
					
						
						|  | outputs = (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | if use_cache: | 
					
						
						|  | outputs = outputs + (present_key_value_state,) + attention_outputs | 
					
						
						|  | else: | 
					
						
						|  | outputs = outputs + attention_outputs | 
					
						
						|  |  | 
					
						
						|  | return outputs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class T5ClassificationHead(nn.Module): | 
					
						
						|  | """Head for sentence-level classification tasks.""" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: T5Config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.dense = nn.Linear(config.d_model, config.d_model) | 
					
						
						|  | self.dropout = nn.Dropout(p=config.classifier_dropout) | 
					
						
						|  | self.out_proj = nn.Linear(config.d_model, config.num_labels) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | hidden_states = self.dropout(hidden_states) | 
					
						
						|  | hidden_states = self.dense(hidden_states) | 
					
						
						|  | hidden_states = torch.tanh(hidden_states) | 
					
						
						|  | hidden_states = self.dropout(hidden_states) | 
					
						
						|  | hidden_states = self.out_proj(hidden_states) | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class T5PreTrainedModel(PreTrainedModel): | 
					
						
						|  | """ | 
					
						
						|  | An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | 
					
						
						|  | models. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | config_class = T5Config | 
					
						
						|  | load_tf_weights = load_tf_weights_in_t5 | 
					
						
						|  | base_model_prefix = "transformer" | 
					
						
						|  | is_parallelizable = True | 
					
						
						|  | supports_gradient_checkpointing = True | 
					
						
						|  | _no_split_modules = ["T5Block"] | 
					
						
						|  | _keep_in_fp32_modules = ["wo"] | 
					
						
						|  | _supports_flash_attn_2 = True | 
					
						
						|  | _supports_sdpa = True | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def dummy_inputs(self): | 
					
						
						|  | input_ids = torch.tensor(DUMMY_INPUTS) | 
					
						
						|  | input_mask = torch.tensor(DUMMY_MASK) | 
					
						
						|  | dummy_inputs = { | 
					
						
						|  | "decoder_input_ids": input_ids, | 
					
						
						|  | "input_ids": input_ids, | 
					
						
						|  | "decoder_attention_mask": input_mask, | 
					
						
						|  | } | 
					
						
						|  | return dummy_inputs | 
					
						
						|  |  | 
					
						
						|  | def _init_weights(self, module): | 
					
						
						|  | """Initialize the weights""" | 
					
						
						|  | factor = self.config.initializer_factor | 
					
						
						|  | if isinstance(module, T5LayerNorm): | 
					
						
						|  | module.weight.data.fill_(factor * 1.0) | 
					
						
						|  | elif isinstance( | 
					
						
						|  | module, | 
					
						
						|  | (T5Model, T5ForConditionalGeneration, T5EncoderModel, T5ForQuestionAnswering), | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0) | 
					
						
						|  | if hasattr(module, "lm_head") and not self.config.tie_word_embeddings: | 
					
						
						|  | module.lm_head.weight.data.normal_(mean=0.0, std=factor * 1.0) | 
					
						
						|  | if hasattr(module, "qa_outputs"): | 
					
						
						|  | module.qa_outputs.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) | 
					
						
						|  | module.qa_outputs.bias.data.zero_() | 
					
						
						|  | elif isinstance(module, T5ForTokenClassification): | 
					
						
						|  | if hasattr(module, "classifier"): | 
					
						
						|  | module.classifier.weight.data.normal_(mean=0.0, std=factor * 1.0) | 
					
						
						|  | module.classifier.bias.data.zero_() | 
					
						
						|  | elif isinstance(module, T5ClassificationHead): | 
					
						
						|  | module.dense.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) | 
					
						
						|  | if hasattr(module.dense, "bias") and module.dense.bias is not None: | 
					
						
						|  | module.dense.bias.data.zero_() | 
					
						
						|  | module.out_proj.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) | 
					
						
						|  | if hasattr(module.out_proj, "bias") and module.out_proj.bias is not None: | 
					
						
						|  | module.out_proj.bias.data.zero_() | 
					
						
						|  | elif isinstance(module, T5DenseActDense): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | module.wi.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) | 
					
						
						|  | if hasattr(module.wi, "bias") and module.wi.bias is not None: | 
					
						
						|  | module.wi.bias.data.zero_() | 
					
						
						|  | module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5)) | 
					
						
						|  | if hasattr(module.wo, "bias") and module.wo.bias is not None: | 
					
						
						|  | module.wo.bias.data.zero_() | 
					
						
						|  | elif isinstance(module, T5DenseGatedActDense): | 
					
						
						|  | module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) | 
					
						
						|  | if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None: | 
					
						
						|  | module.wi_0.bias.data.zero_() | 
					
						
						|  | module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) | 
					
						
						|  | if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None: | 
					
						
						|  | module.wi_1.bias.data.zero_() | 
					
						
						|  | module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5)) | 
					
						
						|  | if hasattr(module.wo, "bias") and module.wo.bias is not None: | 
					
						
						|  | module.wo.bias.data.zero_() | 
					
						
						|  | elif isinstance(module, T5Attention): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | d_model = self.config.d_model | 
					
						
						|  | key_value_proj_dim = self.config.d_kv | 
					
						
						|  | n_heads = self.config.num_heads | 
					
						
						|  | module.q.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5)) | 
					
						
						|  | module.k.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5)) | 
					
						
						|  | module.v.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5)) | 
					
						
						|  | module.o.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5)) | 
					
						
						|  | if module.has_relative_attention_bias: | 
					
						
						|  | module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5)) | 
					
						
						|  |  | 
					
						
						|  | def _shift_right(self, input_ids): | 
					
						
						|  | decoder_start_token_id = self.config.decoder_start_token_id | 
					
						
						|  | pad_token_id = self.config.pad_token_id | 
					
						
						|  |  | 
					
						
						|  | if decoder_start_token_id is None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "self.model.config.decoder_start_token_id has to be defined. In T5 it is usually set to the pad_token_id. " | 
					
						
						|  | "See T5 docs for more information." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if is_torch_fx_proxy(input_ids): | 
					
						
						|  |  | 
					
						
						|  | shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id) | 
					
						
						|  | shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1) | 
					
						
						|  | else: | 
					
						
						|  | shifted_input_ids = input_ids.new_zeros(input_ids.shape) | 
					
						
						|  | shifted_input_ids[..., 1:] = input_ids[..., :-1].clone() | 
					
						
						|  | shifted_input_ids[..., 0] = decoder_start_token_id | 
					
						
						|  |  | 
					
						
						|  | if pad_token_id is None: | 
					
						
						|  | raise ValueError("self.model.config.pad_token_id has to be defined.") | 
					
						
						|  |  | 
					
						
						|  | shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) | 
					
						
						|  |  | 
					
						
						|  | return shifted_input_ids | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class T5Stack(T5PreTrainedModel): | 
					
						
						|  | def __init__(self, config, embed_tokens=None): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  |  | 
					
						
						|  | self.embed_tokens = embed_tokens | 
					
						
						|  | self.is_decoder = config.is_decoder | 
					
						
						|  |  | 
					
						
						|  | self.block = nn.ModuleList( | 
					
						
						|  | [T5Block(config, has_relative_attention_bias=bool(i == 0)) for i in range(config.num_layers)] | 
					
						
						|  | ) | 
					
						
						|  | self.final_layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) | 
					
						
						|  | self.dropout = nn.Dropout(config.dropout_rate) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | self.model_parallel = False | 
					
						
						|  | self.device_map = None | 
					
						
						|  | self.gradient_checkpointing = False | 
					
						
						|  | self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" | 
					
						
						|  | self._use_sdpa = config._attn_implementation == "sdpa" | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings(PARALLELIZE_DOCSTRING) | 
					
						
						|  | def parallelize(self, device_map=None): | 
					
						
						|  | warnings.warn( | 
					
						
						|  | "`T5Stack.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your model" | 
					
						
						|  | " with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own" | 
					
						
						|  | " `device_map` but it needs to be a dictionary module_name to device, so for instance {'block.0': 0," | 
					
						
						|  | " 'block.1': 1, ...}", | 
					
						
						|  | FutureWarning, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.device_map = ( | 
					
						
						|  | get_device_map(len(self.block), range(torch.cuda.device_count())) if device_map is None else device_map | 
					
						
						|  | ) | 
					
						
						|  | assert_device_map(self.device_map, len(self.block)) | 
					
						
						|  | self.model_parallel = True | 
					
						
						|  | self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys())) | 
					
						
						|  | self.last_device = "cuda:" + str(max(self.device_map.keys())) | 
					
						
						|  |  | 
					
						
						|  | for k, v in self.device_map.items(): | 
					
						
						|  | for layer in v: | 
					
						
						|  | cuda_device = "cuda:" + str(k) | 
					
						
						|  | self.block[layer] = self.block[layer].to(cuda_device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.embed_tokens = self.embed_tokens.to(self.first_device) | 
					
						
						|  |  | 
					
						
						|  | self.final_layer_norm = self.final_layer_norm.to(self.last_device) | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings(DEPARALLELIZE_DOCSTRING) | 
					
						
						|  | def deparallelize(self): | 
					
						
						|  | warnings.warn( | 
					
						
						|  | "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.", | 
					
						
						|  | FutureWarning, | 
					
						
						|  | ) | 
					
						
						|  | self.model_parallel = False | 
					
						
						|  | self.device_map = None | 
					
						
						|  | self.first_device = "cpu" | 
					
						
						|  | self.last_device = "cpu" | 
					
						
						|  | for i in range(len(self.block)): | 
					
						
						|  | self.block[i] = self.block[i].to("cpu") | 
					
						
						|  | self.embed_tokens = self.embed_tokens.to("cpu") | 
					
						
						|  | self.final_layer_norm = self.final_layer_norm.to("cpu") | 
					
						
						|  | torch.cuda.empty_cache() | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.embed_tokens | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, new_embeddings): | 
					
						
						|  | self.embed_tokens = new_embeddings | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids=None, | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | encoder_hidden_states=None, | 
					
						
						|  | encoder_attention_mask=None, | 
					
						
						|  | inputs_embeds=None, | 
					
						
						|  | head_mask=None, | 
					
						
						|  | cross_attn_head_mask=None, | 
					
						
						|  | past_key_values=None, | 
					
						
						|  | use_cache=None, | 
					
						
						|  | output_attentions=None, | 
					
						
						|  | output_hidden_states=None, | 
					
						
						|  | return_dict=None, | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  | if self.model_parallel: | 
					
						
						|  | torch.cuda.set_device(self.first_device) | 
					
						
						|  | self.embed_tokens = self.embed_tokens.to(self.first_device) | 
					
						
						|  | use_cache = use_cache if use_cache is not None else self.config.use_cache | 
					
						
						|  | output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
						
						|  | output_hidden_states = ( | 
					
						
						|  | output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
						
						|  | ) | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | if input_ids is not None and inputs_embeds is not None: | 
					
						
						|  | err_msg_prefix = "decoder_" if self.is_decoder else "" | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time" | 
					
						
						|  | ) | 
					
						
						|  | elif input_ids is not None: | 
					
						
						|  | input_shape = input_ids.size() | 
					
						
						|  | input_ids = input_ids.view(-1, input_shape[-1]) | 
					
						
						|  | elif inputs_embeds is not None: | 
					
						
						|  | input_shape = inputs_embeds.size()[:-1] | 
					
						
						|  | else: | 
					
						
						|  | err_msg_prefix = "decoder_" if self.is_decoder else "" | 
					
						
						|  | raise ValueError(f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds") | 
					
						
						|  |  | 
					
						
						|  | if inputs_embeds is None: | 
					
						
						|  | if self.embed_tokens is None: | 
					
						
						|  | raise ValueError("You have to initialize the model with valid token embeddings") | 
					
						
						|  | inputs_embeds = self.embed_tokens(input_ids) | 
					
						
						|  |  | 
					
						
						|  | batch_size, seq_length = input_shape | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length | 
					
						
						|  |  | 
					
						
						|  | if use_cache is True: | 
					
						
						|  | if not self.is_decoder: | 
					
						
						|  | raise ValueError(f"`use_cache` can only be set to `True` if {self} is used as a decoder") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if past_key_values is None: | 
					
						
						|  | past_key_values = [None] * len(self.block) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self._use_flash_attention_2: | 
					
						
						|  | extended_attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None | 
					
						
						|  | elif self._use_sdpa: | 
					
						
						|  | if self.is_decoder: | 
					
						
						|  | extended_attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( | 
					
						
						|  | attention_mask, | 
					
						
						|  | input_shape, | 
					
						
						|  | inputs_embeds, | 
					
						
						|  | mask_seq_length - seq_length, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | extended_attention_mask = _prepare_4d_attention_mask_for_sdpa(attention_mask, inputs_embeds.dtype) | 
					
						
						|  | else: | 
					
						
						|  | if attention_mask is None: | 
					
						
						|  | attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device) | 
					
						
						|  | extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape) | 
					
						
						|  |  | 
					
						
						|  | if self.is_decoder and encoder_hidden_states is not None: | 
					
						
						|  | encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() | 
					
						
						|  | encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) | 
					
						
						|  | if encoder_attention_mask is not None: | 
					
						
						|  |  | 
					
						
						|  | if self._use_flash_attention_2: | 
					
						
						|  | if encoder_attention_mask is not None: | 
					
						
						|  | encoder_extended_attention_mask = encoder_attention_mask if 0 in encoder_attention_mask else None | 
					
						
						|  | elif self._use_sdpa: | 
					
						
						|  | encoder_extended_attention_mask = _prepare_4d_attention_mask_for_sdpa( | 
					
						
						|  | encoder_attention_mask, | 
					
						
						|  | inputs_embeds.dtype, | 
					
						
						|  | tgt_len=input_shape[-1], | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) | 
					
						
						|  | else: | 
					
						
						|  | if not self._use_sdpa and not self._use_flash_attention_2: | 
					
						
						|  | encoder_attention_mask = torch.ones( | 
					
						
						|  | encoder_hidden_shape, device=inputs_embeds.device, dtype=torch.long | 
					
						
						|  | ) | 
					
						
						|  | encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) | 
					
						
						|  | else: | 
					
						
						|  | encoder_extended_attention_mask = None | 
					
						
						|  | else: | 
					
						
						|  | encoder_extended_attention_mask = None | 
					
						
						|  |  | 
					
						
						|  | if self.gradient_checkpointing and self.training: | 
					
						
						|  | if use_cache: | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | 
					
						
						|  | ) | 
					
						
						|  | use_cache = False | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | head_mask = self.get_head_mask(head_mask, self.config.num_layers) | 
					
						
						|  | cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers) | 
					
						
						|  | present_key_value_states = () if use_cache else None | 
					
						
						|  | all_hidden_states = () if output_hidden_states else None | 
					
						
						|  | all_attentions = () if output_attentions else None | 
					
						
						|  | all_cross_attentions = () if (output_attentions and self.is_decoder) else None | 
					
						
						|  | position_bias = None | 
					
						
						|  | if position_bias is None: | 
					
						
						|  | position_bias = torch.arange( | 
					
						
						|  | 0, seq_length, dtype=torch.long, | 
					
						
						|  | ) | 
					
						
						|  | position_bias = position_bias.unsqueeze(0) | 
					
						
						|  |  | 
					
						
						|  | encoder_decoder_position_bias = None | 
					
						
						|  |  | 
					
						
						|  | hidden_states = self.dropout(inputs_embeds) | 
					
						
						|  |  | 
					
						
						|  | for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)): | 
					
						
						|  | layer_head_mask = head_mask[i] | 
					
						
						|  | cross_attn_layer_head_mask = cross_attn_head_mask[i] | 
					
						
						|  |  | 
					
						
						|  | if self.model_parallel: | 
					
						
						|  | torch.cuda.set_device(hidden_states.device) | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | attention_mask = attention_mask.to(hidden_states.device) | 
					
						
						|  | if position_bias is not None: | 
					
						
						|  | position_bias = position_bias.to(hidden_states.device) | 
					
						
						|  | if encoder_hidden_states is not None: | 
					
						
						|  | encoder_hidden_states = encoder_hidden_states.to(hidden_states.device) | 
					
						
						|  | if encoder_extended_attention_mask is not None: | 
					
						
						|  | encoder_extended_attention_mask = encoder_extended_attention_mask.to(hidden_states.device) | 
					
						
						|  | if encoder_decoder_position_bias is not None: | 
					
						
						|  | encoder_decoder_position_bias = encoder_decoder_position_bias.to(hidden_states.device) | 
					
						
						|  | if layer_head_mask is not None: | 
					
						
						|  | layer_head_mask = layer_head_mask.to(hidden_states.device) | 
					
						
						|  | if cross_attn_layer_head_mask is not None: | 
					
						
						|  | cross_attn_layer_head_mask = cross_attn_layer_head_mask.to(hidden_states.device) | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | all_hidden_states = all_hidden_states + (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | if self.gradient_checkpointing and self.training: | 
					
						
						|  | layer_outputs = self._gradient_checkpointing_func( | 
					
						
						|  | layer_module.forward, | 
					
						
						|  | hidden_states, | 
					
						
						|  | extended_attention_mask, | 
					
						
						|  | position_bias, | 
					
						
						|  | encoder_hidden_states, | 
					
						
						|  | encoder_extended_attention_mask, | 
					
						
						|  | encoder_decoder_position_bias, | 
					
						
						|  | layer_head_mask, | 
					
						
						|  | cross_attn_layer_head_mask, | 
					
						
						|  | None, | 
					
						
						|  | use_cache, | 
					
						
						|  | output_attentions, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | layer_outputs = layer_module( | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask=extended_attention_mask, | 
					
						
						|  | position_bias=position_bias, | 
					
						
						|  | encoder_hidden_states=encoder_hidden_states, | 
					
						
						|  | encoder_attention_mask=encoder_extended_attention_mask, | 
					
						
						|  | encoder_decoder_position_bias=encoder_decoder_position_bias, | 
					
						
						|  | layer_head_mask=layer_head_mask, | 
					
						
						|  | cross_attn_layer_head_mask=cross_attn_layer_head_mask, | 
					
						
						|  | past_key_value=past_key_value, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if use_cache is False: | 
					
						
						|  | layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:] | 
					
						
						|  |  | 
					
						
						|  | hidden_states, present_key_value_state = layer_outputs[:2] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | position_bias = layer_outputs[2] | 
					
						
						|  | if self.is_decoder and encoder_hidden_states is not None: | 
					
						
						|  | encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3] | 
					
						
						|  |  | 
					
						
						|  | if use_cache: | 
					
						
						|  | present_key_value_states = present_key_value_states + (present_key_value_state,) | 
					
						
						|  |  | 
					
						
						|  | if output_attentions: | 
					
						
						|  | all_attentions = all_attentions + (layer_outputs[3],) | 
					
						
						|  | if self.is_decoder: | 
					
						
						|  | all_cross_attentions = all_cross_attentions + (layer_outputs[5],) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.model_parallel: | 
					
						
						|  | for k, v in self.device_map.items(): | 
					
						
						|  | if i == v[-1] and "cuda:" + str(k) != self.last_device: | 
					
						
						|  | hidden_states = hidden_states.to("cuda:" + str(k + 1)) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = self.final_layer_norm(hidden_states) | 
					
						
						|  | hidden_states = self.dropout(hidden_states) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | all_hidden_states = all_hidden_states + (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return tuple( | 
					
						
						|  | v | 
					
						
						|  | for v in [ | 
					
						
						|  | hidden_states, | 
					
						
						|  | present_key_value_states, | 
					
						
						|  | all_hidden_states, | 
					
						
						|  | all_attentions, | 
					
						
						|  | all_cross_attentions, | 
					
						
						|  | ] | 
					
						
						|  | if v is not None | 
					
						
						|  | ) | 
					
						
						|  | return BaseModelOutputWithPastAndCrossAttentions( | 
					
						
						|  | last_hidden_state=hidden_states, | 
					
						
						|  | past_key_values=present_key_value_states, | 
					
						
						|  | hidden_states=all_hidden_states, | 
					
						
						|  | attentions=all_attentions, | 
					
						
						|  | cross_attentions=all_cross_attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | T5_START_DOCSTRING = r""" | 
					
						
						|  |  | 
					
						
						|  | The T5 model was proposed in [Exploring the Limits of Transfer Learning with a Unified Text-to-Text | 
					
						
						|  | Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan | 
					
						
						|  | Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. It's an encoder decoder transformer pre-trained in a | 
					
						
						|  | text-to-text denoising generative setting. | 
					
						
						|  |  | 
					
						
						|  | This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | 
					
						
						|  | library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | 
					
						
						|  | etc.) | 
					
						
						|  |  | 
					
						
						|  | This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | 
					
						
						|  | Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | 
					
						
						|  | and behavior. | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | config ([`T5Config`]): Model configuration class with all the parameters of the model. | 
					
						
						|  | Initializing with a config file does not load the weights associated with the model, only the | 
					
						
						|  | configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | T5_INPUTS_DOCSTRING = r""" | 
					
						
						|  | Args: | 
					
						
						|  | input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | 
					
						
						|  | Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you | 
					
						
						|  | should be able to pad the inputs on both the right and the left. | 
					
						
						|  |  | 
					
						
						|  | Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | 
					
						
						|  | [`PreTrainedTokenizer.__call__`] for detail. | 
					
						
						|  |  | 
					
						
						|  | [What are input IDs?](../glossary#input-ids) | 
					
						
						|  |  | 
					
						
						|  | To know more on how to prepare `input_ids` for pretraining take a look a [T5 Training](./t5#training). | 
					
						
						|  | attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | 
					
						
						|  |  | 
					
						
						|  | - 1 for tokens that are **not masked**, | 
					
						
						|  | - 0 for tokens that are **masked**. | 
					
						
						|  |  | 
					
						
						|  | [What are attention masks?](../glossary#attention-mask) | 
					
						
						|  | decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): | 
					
						
						|  | Indices of decoder input sequence tokens in the vocabulary. | 
					
						
						|  |  | 
					
						
						|  | Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | 
					
						
						|  | [`PreTrainedTokenizer.__call__`] for details. | 
					
						
						|  |  | 
					
						
						|  | [What are decoder input IDs?](../glossary#decoder-input-ids) | 
					
						
						|  |  | 
					
						
						|  | T5 uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` | 
					
						
						|  | is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). | 
					
						
						|  |  | 
					
						
						|  | To know more on how to prepare `decoder_input_ids` for pretraining take a look at [T5 | 
					
						
						|  | Training](./t5#training). | 
					
						
						|  | decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): | 
					
						
						|  | Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also | 
					
						
						|  | be used by default. | 
					
						
						|  | head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | 
					
						
						|  | Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0, | 
					
						
						|  | 1]`: | 
					
						
						|  |  | 
					
						
						|  | - 1 indicates the head is **not masked**, | 
					
						
						|  | - 0 indicates the head is **masked**. | 
					
						
						|  |  | 
					
						
						|  | decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | 
					
						
						|  | Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0, | 
					
						
						|  | 1]`: | 
					
						
						|  |  | 
					
						
						|  | - 1 indicates the head is **not masked**, | 
					
						
						|  | - 0 indicates the head is **masked**. | 
					
						
						|  |  | 
					
						
						|  | cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | 
					
						
						|  | Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in | 
					
						
						|  | `[0, 1]`: | 
					
						
						|  |  | 
					
						
						|  | - 1 indicates the head is **not masked**, | 
					
						
						|  | - 0 indicates the head is **masked**. | 
					
						
						|  |  | 
					
						
						|  | encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): | 
					
						
						|  | Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*) | 
					
						
						|  | `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at | 
					
						
						|  | the output of the last layer of the encoder. Used in the cross-attention of the decoder. | 
					
						
						|  | past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): | 
					
						
						|  | Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. | 
					
						
						|  |  | 
					
						
						|  | If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that | 
					
						
						|  | don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all | 
					
						
						|  | `decoder_input_ids` of shape `(batch_size, sequence_length)`. | 
					
						
						|  | inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | 
					
						
						|  | Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | 
					
						
						|  | is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | 
					
						
						|  | model's internal embedding lookup matrix. | 
					
						
						|  | decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): | 
					
						
						|  | Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded | 
					
						
						|  | representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be | 
					
						
						|  | input (see `past_key_values`). This is useful if you want more control over how to convert | 
					
						
						|  | `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. | 
					
						
						|  |  | 
					
						
						|  | If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value | 
					
						
						|  | of `inputs_embeds`. | 
					
						
						|  |  | 
					
						
						|  | use_cache (`bool`, *optional*): | 
					
						
						|  | If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | 
					
						
						|  | `past_key_values`). | 
					
						
						|  |  | 
					
						
						|  | output_attentions (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | 
					
						
						|  | tensors for more detail. | 
					
						
						|  | output_hidden_states (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | 
					
						
						|  | more detail. | 
					
						
						|  | return_dict (`bool`, *optional*): | 
					
						
						|  | Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | T5_ENCODER_INPUTS_DOCSTRING = r""" | 
					
						
						|  | Args: | 
					
						
						|  | input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | 
					
						
						|  | Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you | 
					
						
						|  | should be able to pad the inputs on both the right and the left. | 
					
						
						|  |  | 
					
						
						|  | Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | 
					
						
						|  | [`PreTrainedTokenizer.__call__`] for detail. | 
					
						
						|  |  | 
					
						
						|  | To know more on how to prepare `input_ids` for pretraining take a look a [T5 Training](./t5#training). | 
					
						
						|  | attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | 
					
						
						|  |  | 
					
						
						|  | - 1 for tokens that are **not masked**, | 
					
						
						|  | - 0 for tokens that are **masked**. | 
					
						
						|  |  | 
					
						
						|  | [What are attention masks?](../glossary#attention-mask) | 
					
						
						|  | head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | 
					
						
						|  | Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: | 
					
						
						|  |  | 
					
						
						|  | - 1 indicates the head is **not masked**, | 
					
						
						|  | - 0 indicates the head is **masked**. | 
					
						
						|  |  | 
					
						
						|  | inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | 
					
						
						|  | Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | 
					
						
						|  | is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | 
					
						
						|  | model's internal embedding lookup matrix. | 
					
						
						|  | output_attentions (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | 
					
						
						|  | tensors for more detail. | 
					
						
						|  | output_hidden_states (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | 
					
						
						|  | more detail. | 
					
						
						|  | return_dict (`bool`, *optional*): | 
					
						
						|  | Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | __HEAD_MASK_WARNING_MSG = """ | 
					
						
						|  | The input argument `head_mask` was split into two arguments `head_mask` and `decoder_head_mask`. Currently, | 
					
						
						|  | `decoder_head_mask` is set to copy `head_mask`, but this feature is deprecated and will be removed in future versions. | 
					
						
						|  | If you do not want to use any `decoder_head_mask` now, please set `decoder_head_mask = torch.ones(num_layers, | 
					
						
						|  | num_heads)`. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | "The bare T5 Model transformer outputting raw hidden-states without any specific head on top.", | 
					
						
						|  | T5_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  | class T5Model(T5PreTrainedModel): | 
					
						
						|  | _keys_to_ignore_on_load_unexpected = [ | 
					
						
						|  | "decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight", | 
					
						
						|  | ] | 
					
						
						|  | _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"] | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: T5Config): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.shared = nn.Embedding(config.vocab_size, config.d_model) | 
					
						
						|  |  | 
					
						
						|  | encoder_config = copy.deepcopy(config) | 
					
						
						|  | encoder_config.is_decoder = False | 
					
						
						|  | encoder_config.use_cache = False | 
					
						
						|  | encoder_config.is_encoder_decoder = False | 
					
						
						|  | self.encoder = T5Stack(encoder_config, self.shared) | 
					
						
						|  |  | 
					
						
						|  | decoder_config = copy.deepcopy(config) | 
					
						
						|  | decoder_config.is_decoder = True | 
					
						
						|  | decoder_config.is_encoder_decoder = False | 
					
						
						|  | decoder_config.num_layers = config.num_decoder_layers | 
					
						
						|  | self.decoder = T5Stack(decoder_config, self.shared) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.model_parallel = False | 
					
						
						|  | self.device_map = None | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings(PARALLELIZE_DOCSTRING) | 
					
						
						|  | def parallelize(self, device_map=None): | 
					
						
						|  | warnings.warn( | 
					
						
						|  | "`T5Model.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your model" | 
					
						
						|  | " with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own" | 
					
						
						|  | " `device_map` but it needs to be a dictionary module_name to device, so for instance {'encoder.block.0':" | 
					
						
						|  | " 0, 'encoder.block.1': 1, ...}", | 
					
						
						|  | FutureWarning, | 
					
						
						|  | ) | 
					
						
						|  | self.device_map = ( | 
					
						
						|  | get_device_map(len(self.encoder.block), range(torch.cuda.device_count())) | 
					
						
						|  | if device_map is None | 
					
						
						|  | else device_map | 
					
						
						|  | ) | 
					
						
						|  | assert_device_map(self.device_map, len(self.encoder.block)) | 
					
						
						|  | self.encoder.parallelize(self.device_map) | 
					
						
						|  | self.decoder.parallelize(self.device_map) | 
					
						
						|  | self.model_parallel = True | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings(DEPARALLELIZE_DOCSTRING) | 
					
						
						|  | def deparallelize(self): | 
					
						
						|  | warnings.warn( | 
					
						
						|  | "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.", | 
					
						
						|  | FutureWarning, | 
					
						
						|  | ) | 
					
						
						|  | self.encoder.deparallelize() | 
					
						
						|  | self.decoder.deparallelize() | 
					
						
						|  | self.encoder = self.encoder.to("cpu") | 
					
						
						|  | self.decoder = self.decoder.to("cpu") | 
					
						
						|  | self.model_parallel = False | 
					
						
						|  | self.device_map = None | 
					
						
						|  | torch.cuda.empty_cache() | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.shared | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, new_embeddings): | 
					
						
						|  | self.shared = new_embeddings | 
					
						
						|  | self.encoder.set_input_embeddings(new_embeddings) | 
					
						
						|  | self.decoder.set_input_embeddings(new_embeddings) | 
					
						
						|  |  | 
					
						
						|  | def _tie_weights(self): | 
					
						
						|  | if self.config.tie_word_embeddings: | 
					
						
						|  | self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) | 
					
						
						|  | self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared) | 
					
						
						|  |  | 
					
						
						|  | def get_encoder(self): | 
					
						
						|  | return self.encoder | 
					
						
						|  |  | 
					
						
						|  | def get_decoder(self): | 
					
						
						|  | return self.decoder | 
					
						
						|  |  | 
					
						
						|  | def _prune_heads(self, heads_to_prune): | 
					
						
						|  | """ | 
					
						
						|  | Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | 
					
						
						|  | class PreTrainedModel | 
					
						
						|  | """ | 
					
						
						|  | for layer, heads in heads_to_prune.items(): | 
					
						
						|  | self.encoder.layer[layer].attention.prune_heads(heads) | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING) | 
					
						
						|  | @replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC) | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | attention_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | decoder_input_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | decoder_attention_mask: Optional[torch.BoolTensor] = None, | 
					
						
						|  | head_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | decoder_head_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | cross_attn_head_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | 
					
						
						|  | past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.Tensor] = None, | 
					
						
						|  | decoder_inputs_embeds: Optional[torch.Tensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | ) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]: | 
					
						
						|  | r""" | 
					
						
						|  | Returns: | 
					
						
						|  |  | 
					
						
						|  | Example: | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | >>> from transformers import AutoTokenizer, T5Model | 
					
						
						|  |  | 
					
						
						|  | >>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small") | 
					
						
						|  | >>> model = T5Model.from_pretrained("google-t5/t5-small") | 
					
						
						|  |  | 
					
						
						|  | >>> input_ids = tokenizer( | 
					
						
						|  | ...     "Studies have been shown that owning a dog is good for you", return_tensors="pt" | 
					
						
						|  | ... ).input_ids  # Batch size 1 | 
					
						
						|  | >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids  # Batch size 1 | 
					
						
						|  |  | 
					
						
						|  | >>> # preprocess: Prepend decoder_input_ids with start token which is pad token for T5Model. | 
					
						
						|  | >>> # This is not needed for torch's T5ForConditionalGeneration as it does this internally using labels arg. | 
					
						
						|  | >>> decoder_input_ids = model._shift_right(decoder_input_ids) | 
					
						
						|  |  | 
					
						
						|  | >>> # forward pass | 
					
						
						|  | >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) | 
					
						
						|  | >>> last_hidden_states = outputs.last_hidden_state | 
					
						
						|  | ```""" | 
					
						
						|  | use_cache = use_cache if use_cache is not None else self.config.use_cache | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if head_mask is not None and decoder_head_mask is None: | 
					
						
						|  | if self.config.num_layers == self.config.num_decoder_layers: | 
					
						
						|  | warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning) | 
					
						
						|  | decoder_head_mask = head_mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if encoder_outputs is None: | 
					
						
						|  | encoder_outputs = self.encoder( | 
					
						
						|  | input_ids=input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | head_mask=head_mask, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  | elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): | 
					
						
						|  | encoder_outputs = BaseModelOutput( | 
					
						
						|  | last_hidden_state=encoder_outputs[0], | 
					
						
						|  | hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, | 
					
						
						|  | attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = encoder_outputs[0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.model_parallel: | 
					
						
						|  | torch.cuda.set_device(self.decoder.first_device) | 
					
						
						|  | hidden_states = hidden_states.to(self.decoder.first_device) | 
					
						
						|  | if decoder_input_ids is not None: | 
					
						
						|  | decoder_input_ids = decoder_input_ids.to(self.decoder.first_device) | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | attention_mask = attention_mask.to(self.decoder.first_device) | 
					
						
						|  | if decoder_attention_mask is not None: | 
					
						
						|  | decoder_attention_mask = decoder_attention_mask.to(self.decoder.first_device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | decoder_outputs = self.decoder( | 
					
						
						|  | input_ids=decoder_input_ids, | 
					
						
						|  | attention_mask=decoder_attention_mask, | 
					
						
						|  | inputs_embeds=decoder_inputs_embeds, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | encoder_hidden_states=hidden_states, | 
					
						
						|  | encoder_attention_mask=attention_mask, | 
					
						
						|  | head_mask=decoder_head_mask, | 
					
						
						|  | cross_attn_head_mask=cross_attn_head_mask, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return decoder_outputs + encoder_outputs | 
					
						
						|  |  | 
					
						
						|  | return Seq2SeqModelOutput( | 
					
						
						|  | last_hidden_state=decoder_outputs.last_hidden_state, | 
					
						
						|  | past_key_values=decoder_outputs.past_key_values, | 
					
						
						|  | decoder_hidden_states=decoder_outputs.hidden_states, | 
					
						
						|  | decoder_attentions=decoder_outputs.attentions, | 
					
						
						|  | cross_attentions=decoder_outputs.cross_attentions, | 
					
						
						|  | encoder_last_hidden_state=encoder_outputs.last_hidden_state, | 
					
						
						|  | encoder_hidden_states=encoder_outputs.hidden_states, | 
					
						
						|  | encoder_attentions=encoder_outputs.attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings("""T5 Model with a `language modeling` head on top.""", T5_START_DOCSTRING) | 
					
						
						|  | class T5ForConditionalGeneration(T5PreTrainedModel): | 
					
						
						|  | _keys_to_ignore_on_load_unexpected = [ | 
					
						
						|  | "decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight", | 
					
						
						|  | ] | 
					
						
						|  | _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"] | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: T5Config, shared=None): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.model_dim = config.d_model | 
					
						
						|  | if shared is None: | 
					
						
						|  | self.shared = nn.Embedding(config.vocab_size, config.d_model) | 
					
						
						|  | else: | 
					
						
						|  | self.shared = shared | 
					
						
						|  |  | 
					
						
						|  | encoder_config = copy.deepcopy(config) | 
					
						
						|  | encoder_config.is_decoder = False | 
					
						
						|  | encoder_config.use_cache = False | 
					
						
						|  | encoder_config.is_encoder_decoder = False | 
					
						
						|  | self.encoder = T5Stack(encoder_config, self.shared) | 
					
						
						|  |  | 
					
						
						|  | decoder_config = copy.deepcopy(config) | 
					
						
						|  | decoder_config.is_decoder = True | 
					
						
						|  | decoder_config.is_encoder_decoder = False | 
					
						
						|  | decoder_config.num_layers = config.num_decoder_layers | 
					
						
						|  | self.decoder = T5Stack(decoder_config, self.shared) | 
					
						
						|  |  | 
					
						
						|  | self.lm_head = nn.Linear(self.shared.embedding_dim, self.shared.num_embeddings, bias=False) | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.model_parallel = False | 
					
						
						|  | self.device_map = None | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings(PARALLELIZE_DOCSTRING) | 
					
						
						|  | def parallelize(self, device_map=None): | 
					
						
						|  | warnings.warn( | 
					
						
						|  | "`T5ForConditionalGeneration.parallelize` is deprecated and will be removed in v5 of Transformers, you" | 
					
						
						|  | " should load your model with `device_map='balanced'` in the call to `from_pretrained`. You can also" | 
					
						
						|  | " provide your own `device_map` but it needs to be a dictionary module_name to device, so for instance" | 
					
						
						|  | " {'encoder.block.0': 0, 'encoder.block.1': 1, ...}", | 
					
						
						|  | FutureWarning, | 
					
						
						|  | ) | 
					
						
						|  | self.device_map = ( | 
					
						
						|  | get_device_map(len(self.encoder.block), range(torch.cuda.device_count())) | 
					
						
						|  | if device_map is None | 
					
						
						|  | else device_map | 
					
						
						|  | ) | 
					
						
						|  | assert_device_map(self.device_map, len(self.encoder.block)) | 
					
						
						|  | self.encoder.parallelize(self.device_map) | 
					
						
						|  | self.decoder.parallelize(self.device_map) | 
					
						
						|  | self.lm_head = self.lm_head.to(self.decoder.first_device) | 
					
						
						|  | self.model_parallel = True | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings(DEPARALLELIZE_DOCSTRING) | 
					
						
						|  | def deparallelize(self): | 
					
						
						|  | warnings.warn( | 
					
						
						|  | "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.", | 
					
						
						|  | FutureWarning, | 
					
						
						|  | ) | 
					
						
						|  | self.encoder.deparallelize() | 
					
						
						|  | self.decoder.deparallelize() | 
					
						
						|  | self.encoder = self.encoder.to("cpu") | 
					
						
						|  | self.decoder = self.decoder.to("cpu") | 
					
						
						|  | self.lm_head = self.lm_head.to("cpu") | 
					
						
						|  | self.model_parallel = False | 
					
						
						|  | self.device_map = None | 
					
						
						|  | torch.cuda.empty_cache() | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.shared | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, new_embeddings): | 
					
						
						|  | self.shared = new_embeddings | 
					
						
						|  | self.encoder.set_input_embeddings(new_embeddings) | 
					
						
						|  | self.decoder.set_input_embeddings(new_embeddings) | 
					
						
						|  |  | 
					
						
						|  | def _tie_weights(self): | 
					
						
						|  | if self.config.tie_word_embeddings: | 
					
						
						|  | self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) | 
					
						
						|  | self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared) | 
					
						
						|  |  | 
					
						
						|  | def set_output_embeddings(self, new_embeddings): | 
					
						
						|  | self.lm_head = new_embeddings | 
					
						
						|  |  | 
					
						
						|  | def get_output_embeddings(self): | 
					
						
						|  | return self.lm_head | 
					
						
						|  |  | 
					
						
						|  | def get_encoder(self): | 
					
						
						|  | return self.encoder | 
					
						
						|  |  | 
					
						
						|  | def get_decoder(self): | 
					
						
						|  | return self.decoder | 
					
						
						|  |  | 
					
						
						|  | def set_teacher(self, teacher): | 
					
						
						|  | self.teacher = teacher | 
					
						
						|  |  | 
					
						
						|  | def set_lm_head(self, head): | 
					
						
						|  | self.lm_head = head | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING) | 
					
						
						|  | @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | attention_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | decoder_input_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | decoder_attention_mask: Optional[torch.BoolTensor] = None, | 
					
						
						|  | head_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | decoder_head_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | cross_attn_head_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None, | 
					
						
						|  | past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | decoder_inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | labels: Optional[torch.LongTensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]: | 
					
						
						|  | r""" | 
					
						
						|  | labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | 
					
						
						|  | Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ..., | 
					
						
						|  | config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for | 
					
						
						|  | labels in `[0, ..., config.vocab_size]` | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  |  | 
					
						
						|  | Examples: | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | >>> from transformers import AutoTokenizer, T5ForConditionalGeneration | 
					
						
						|  |  | 
					
						
						|  | >>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small") | 
					
						
						|  | >>> model = T5ForConditionalGeneration.from_pretrained("google-t5/t5-small") | 
					
						
						|  |  | 
					
						
						|  | >>> # training | 
					
						
						|  | >>> input_ids = tokenizer("The <extra_id_0> walks in <extra_id_1> park", return_tensors="pt").input_ids | 
					
						
						|  | >>> labels = tokenizer("<extra_id_0> cute dog <extra_id_1> the <extra_id_2>", return_tensors="pt").input_ids | 
					
						
						|  | >>> outputs = model(input_ids=input_ids, labels=labels) | 
					
						
						|  | >>> loss = outputs.loss | 
					
						
						|  | >>> logits = outputs.logits | 
					
						
						|  |  | 
					
						
						|  | >>> # inference | 
					
						
						|  | >>> input_ids = tokenizer( | 
					
						
						|  | ...     "summarize: studies have shown that owning a dog is good for you", return_tensors="pt" | 
					
						
						|  | ... ).input_ids  # Batch size 1 | 
					
						
						|  | >>> outputs = model.generate(input_ids) | 
					
						
						|  | >>> print(tokenizer.decode(outputs[0], skip_special_tokens=True)) | 
					
						
						|  | >>> # studies have shown that owning a dog is good for you. | 
					
						
						|  | ```""" | 
					
						
						|  | use_cache = use_cache if use_cache is not None else self.config.use_cache | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if head_mask is not None and decoder_head_mask is None: | 
					
						
						|  | if self.config.num_layers == self.config.num_decoder_layers: | 
					
						
						|  | warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning) | 
					
						
						|  | decoder_head_mask = head_mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if encoder_outputs is None: | 
					
						
						|  |  | 
					
						
						|  | encoder_outputs = self.encoder( | 
					
						
						|  | input_ids=input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | head_mask=head_mask, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  | elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): | 
					
						
						|  | encoder_outputs = BaseModelOutput( | 
					
						
						|  | last_hidden_state=encoder_outputs[0], | 
					
						
						|  | hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, | 
					
						
						|  | attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = encoder_outputs[0] | 
					
						
						|  |  | 
					
						
						|  | if self.model_parallel: | 
					
						
						|  | torch.cuda.set_device(self.decoder.first_device) | 
					
						
						|  |  | 
					
						
						|  | if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None: | 
					
						
						|  |  | 
					
						
						|  | decoder_input_ids = self._shift_right(labels) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.model_parallel: | 
					
						
						|  | torch.cuda.set_device(self.decoder.first_device) | 
					
						
						|  | hidden_states = hidden_states.to(self.decoder.first_device) | 
					
						
						|  | if decoder_input_ids is not None: | 
					
						
						|  | decoder_input_ids = decoder_input_ids.to(self.decoder.first_device) | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | attention_mask = attention_mask.to(self.decoder.first_device) | 
					
						
						|  | if decoder_attention_mask is not None: | 
					
						
						|  | decoder_attention_mask = decoder_attention_mask.to(self.decoder.first_device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | decoder_outputs = self.decoder( | 
					
						
						|  | input_ids=decoder_input_ids, | 
					
						
						|  | attention_mask=decoder_attention_mask, | 
					
						
						|  | inputs_embeds=decoder_inputs_embeds, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | encoder_hidden_states=hidden_states, | 
					
						
						|  | encoder_attention_mask=attention_mask, | 
					
						
						|  | head_mask=decoder_head_mask, | 
					
						
						|  | cross_attn_head_mask=cross_attn_head_mask, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | sequence_output = decoder_outputs[0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.model_parallel: | 
					
						
						|  | torch.cuda.set_device(self.encoder.first_device) | 
					
						
						|  | self.lm_head = self.lm_head.to(self.encoder.first_device) | 
					
						
						|  | sequence_output = sequence_output.to(self.lm_head.weight.device) | 
					
						
						|  |  | 
					
						
						|  | if self.config.tie_word_embeddings: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | sequence_output = sequence_output * (self.model_dim**-0.5) | 
					
						
						|  |  | 
					
						
						|  | lm_logits = self.lm_head(sequence_output) | 
					
						
						|  |  | 
					
						
						|  | loss = None | 
					
						
						|  | if labels is not None: | 
					
						
						|  | loss_fct = CrossEntropyLoss(ignore_index=-100) | 
					
						
						|  |  | 
					
						
						|  | labels = labels.to(lm_logits.device) | 
					
						
						|  | loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs | 
					
						
						|  | return ((loss,) + output) if loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | return Seq2SeqLMOutput( | 
					
						
						|  | loss=loss, | 
					
						
						|  | logits=lm_logits, | 
					
						
						|  | past_key_values=decoder_outputs.past_key_values, | 
					
						
						|  | decoder_hidden_states=decoder_outputs.hidden_states, | 
					
						
						|  | decoder_attentions=decoder_outputs.attentions, | 
					
						
						|  | cross_attentions=decoder_outputs.cross_attentions, | 
					
						
						|  | encoder_last_hidden_state=encoder_outputs.last_hidden_state, | 
					
						
						|  | encoder_hidden_states=encoder_outputs.hidden_states, | 
					
						
						|  | encoder_attentions=encoder_outputs.attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def prepare_inputs_for_generation( | 
					
						
						|  | self, | 
					
						
						|  | input_ids, | 
					
						
						|  | past_key_values=None, | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | head_mask=None, | 
					
						
						|  | decoder_head_mask=None, | 
					
						
						|  | decoder_attention_mask=None, | 
					
						
						|  | cross_attn_head_mask=None, | 
					
						
						|  | use_cache=None, | 
					
						
						|  | encoder_outputs=None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  | if past_key_values is not None: | 
					
						
						|  | past_length = past_key_values[0][0].shape[2] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if input_ids.shape[1] > past_length: | 
					
						
						|  | remove_prefix_length = past_length | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | remove_prefix_length = input_ids.shape[1] - 1 | 
					
						
						|  |  | 
					
						
						|  | input_ids = input_ids[:, remove_prefix_length:] | 
					
						
						|  |  | 
					
						
						|  | return { | 
					
						
						|  | "decoder_input_ids": input_ids, | 
					
						
						|  | "past_key_values": past_key_values, | 
					
						
						|  | "encoder_outputs": encoder_outputs, | 
					
						
						|  | "attention_mask": attention_mask, | 
					
						
						|  | "head_mask": head_mask, | 
					
						
						|  | "decoder_head_mask": decoder_head_mask, | 
					
						
						|  | "decoder_attention_mask": decoder_attention_mask, | 
					
						
						|  | "cross_attn_head_mask": cross_attn_head_mask, | 
					
						
						|  | "use_cache": use_cache, | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): | 
					
						
						|  | return self._shift_right(labels) | 
					
						
						|  |  | 
					
						
						|  | def _reorder_cache(self, past_key_values, beam_idx): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if past_key_values is None: | 
					
						
						|  | logger.warning("You might want to consider setting `use_cache=True` to speed up decoding") | 
					
						
						|  | return past_key_values | 
					
						
						|  |  | 
					
						
						|  | reordered_decoder_past = () | 
					
						
						|  | for layer_past_states in past_key_values: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | reordered_layer_past_states = () | 
					
						
						|  | for layer_past_state in layer_past_states: | 
					
						
						|  |  | 
					
						
						|  | reordered_layer_past_states = reordered_layer_past_states + ( | 
					
						
						|  | layer_past_state.index_select(0, beam_idx.to(layer_past_state.device)), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if reordered_layer_past_states[0].shape != layer_past_states[0].shape: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"reordered_layer_past_states[0] shape {reordered_layer_past_states[0].shape} and layer_past_states[0] shape {layer_past_states[0].shape} mismatched" | 
					
						
						|  | ) | 
					
						
						|  | if len(reordered_layer_past_states) != len(layer_past_states): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"length of reordered_layer_past_states {len(reordered_layer_past_states)} and length of layer_past_states {len(layer_past_states)} mismatched" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,) | 
					
						
						|  | return reordered_decoder_past | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | "The bare T5 Model transformer outputting encoder's raw hidden-states without any specific head on top.", | 
					
						
						|  | T5_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  | class T5EncoderModel(T5PreTrainedModel): | 
					
						
						|  | _tied_weights_keys = ["encoder.embed_tokens.weight"] | 
					
						
						|  | _keys_to_ignore_on_load_unexpected = [r"decoder"] | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: T5Config): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.shared = nn.Embedding(config.vocab_size, config.d_model) | 
					
						
						|  |  | 
					
						
						|  | encoder_config = copy.deepcopy(config) | 
					
						
						|  | encoder_config.use_cache = False | 
					
						
						|  | encoder_config.is_encoder_decoder = False | 
					
						
						|  | self.encoder = T5Stack(encoder_config, self.shared) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.model_parallel = False | 
					
						
						|  | self.device_map = None | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings(PARALLELIZE_DOCSTRING) | 
					
						
						|  | def parallelize(self, device_map=None): | 
					
						
						|  | warnings.warn( | 
					
						
						|  | "`T5EncoderModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should load" | 
					
						
						|  | " your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own" | 
					
						
						|  | " `device_map` but it needs to be a dictionary module_name to device, so for instance {'block.0': 0," | 
					
						
						|  | " 'block.1': 1, ...}", | 
					
						
						|  | FutureWarning, | 
					
						
						|  | ) | 
					
						
						|  | self.device_map = ( | 
					
						
						|  | get_device_map(len(self.encoder.block), range(torch.cuda.device_count())) | 
					
						
						|  | if device_map is None | 
					
						
						|  | else device_map | 
					
						
						|  | ) | 
					
						
						|  | assert_device_map(self.device_map, len(self.encoder.block)) | 
					
						
						|  | self.encoder.parallelize(self.device_map) | 
					
						
						|  | self.model_parallel = True | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings(DEPARALLELIZE_DOCSTRING) | 
					
						
						|  | def deparallelize(self): | 
					
						
						|  | warnings.warn( | 
					
						
						|  | "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.", | 
					
						
						|  | FutureWarning, | 
					
						
						|  | ) | 
					
						
						|  | self.encoder.deparallelize() | 
					
						
						|  | self.encoder = self.encoder.to("cpu") | 
					
						
						|  | self.model_parallel = False | 
					
						
						|  | self.device_map = None | 
					
						
						|  | torch.cuda.empty_cache() | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.shared | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, new_embeddings): | 
					
						
						|  | self.shared = new_embeddings | 
					
						
						|  | self.encoder.set_input_embeddings(new_embeddings) | 
					
						
						|  |  | 
					
						
						|  | def _tie_weights(self): | 
					
						
						|  | if self.config.tie_word_embeddings: | 
					
						
						|  | self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) | 
					
						
						|  |  | 
					
						
						|  | def get_encoder(self): | 
					
						
						|  | return self.encoder | 
					
						
						|  |  | 
					
						
						|  | def _prune_heads(self, heads_to_prune): | 
					
						
						|  | """ | 
					
						
						|  | Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | 
					
						
						|  | class PreTrainedModel | 
					
						
						|  | """ | 
					
						
						|  | for layer, heads in heads_to_prune.items(): | 
					
						
						|  | self.encoder.block[layer].layer[0].SelfAttention.prune_heads(heads) | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(T5_ENCODER_INPUTS_DOCSTRING) | 
					
						
						|  | @replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC) | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | attention_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | head_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | ) -> Union[Tuple[torch.FloatTensor], BaseModelOutput]: | 
					
						
						|  | r""" | 
					
						
						|  | Returns: | 
					
						
						|  |  | 
					
						
						|  | Example: | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | >>> from transformers import AutoTokenizer, T5EncoderModel | 
					
						
						|  |  | 
					
						
						|  | >>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small") | 
					
						
						|  | >>> model = T5EncoderModel.from_pretrained("google-t5/t5-small") | 
					
						
						|  | >>> input_ids = tokenizer( | 
					
						
						|  | ...     "Studies have been shown that owning a dog is good for you", return_tensors="pt" | 
					
						
						|  | ... ).input_ids  # Batch size 1 | 
					
						
						|  | >>> outputs = model(input_ids=input_ids) | 
					
						
						|  | >>> last_hidden_states = outputs.last_hidden_state | 
					
						
						|  | ```""" | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | encoder_outputs = self.encoder( | 
					
						
						|  | input_ids=input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | head_mask=head_mask, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return encoder_outputs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | """ | 
					
						
						|  | T5 model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE | 
					
						
						|  | tasks. | 
					
						
						|  | """, | 
					
						
						|  | T5_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  | class T5ForSequenceClassification(T5PreTrainedModel): | 
					
						
						|  | _keys_to_ignore_on_load_unexpected = ["decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight"] | 
					
						
						|  | _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"] | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: T5Config): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.transformer = T5Model(config) | 
					
						
						|  | self.classification_head = T5ClassificationHead(config) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | self.model_parallel = False | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING) | 
					
						
						|  | @replace_return_docstrings(output_type=Seq2SeqSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: torch.LongTensor = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | decoder_input_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | decoder_attention_mask: Optional[torch.LongTensor] = None, | 
					
						
						|  | head_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | decoder_head_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | cross_attn_head_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | encoder_outputs: Optional[List[torch.FloatTensor]] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | decoder_inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | labels: Optional[torch.LongTensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | ) -> Union[Tuple, Seq2SeqSequenceClassifierOutput]: | 
					
						
						|  | r""" | 
					
						
						|  | labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | 
					
						
						|  | Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | 
					
						
						|  | config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). | 
					
						
						|  | Returns: | 
					
						
						|  | """ | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  | if labels is not None: | 
					
						
						|  | use_cache = False | 
					
						
						|  |  | 
					
						
						|  | if input_ids is None and inputs_embeds is not None: | 
					
						
						|  | raise NotImplementedError( | 
					
						
						|  | f"Passing input embeddings is currently not supported for {self.__class__.__name__}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if decoder_input_ids is None and decoder_inputs_embeds is None: | 
					
						
						|  | if input_ids is None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "If no `decoder_input_ids` or `decoder_inputs_embeds` are " | 
					
						
						|  | "passed, `input_ids` cannot be `None`. Please pass either " | 
					
						
						|  | "`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`." | 
					
						
						|  | ) | 
					
						
						|  | decoder_input_ids = self._shift_right(input_ids) | 
					
						
						|  |  | 
					
						
						|  | outputs = self.transformer( | 
					
						
						|  | input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | decoder_input_ids=decoder_input_ids, | 
					
						
						|  | decoder_attention_mask=decoder_attention_mask, | 
					
						
						|  | head_mask=head_mask, | 
					
						
						|  | decoder_head_mask=decoder_head_mask, | 
					
						
						|  | cross_attn_head_mask=cross_attn_head_mask, | 
					
						
						|  | encoder_outputs=encoder_outputs, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | decoder_inputs_embeds=decoder_inputs_embeds, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  | sequence_output = outputs[0] | 
					
						
						|  |  | 
					
						
						|  | eos_mask = input_ids.eq(self.config.eos_token_id).to(sequence_output.device) | 
					
						
						|  |  | 
					
						
						|  | if len(torch.unique_consecutive(eos_mask.sum(1))) > 1: | 
					
						
						|  | raise ValueError("All examples must have the same number of <eos> tokens.") | 
					
						
						|  | batch_size, _, hidden_size = sequence_output.shape | 
					
						
						|  | sentence_representation = sequence_output[eos_mask, :].view(batch_size, -1, hidden_size)[:, -1, :] | 
					
						
						|  | logits = self.classification_head(sentence_representation) | 
					
						
						|  |  | 
					
						
						|  | loss = None | 
					
						
						|  | if labels is not None: | 
					
						
						|  | labels = labels.to(logits.device) | 
					
						
						|  | if self.config.problem_type is None: | 
					
						
						|  | if self.config.num_labels == 1: | 
					
						
						|  | self.config.problem_type = "regression" | 
					
						
						|  | elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | 
					
						
						|  | self.config.problem_type = "single_label_classification" | 
					
						
						|  | else: | 
					
						
						|  | self.config.problem_type = "multi_label_classification" | 
					
						
						|  |  | 
					
						
						|  | if self.config.problem_type == "regression": | 
					
						
						|  | loss_fct = MSELoss() | 
					
						
						|  | if self.config.num_labels == 1: | 
					
						
						|  | loss = loss_fct(logits.squeeze(), labels.squeeze()) | 
					
						
						|  | else: | 
					
						
						|  | loss = loss_fct(logits, labels) | 
					
						
						|  | elif self.config.problem_type == "single_label_classification": | 
					
						
						|  | loss_fct = CrossEntropyLoss() | 
					
						
						|  | loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) | 
					
						
						|  | elif self.config.problem_type == "multi_label_classification": | 
					
						
						|  | loss_fct = BCEWithLogitsLoss() | 
					
						
						|  | loss = loss_fct(logits, labels) | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (logits,) + outputs[1:] | 
					
						
						|  | return ((loss,) + output) if loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | return Seq2SeqSequenceClassifierOutput( | 
					
						
						|  | loss=loss, | 
					
						
						|  | logits=logits, | 
					
						
						|  | past_key_values=outputs.past_key_values, | 
					
						
						|  | decoder_hidden_states=outputs.decoder_hidden_states, | 
					
						
						|  | decoder_attentions=outputs.decoder_attentions, | 
					
						
						|  | cross_attentions=outputs.cross_attentions, | 
					
						
						|  | encoder_last_hidden_state=outputs.encoder_last_hidden_state, | 
					
						
						|  | encoder_hidden_states=outputs.encoder_hidden_states, | 
					
						
						|  | encoder_attentions=outputs.encoder_attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | """ | 
					
						
						|  | T5 Encoder Model with a token classification head on top (a linear layer on top of the hidden-states output) | 
					
						
						|  | e.g. for Named-Entity-Recognition (NER) tasks. | 
					
						
						|  | """, | 
					
						
						|  | T5_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  | class T5ForTokenClassification(T5PreTrainedModel): | 
					
						
						|  | _tied_weights_keys = ["transformer.encoder.embed_tokens.weight"] | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: T5Config): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.num_labels = config.num_labels | 
					
						
						|  |  | 
					
						
						|  | self.transformer = T5EncoderModel(config) | 
					
						
						|  | self.dropout = nn.Dropout(config.classifier_dropout) | 
					
						
						|  | self.classifier = nn.Linear(config.hidden_size, config.num_labels) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING) | 
					
						
						|  | @replace_return_docstrings(output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC) | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: Optional[torch.Tensor] = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | head_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.Tensor] = None, | 
					
						
						|  | labels: Optional[torch.Tensor] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: | 
					
						
						|  | r""" | 
					
						
						|  | labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. | 
					
						
						|  | Returns: | 
					
						
						|  | """ | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | outputs = self.transformer( | 
					
						
						|  | input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | head_mask=head_mask, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = outputs[0] | 
					
						
						|  | hidden_states = self.dropout(hidden_states) | 
					
						
						|  | logits = self.classifier(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | loss = None | 
					
						
						|  | if labels is not None: | 
					
						
						|  | loss_fct = CrossEntropyLoss() | 
					
						
						|  | loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (logits, outputs[2:-1]) | 
					
						
						|  | return ((loss,) + output) if loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | return TokenClassifierOutput( | 
					
						
						|  | loss=loss, | 
					
						
						|  | logits=logits, | 
					
						
						|  | hidden_states=outputs.hidden_states, | 
					
						
						|  | attentions=outputs.attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | """ | 
					
						
						|  | T5 Model with a span classification head on top for extractive question-answering tasks like SQuAD (linear layers | 
					
						
						|  | on top of the hidden-states output to compute `span start logits` and `span end logits`). | 
					
						
						|  | """, | 
					
						
						|  | T5_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  | class T5ForQuestionAnswering(T5PreTrainedModel): | 
					
						
						|  | _keys_to_ignore_on_load_unexpected = ["decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight"] | 
					
						
						|  | _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"] | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: T5Config): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.model_dim = config.d_model | 
					
						
						|  |  | 
					
						
						|  | self.shared = nn.Embedding(config.vocab_size, config.d_model) | 
					
						
						|  |  | 
					
						
						|  | encoder_config = copy.deepcopy(config) | 
					
						
						|  | encoder_config.is_decoder = False | 
					
						
						|  | encoder_config.use_cache = False | 
					
						
						|  | encoder_config.is_encoder_decoder = False | 
					
						
						|  | self.encoder = T5Stack(encoder_config, self.shared) | 
					
						
						|  |  | 
					
						
						|  | decoder_config = copy.deepcopy(config) | 
					
						
						|  | decoder_config.is_decoder = True | 
					
						
						|  | decoder_config.is_encoder_decoder = False | 
					
						
						|  | decoder_config.num_layers = config.num_decoder_layers | 
					
						
						|  | self.decoder = T5Stack(decoder_config, self.shared) | 
					
						
						|  |  | 
					
						
						|  | self.num_labels = config.num_labels | 
					
						
						|  | self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | self.model_parallel = False | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.shared | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, new_embeddings): | 
					
						
						|  | self.shared = new_embeddings | 
					
						
						|  | self.encoder.set_input_embeddings(new_embeddings) | 
					
						
						|  | self.decoder.set_input_embeddings(new_embeddings) | 
					
						
						|  |  | 
					
						
						|  | def _tie_weights(self): | 
					
						
						|  | if self.config.tie_word_embeddings: | 
					
						
						|  | self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) | 
					
						
						|  | self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared) | 
					
						
						|  |  | 
					
						
						|  | def get_encoder(self): | 
					
						
						|  | return self.encoder | 
					
						
						|  |  | 
					
						
						|  | def get_decoder(self): | 
					
						
						|  | return self.decoder | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING) | 
					
						
						|  | @replace_return_docstrings(output_type=Seq2SeqQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC) | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | attention_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | decoder_input_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | decoder_attention_mask: Optional[torch.BoolTensor] = None, | 
					
						
						|  | head_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | decoder_head_mask: Optional[torch.FloatTensor] = None, | 
					
						
						|  | cross_attn_head_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None, | 
					
						
						|  | start_positions: Optional[torch.LongTensor] = None, | 
					
						
						|  | end_positions: Optional[torch.LongTensor] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | decoder_inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | ) -> Union[Tuple[torch.FloatTensor], Seq2SeqQuestionAnsweringModelOutput]: | 
					
						
						|  | r""" | 
					
						
						|  | start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | 
					
						
						|  | Labels for position (index) of the start of the labelled span for computing the token classification loss. | 
					
						
						|  | Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence | 
					
						
						|  | are not taken into account for computing the loss. | 
					
						
						|  | end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | 
					
						
						|  | Labels for position (index) of the end of the labelled span for computing the token classification loss. | 
					
						
						|  | Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence | 
					
						
						|  | are not taken into account for computing the loss. | 
					
						
						|  | Returns: | 
					
						
						|  | """ | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  | use_cache = use_cache if use_cache is not None else self.config.use_cache | 
					
						
						|  | if start_positions is not None and end_positions is not None: | 
					
						
						|  | use_cache = False | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if decoder_input_ids is None and decoder_inputs_embeds is None: | 
					
						
						|  | if input_ids is None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "If no `decoder_input_ids` or `decoder_inputs_embeds` are " | 
					
						
						|  | "passed, `input_ids` cannot be `None`. Please pass either " | 
					
						
						|  | "`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`." | 
					
						
						|  | ) | 
					
						
						|  | decoder_input_ids = self._shift_right(input_ids) | 
					
						
						|  |  | 
					
						
						|  | use_cache = use_cache if use_cache is not None else self.config.use_cache | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if head_mask is not None and decoder_head_mask is None: | 
					
						
						|  | if self.config.num_layers == self.config.num_decoder_layers: | 
					
						
						|  | warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning) | 
					
						
						|  | decoder_head_mask = head_mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if encoder_outputs is None: | 
					
						
						|  | encoder_outputs = self.encoder( | 
					
						
						|  | input_ids=input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | head_mask=head_mask, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  | elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): | 
					
						
						|  | encoder_outputs = BaseModelOutput( | 
					
						
						|  | last_hidden_state=encoder_outputs[0], | 
					
						
						|  | hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, | 
					
						
						|  | attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = encoder_outputs[0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | decoder_outputs = self.decoder( | 
					
						
						|  | input_ids=decoder_input_ids, | 
					
						
						|  | attention_mask=decoder_attention_mask, | 
					
						
						|  | inputs_embeds=decoder_inputs_embeds, | 
					
						
						|  | past_key_values=None, | 
					
						
						|  | encoder_hidden_states=hidden_states, | 
					
						
						|  | encoder_attention_mask=attention_mask, | 
					
						
						|  | head_mask=decoder_head_mask, | 
					
						
						|  | cross_attn_head_mask=cross_attn_head_mask, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | sequence_output = decoder_outputs[0] | 
					
						
						|  |  | 
					
						
						|  | logits = self.qa_outputs(sequence_output) | 
					
						
						|  | start_logits, end_logits = logits.split(1, dim=-1) | 
					
						
						|  | start_logits = start_logits.squeeze(-1).contiguous() | 
					
						
						|  | end_logits = end_logits.squeeze(-1).contiguous() | 
					
						
						|  |  | 
					
						
						|  | total_loss = None | 
					
						
						|  | if start_positions is not None and end_positions is not None: | 
					
						
						|  |  | 
					
						
						|  | if len(start_positions.size()) > 1: | 
					
						
						|  | start_positions = start_positions.squeeze(-1).to(start_logits.device) | 
					
						
						|  | if len(end_positions.size()) > 1: | 
					
						
						|  | end_positions = end_positions.squeeze(-1).to(end_logits.device) | 
					
						
						|  |  | 
					
						
						|  | ignored_index = start_logits.size(1) | 
					
						
						|  | start_positions = start_positions.clamp(0, ignored_index) | 
					
						
						|  | end_positions = end_positions.clamp(0, ignored_index) | 
					
						
						|  |  | 
					
						
						|  | loss_fct = CrossEntropyLoss(ignore_index=ignored_index) | 
					
						
						|  | start_loss = loss_fct(start_logits, start_positions) | 
					
						
						|  | end_loss = loss_fct(end_logits, end_positions) | 
					
						
						|  | total_loss = (start_loss + end_loss) / 2 | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (start_logits, end_logits) + decoder_outputs[1:] + encoder_outputs | 
					
						
						|  | return ((total_loss,) + output) if total_loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | return Seq2SeqQuestionAnsweringModelOutput( | 
					
						
						|  | loss=total_loss, | 
					
						
						|  | start_logits=start_logits, | 
					
						
						|  | end_logits=end_logits, | 
					
						
						|  | past_key_values=decoder_outputs.past_key_values, | 
					
						
						|  | decoder_hidden_states=decoder_outputs.hidden_states, | 
					
						
						|  | decoder_attentions=decoder_outputs.attentions, | 
					
						
						|  | cross_attentions=decoder_outputs.cross_attentions, | 
					
						
						|  | encoder_last_hidden_state=encoder_outputs.last_hidden_state, | 
					
						
						|  | encoder_hidden_states=encoder_outputs.hidden_states, | 
					
						
						|  | encoder_attentions=encoder_outputs.attentions, | 
					
						
						|  | ) |