|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """ PyTorch Phi-3-V model.""" | 
					
						
						|  |  | 
					
						
						|  | import inspect | 
					
						
						|  | import math | 
					
						
						|  | import warnings | 
					
						
						|  | from typing import List, Optional, Tuple, Union | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | import torch.nn.functional as F | 
					
						
						|  | import torch.utils.checkpoint | 
					
						
						|  | from torch import nn | 
					
						
						|  | from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | 
					
						
						|  |  | 
					
						
						|  | from transformers.activations import ACT2FN | 
					
						
						|  | from transformers.cache_utils import Cache, DynamicCache | 
					
						
						|  | from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask | 
					
						
						|  | from transformers.modeling_outputs import ( | 
					
						
						|  | BaseModelOutputWithPast, | 
					
						
						|  | CausalLMOutputWithPast, | 
					
						
						|  | SequenceClassifierOutputWithPast, | 
					
						
						|  | TokenClassifierOutput, | 
					
						
						|  | ) | 
					
						
						|  | from transformers.modeling_utils import PreTrainedModel | 
					
						
						|  | from transformers.utils import ( | 
					
						
						|  | add_code_sample_docstrings, | 
					
						
						|  | add_start_docstrings, | 
					
						
						|  | add_start_docstrings_to_model_forward, | 
					
						
						|  | is_flash_attn_greater_or_equal_2_10, | 
					
						
						|  | logging, | 
					
						
						|  | replace_return_docstrings, | 
					
						
						|  | ) | 
					
						
						|  | from .configuration_phi3_v import Phi3VConfig | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | from flash_attn import flash_attn_func, flash_attn_varlen_func | 
					
						
						|  | from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input | 
					
						
						|  |  | 
					
						
						|  | _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters) | 
					
						
						|  | except ImportError: | 
					
						
						|  | pass | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | from torch import nn | 
					
						
						|  | from transformers import CLIPVisionConfig, CLIPVisionModel, PretrainedConfig | 
					
						
						|  | from transformers.models.clip.modeling_clip import CLIPAttention | 
					
						
						|  | from transformers.utils import logging | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | MAX_INPUT_ID = int(1e9) | 
					
						
						|  |  | 
					
						
						|  | CLIP_VIT_LARGE_PATCH14_336_CONFIG = CLIPVisionConfig( | 
					
						
						|  | attention_dropout=0.0, | 
					
						
						|  | dropout=0.0, | 
					
						
						|  | hidden_act="quick_gelu", | 
					
						
						|  | hidden_size=1024, | 
					
						
						|  | image_size=336, | 
					
						
						|  | initializer_factor=1.0, | 
					
						
						|  | initializer_range=0.02, | 
					
						
						|  | intermediate_size=4096, | 
					
						
						|  | layer_norm_eps=1e-05, | 
					
						
						|  | num_attention_heads=16, | 
					
						
						|  | num_channels=3, | 
					
						
						|  | num_hidden_layers=24, | 
					
						
						|  | patch_size=14, | 
					
						
						|  | projection_dim=768 | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | class CLIPAttentionFA2(CLIPAttention): | 
					
						
						|  | """Add flash attention 2 to CLIPAttention. (This is only used in the vision encoder)""" | 
					
						
						|  |  | 
					
						
						|  | def forward(self, | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | causal_attention_mask=None, | 
					
						
						|  | output_attentions=False, | 
					
						
						|  | ): | 
					
						
						|  | """Input shape: Batch x Time x Channel""" | 
					
						
						|  |  | 
					
						
						|  | assert attention_mask is None, "CLIPAttentionFA2 does not support attention_mask" | 
					
						
						|  | assert causal_attention_mask is None, "CLIPAttentionFA2 does not support causal_attention_mask" | 
					
						
						|  | assert output_attentions is False, "CLIPAttentionFA2 does not support output_attentions" | 
					
						
						|  |  | 
					
						
						|  | bsz, tgt_len, embed_dim = hidden_states.size() | 
					
						
						|  | query_states = self.q_proj(hidden_states).reshape(bsz, tgt_len, self.num_heads, self.head_dim) | 
					
						
						|  | key_states = self.k_proj(hidden_states).reshape(bsz, tgt_len, self.num_heads, self.head_dim) | 
					
						
						|  | value_states = self.v_proj(hidden_states).reshape(bsz, tgt_len, self.num_heads, self.head_dim) | 
					
						
						|  |  | 
					
						
						|  | attn_output = flash_attn_func( | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | dropout_p=self.dropout if self.training else 0.0, | 
					
						
						|  | softmax_scale=self.scale, | 
					
						
						|  | causal=False, | 
					
						
						|  | ).reshape(bsz, tgt_len, embed_dim) | 
					
						
						|  |  | 
					
						
						|  | attn_output = self.out_proj(attn_output) | 
					
						
						|  | return attn_output, None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Phi3ImageEmbedding(nn.Module): | 
					
						
						|  | """Phi3 Image embedding.""" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: PretrainedConfig, wte=None, **kwargs) -> None: | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_size = config.n_embd if hasattr(config, 'n_embd') else config.hidden_size | 
					
						
						|  | if hasattr(config, 'embd_pdrop') or hasattr(config, 'embed_pdrop'): | 
					
						
						|  | embd_drop = config.embd_pdrop if hasattr(config, 'embd_pdrop') else config.embed_pdrop | 
					
						
						|  | self.drop = nn.Dropout(embd_drop) | 
					
						
						|  | else: | 
					
						
						|  | self.drop = None | 
					
						
						|  |  | 
					
						
						|  | self.wte = wte | 
					
						
						|  |  | 
					
						
						|  | if isinstance(config.img_processor, dict) and config.img_processor.get('name', None) == 'clip_vision_model': | 
					
						
						|  | assert 'model_name' in config.img_processor, 'model_name must be provided for CLIPVisionModel' | 
					
						
						|  | assert 'image_dim_out' in config.img_processor, 'image_dim_out must be provided for CLIPVisionModel' | 
					
						
						|  | assert 'num_img_tokens' in config.img_processor, 'num_img_tokens must be provided for CLIPVisionModel' | 
					
						
						|  | assert config.img_processor['model_name'] == 'openai/clip-vit-large-patch14-336' | 
					
						
						|  | clip_config = CLIP_VIT_LARGE_PATCH14_336_CONFIG | 
					
						
						|  | self.img_processor = CLIPVisionModel(clip_config) | 
					
						
						|  | image_dim_out = config.img_processor['image_dim_out'] | 
					
						
						|  | self.num_img_tokens = config.img_processor['num_img_tokens'] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if config._attn_implementation == 'flash_attention_2': | 
					
						
						|  | for layer in self.img_processor.vision_model.encoder.layers: | 
					
						
						|  | clip_fa2 = CLIPAttentionFA2(clip_config) | 
					
						
						|  | del layer.self_attn | 
					
						
						|  | layer.self_attn = clip_fa2 | 
					
						
						|  | else: | 
					
						
						|  | raise NotImplementedError(f'img_processor = {config.img_processor}, not implemented') | 
					
						
						|  |  | 
					
						
						|  | self.image_dim_out = image_dim_out | 
					
						
						|  | self.img_sizes = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.use_hd_transform = kwargs.get('use_hd_transform', False) | 
					
						
						|  | self.with_learnable_separator = kwargs.get('with_learnable_separator', False) | 
					
						
						|  | self.hd_transform_order = kwargs.get('hd_transform_order', 'glb_sub') | 
					
						
						|  |  | 
					
						
						|  | assert self.use_hd_transform == self.with_learnable_separator, 'use_hd_transform and with_learnable_separator should have same value' | 
					
						
						|  | if self.with_learnable_separator: | 
					
						
						|  | assert self.use_hd_transform, 'learnable separator is only for hd transform' | 
					
						
						|  |  | 
					
						
						|  | self.glb_GN = nn.Parameter(torch.zeros([1, 1, self.image_dim_out * 4])) | 
					
						
						|  | self.sub_GN = nn.Parameter(torch.zeros([1, 1, 1, self.image_dim_out * 4])) | 
					
						
						|  | logger.info(f'learnable separator enabled for hd transform, hd_transform_order = {self.hd_transform_order}') | 
					
						
						|  |  | 
					
						
						|  | projection_cls = kwargs.get('projection_cls', 'linear') | 
					
						
						|  | if projection_cls == 'linear': | 
					
						
						|  | self.img_projection = nn.Linear(image_dim_out, hidden_size) | 
					
						
						|  | elif projection_cls == 'mlp' and self.use_hd_transform: | 
					
						
						|  | dim_projection = hidden_size | 
					
						
						|  | depth = 2 | 
					
						
						|  | layers = [nn.Linear(image_dim_out * 4, dim_projection)] | 
					
						
						|  | for _ in range(1, depth): | 
					
						
						|  | layers.extend([nn.GELU(), | 
					
						
						|  | nn.Linear(dim_projection, dim_projection)]) | 
					
						
						|  | self.img_projection = nn.Sequential(*layers) | 
					
						
						|  | elif projection_cls == 'mlp': | 
					
						
						|  | dim_projection = hidden_size | 
					
						
						|  | depth = 2 | 
					
						
						|  | layers = [nn.Linear(image_dim_out, dim_projection)] | 
					
						
						|  | for _ in range(1, depth): | 
					
						
						|  | layers.extend([nn.GELU(), | 
					
						
						|  | nn.Linear(dim_projection, dim_projection)]) | 
					
						
						|  | self.img_projection = nn.Sequential(*layers) | 
					
						
						|  | else: | 
					
						
						|  | raise NotImplementedError(f'projection_cls = {projection_cls}, not implemented') | 
					
						
						|  |  | 
					
						
						|  | self.vocab_size = config.vocab_size | 
					
						
						|  | self.img_features = None | 
					
						
						|  |  | 
					
						
						|  | if isinstance(config.img_processor, dict): | 
					
						
						|  | self.layer_idx = config.img_processor.get('layer_idx', -2) | 
					
						
						|  | self.type_feature = config.img_processor.get('type_feature', 'patch') | 
					
						
						|  | else: | 
					
						
						|  | self.layer_idx = -2 | 
					
						
						|  | self.type_feature = 'patch' | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def set_img_features(self, img_features: torch.FloatTensor) -> None: | 
					
						
						|  | self.img_features = img_features | 
					
						
						|  |  | 
					
						
						|  | def set_img_sizes(self, img_sizes: torch.LongTensor) -> None: | 
					
						
						|  | self.img_sizes = img_sizes | 
					
						
						|  |  | 
					
						
						|  | def get_img_features(self, img_embeds: torch.FloatTensor) -> torch.FloatTensor: | 
					
						
						|  | LAYER_IDX = self.layer_idx | 
					
						
						|  | TYPE_FEATURE = self.type_feature | 
					
						
						|  |  | 
					
						
						|  | img_processor_output = self.img_processor(img_embeds, output_hidden_states=True) | 
					
						
						|  | img_feature = img_processor_output.hidden_states[LAYER_IDX] | 
					
						
						|  |  | 
					
						
						|  | if TYPE_FEATURE == "patch": | 
					
						
						|  | patch_feature = img_feature[:, 1:] | 
					
						
						|  | return patch_feature | 
					
						
						|  |  | 
					
						
						|  | raise NotImplementedError | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, input_ids: torch.LongTensor, pixel_values: torch.FloatTensor, image_sizes=None | 
					
						
						|  | ) -> torch.FloatTensor: | 
					
						
						|  | input_shape = input_ids.size() | 
					
						
						|  | input_ids = input_ids.view(-1, input_shape[-1]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | positions = torch.nonzero((input_ids < 0) & (input_ids > -MAX_INPUT_ID), as_tuple=True) | 
					
						
						|  | has_image = len(positions[0].tolist()) > 0 | 
					
						
						|  | input_ids = input_ids.clamp_min(0).clamp_max(self.vocab_size).detach() | 
					
						
						|  | hidden_states = self.wte(input_ids) | 
					
						
						|  |  | 
					
						
						|  | if has_image: | 
					
						
						|  | assert self.use_hd_transform | 
					
						
						|  | num_images, num_crops, c, h, w = pixel_values.shape | 
					
						
						|  | assert c == 3 and h == w == 336 | 
					
						
						|  | img_features = self.get_img_features(pixel_values.flatten(0, 1)).reshape( | 
					
						
						|  | num_images, num_crops, -1, self.image_dim_out | 
					
						
						|  | ) | 
					
						
						|  | image_features_proj = self.hd_feature_transform(img_features, image_sizes) | 
					
						
						|  | hidden_states = hidden_states.index_put( | 
					
						
						|  | positions, image_features_proj, accumulate=False | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if self.drop is not None: | 
					
						
						|  | hidden_states = self.drop(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  | def hd_feature_transform(self, image_features, image_sizes): | 
					
						
						|  | """ | 
					
						
						|  | image_features: (num_images, num_crops+1, 24*24, 1024) | 
					
						
						|  | """ | 
					
						
						|  | assert ( | 
					
						
						|  | self.hd_transform_order == 'sub_glb' | 
					
						
						|  | ), f'hd_transform_order `{self.hd_transform_order}` not implemented' | 
					
						
						|  | if isinstance(self.img_projection, nn.Sequential): | 
					
						
						|  | target_device = self.img_projection[0].bias.device | 
					
						
						|  | target_dtype = self.img_projection[0].bias.dtype | 
					
						
						|  | else: | 
					
						
						|  | target_device = self.img_projection.bias.device | 
					
						
						|  | target_dtype = self.img_projection.bias.dtype | 
					
						
						|  |  | 
					
						
						|  | global_image_features = image_features[:, 0] | 
					
						
						|  |  | 
					
						
						|  | global_image_features_hd = self.reshape_hd_patches_2x2merge(global_image_features, 1, 1) | 
					
						
						|  | global_image_features_hd_newline = self.add_image_newline(global_image_features_hd) | 
					
						
						|  |  | 
					
						
						|  | all_image_embeddings = [] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for i, img_size in enumerate(image_sizes): | 
					
						
						|  | h, w = img_size | 
					
						
						|  | h_crop = h // 336 | 
					
						
						|  | w_crop = w // 336 | 
					
						
						|  | num_crops = h_crop * w_crop | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | sub_image_features = image_features[i, 1 : 1 + num_crops] | 
					
						
						|  | sub_image_features_hd = self.reshape_hd_patches_2x2merge( | 
					
						
						|  | sub_image_features, h_crop, w_crop | 
					
						
						|  | ) | 
					
						
						|  | sub_image_features_hd_newline = self.add_image_newline(sub_image_features_hd) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | all_image_embeddings.extend( | 
					
						
						|  | [ | 
					
						
						|  | sub_image_features_hd_newline.squeeze(0), | 
					
						
						|  | self.glb_GN.squeeze(0), | 
					
						
						|  | global_image_features_hd_newline[i], | 
					
						
						|  | ] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | image_features_proj = self.img_projection( | 
					
						
						|  | torch.cat(all_image_embeddings, dim=0).to(target_device).to(target_dtype) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return image_features_proj | 
					
						
						|  |  | 
					
						
						|  | def reshape_hd_patches_2x2merge(self, image_features, h_crop, w_crop): | 
					
						
						|  | """ | 
					
						
						|  | image_features: (num_images*num_crops, 24*24, 1024) | 
					
						
						|  | output: (num_images, h_crop*12, w_crop*12, 4096), h_crop*w_crop == num_crops | 
					
						
						|  | """ | 
					
						
						|  | N, L, C = image_features.shape | 
					
						
						|  | assert L == 24 * 24 and C == 1024 and N % (h_crop * w_crop) == 0 | 
					
						
						|  | num_images = N // (h_crop * w_crop) | 
					
						
						|  | H = int(L**0.5) | 
					
						
						|  | image_features_hd = ( | 
					
						
						|  | image_features.reshape(N, H, H, C) | 
					
						
						|  | .reshape(N, H // 2, 2, H // 2, 2, C) | 
					
						
						|  | .permute(0, 1, 3, 2, 4, 5) | 
					
						
						|  | .reshape(N, -1, 4 * C) | 
					
						
						|  | .reshape( | 
					
						
						|  | num_images, h_crop, w_crop, H // 2, H // 2, -1 | 
					
						
						|  | ) | 
					
						
						|  | .permute(0, 1, 3, 2, 4, 5) | 
					
						
						|  | .reshape( | 
					
						
						|  | num_images, h_crop * H // 2, w_crop * H // 2, 4 * C | 
					
						
						|  | ) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | return image_features_hd | 
					
						
						|  |  | 
					
						
						|  | def add_image_newline(self, image_features_hd): | 
					
						
						|  | """ | 
					
						
						|  | image_features_hd: (num_images, h_crop*12, w_crop*12, 4096) | 
					
						
						|  | output: (num_images, (h_crop*12) * (w_crop*12+1), 4096) | 
					
						
						|  | """ | 
					
						
						|  | num_images, h, w, hid_dim = image_features_hd.shape | 
					
						
						|  |  | 
					
						
						|  | newline_embeddings = self.sub_GN.expand(num_images, h, -1, -1) | 
					
						
						|  | image_features_hd_newline = torch.cat( | 
					
						
						|  | [image_features_hd, newline_embeddings], dim=2 | 
					
						
						|  | ).reshape(num_images, -1, hid_dim) | 
					
						
						|  | return image_features_hd_newline | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  | _CHECKPOINT_FOR_DOC = "microsoft/Phi-3-vision-128k-instruct" | 
					
						
						|  | _CONFIG_FOR_DOC = "Phi3VConfig" | 
					
						
						|  |  | 
					
						
						|  | PHI3V_PRETRAINED_MODEL_ARCHIVE_LIST = [ | 
					
						
						|  | "microsoft/Phi-3-vision-128k-instruct", | 
					
						
						|  |  | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Phi3RMSNorm(nn.Module): | 
					
						
						|  | def __init__(self, hidden_size, eps=1e-6): | 
					
						
						|  | """ | 
					
						
						|  | Phi3RMSNorm is equivalent to T5LayerNorm | 
					
						
						|  | """ | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.weight = nn.Parameter(torch.ones(hidden_size)) | 
					
						
						|  | self.variance_epsilon = eps | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states): | 
					
						
						|  | input_dtype = hidden_states.dtype | 
					
						
						|  | hidden_states = hidden_states.to(torch.float32) | 
					
						
						|  | variance = hidden_states.pow(2).mean(-1, keepdim=True) | 
					
						
						|  | hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | 
					
						
						|  | return self.weight * hidden_states.to(input_dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _get_unpad_data(attention_mask): | 
					
						
						|  | seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) | 
					
						
						|  | indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() | 
					
						
						|  | max_seqlen_in_batch = seqlens_in_batch.max().item() | 
					
						
						|  | cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) | 
					
						
						|  | return ( | 
					
						
						|  | indices, | 
					
						
						|  | cu_seqlens, | 
					
						
						|  | max_seqlen_in_batch, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Phi3RotaryEmbedding(nn.Module): | 
					
						
						|  | def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | self.dim = dim | 
					
						
						|  | self.max_position_embeddings = max_position_embeddings | 
					
						
						|  | self.base = base | 
					
						
						|  | self.register_buffer("inv_freq", None, persistent=False) | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | def forward(self, x, position_ids, seq_len=None): | 
					
						
						|  |  | 
					
						
						|  | if self.inv_freq is None: | 
					
						
						|  | self.inv_freq = 1.0 / ( | 
					
						
						|  | self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim) | 
					
						
						|  | ) | 
					
						
						|  | inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) | 
					
						
						|  | position_ids_expanded = position_ids[:, None, :].float() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | device_type = x.device.type | 
					
						
						|  | device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" | 
					
						
						|  | with torch.autocast(device_type=device_type, enabled=False): | 
					
						
						|  | freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) | 
					
						
						|  | emb = torch.cat((freqs, freqs), dim=-1) | 
					
						
						|  | cos = emb.cos() | 
					
						
						|  | sin = emb.sin() | 
					
						
						|  | return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Phi3SuScaledRotaryEmbedding(Phi3RotaryEmbedding): | 
					
						
						|  | def __init__(self, dim, config, device=None): | 
					
						
						|  | super().__init__(dim, config.max_position_embeddings, config.rope_theta, device) | 
					
						
						|  |  | 
					
						
						|  | self.short_factor = config.rope_scaling["short_factor"] | 
					
						
						|  | self.long_factor = config.rope_scaling["long_factor"] | 
					
						
						|  | self.original_max_position_embeddings = config.original_max_position_embeddings | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | def forward(self, x, position_ids, seq_len=None): | 
					
						
						|  | seq_len = seq_len or torch.max(position_ids) + 1 | 
					
						
						|  | if seq_len > self.original_max_position_embeddings: | 
					
						
						|  | ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device) | 
					
						
						|  | else: | 
					
						
						|  | ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device) | 
					
						
						|  |  | 
					
						
						|  | inv_freq_shape = torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim | 
					
						
						|  | self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape) | 
					
						
						|  |  | 
					
						
						|  | inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) | 
					
						
						|  | position_ids_expanded = position_ids[:, None, :].float() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | device_type = x.device.type | 
					
						
						|  | device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" | 
					
						
						|  | with torch.autocast(device_type=device_type, enabled=False): | 
					
						
						|  | freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) | 
					
						
						|  | emb = torch.cat((freqs, freqs), dim=-1) | 
					
						
						|  |  | 
					
						
						|  | scale = self.max_position_embeddings / self.original_max_position_embeddings | 
					
						
						|  | if scale <= 1.0: | 
					
						
						|  | scaling_factor = 1.0 | 
					
						
						|  | else: | 
					
						
						|  | scaling_factor = math.sqrt(1 + math.log(scale) / math.log(self.original_max_position_embeddings)) | 
					
						
						|  |  | 
					
						
						|  | cos = emb.cos() * scaling_factor | 
					
						
						|  | sin = emb.sin() * scaling_factor | 
					
						
						|  | return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Phi3YarnScaledRotaryEmbedding(Phi3RotaryEmbedding): | 
					
						
						|  | def __init__(self, dim, config, device=None): | 
					
						
						|  | super().__init__(dim, config.max_position_embeddings, config.rope_theta, device) | 
					
						
						|  |  | 
					
						
						|  | self.short_factor = config.rope_scaling["short_factor"] | 
					
						
						|  | self.long_factor = config.rope_scaling["long_factor"] | 
					
						
						|  | self.original_max_position_embeddings = config.original_max_position_embeddings | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | def forward(self, x, position_ids, seq_len=None): | 
					
						
						|  | seq_len = torch.max(position_ids) + 1 | 
					
						
						|  | if seq_len > self.original_max_position_embeddings: | 
					
						
						|  | ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device) | 
					
						
						|  | else: | 
					
						
						|  | ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device) | 
					
						
						|  |  | 
					
						
						|  | inv_freq_shape = torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim | 
					
						
						|  | self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape) | 
					
						
						|  |  | 
					
						
						|  | inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) | 
					
						
						|  | position_ids_expanded = position_ids[:, None, :].float() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | device_type = x.device.type | 
					
						
						|  | device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" | 
					
						
						|  | with torch.autocast(device_type=device_type, enabled=False): | 
					
						
						|  | freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) | 
					
						
						|  | emb = torch.cat((freqs, freqs), dim=-1) | 
					
						
						|  |  | 
					
						
						|  | scale = self.max_position_embeddings / self.original_max_position_embeddings | 
					
						
						|  | if scale <= 1.0: | 
					
						
						|  | scaling_factor = 1.0 | 
					
						
						|  | else: | 
					
						
						|  | scaling_factor = 0.1 * math.log(scale) + 1.0 | 
					
						
						|  |  | 
					
						
						|  | cos = emb.cos() * scaling_factor | 
					
						
						|  | sin = emb.sin() * scaling_factor | 
					
						
						|  | return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def rotate_half(x): | 
					
						
						|  | """Rotates half the hidden dims of the input.""" | 
					
						
						|  | x1 = x[..., : x.shape[-1] // 2] | 
					
						
						|  | x2 = x[..., x.shape[-1] // 2 :] | 
					
						
						|  | return torch.cat((-x2, x1), dim=-1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): | 
					
						
						|  | """Applies Rotary Position Embedding to the query and key tensors. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | q (`torch.Tensor`): The query tensor. | 
					
						
						|  | k (`torch.Tensor`): The key tensor. | 
					
						
						|  | cos (`torch.Tensor`): The cosine part of the rotary embedding. | 
					
						
						|  | sin (`torch.Tensor`): The sine part of the rotary embedding. | 
					
						
						|  | position_ids (`torch.Tensor`, *optional*): | 
					
						
						|  | Deprecated and unused. | 
					
						
						|  | unsqueeze_dim (`int`, *optional*, defaults to 1): | 
					
						
						|  | The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and | 
					
						
						|  | sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note | 
					
						
						|  | that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and | 
					
						
						|  | k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes | 
					
						
						|  | cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have | 
					
						
						|  | the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. | 
					
						
						|  | Returns: | 
					
						
						|  | `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. | 
					
						
						|  | """ | 
					
						
						|  | cos = cos.unsqueeze(unsqueeze_dim) | 
					
						
						|  | sin = sin.unsqueeze(unsqueeze_dim) | 
					
						
						|  | q_embed = (q * cos) + (rotate_half(q) * sin) | 
					
						
						|  | k_embed = (k * cos) + (rotate_half(k) * sin) | 
					
						
						|  | return q_embed, k_embed | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Phi3MLP(nn.Module): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | self.config = config | 
					
						
						|  | self.gate_up_proj = nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False) | 
					
						
						|  | self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False) | 
					
						
						|  |  | 
					
						
						|  | self.activation_fn = ACT2FN[config.hidden_act] | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: | 
					
						
						|  | up_states = self.gate_up_proj(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | gate, up_states = up_states.chunk(2, dim=-1) | 
					
						
						|  | up_states = up_states * self.activation_fn(gate) | 
					
						
						|  |  | 
					
						
						|  | return self.down_proj(up_states) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: | 
					
						
						|  | """ | 
					
						
						|  | This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, | 
					
						
						|  | num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) | 
					
						
						|  | """ | 
					
						
						|  | batch, num_key_value_heads, slen, head_dim = hidden_states.shape | 
					
						
						|  | if n_rep == 1: | 
					
						
						|  | return hidden_states | 
					
						
						|  | hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) | 
					
						
						|  | return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Phi3Attention(nn.Module): | 
					
						
						|  | """Multi-headed attention from 'Attention Is All You Need' paper""" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: Phi3VConfig, layer_idx: Optional[int] = None): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | self.layer_idx = layer_idx | 
					
						
						|  | if layer_idx is None: | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will " | 
					
						
						|  | "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` " | 
					
						
						|  | "when creating this class." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.attention_dropout = config.attention_dropout | 
					
						
						|  | self.hidden_size = config.hidden_size | 
					
						
						|  | self.num_heads = config.num_attention_heads | 
					
						
						|  | self.head_dim = self.hidden_size // self.num_heads | 
					
						
						|  | self.num_key_value_heads = config.num_key_value_heads | 
					
						
						|  | self.num_key_value_groups = self.num_heads // self.num_key_value_heads | 
					
						
						|  | self.max_position_embeddings = config.max_position_embeddings | 
					
						
						|  | self.original_max_position_embeddings = config.original_max_position_embeddings | 
					
						
						|  | self.rope_theta = config.rope_theta | 
					
						
						|  | self.rope_scaling = config.rope_scaling | 
					
						
						|  | self.is_causal = True | 
					
						
						|  |  | 
					
						
						|  | if (self.head_dim * self.num_heads) != self.hidden_size: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" | 
					
						
						|  | f" and `num_heads`: {self.num_heads})." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | op_size = self.num_heads * self.head_dim + 2 * (self.num_key_value_heads * self.head_dim) | 
					
						
						|  | self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) | 
					
						
						|  | self.qkv_proj = nn.Linear(self.hidden_size, op_size, bias=False) | 
					
						
						|  | self._init_rope() | 
					
						
						|  |  | 
					
						
						|  | def _init_rope(self): | 
					
						
						|  | if self.rope_scaling is None: | 
					
						
						|  | self.rotary_emb = Phi3RotaryEmbedding( | 
					
						
						|  | self.head_dim, | 
					
						
						|  | max_position_embeddings=self.max_position_embeddings, | 
					
						
						|  | base=self.rope_theta, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | scaling_type = self.config.rope_scaling["type"] | 
					
						
						|  | if scaling_type == "su": | 
					
						
						|  | self.rotary_emb = Phi3SuScaledRotaryEmbedding(self.head_dim, self.config) | 
					
						
						|  | elif scaling_type == "yarn": | 
					
						
						|  | self.rotary_emb = Phi3YarnScaledRotaryEmbedding(self.head_dim, self.config) | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f"Unknown RoPE scaling type {scaling_type}") | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_value: Optional[Cache] = None, | 
					
						
						|  | output_attentions: bool = False, | 
					
						
						|  | use_cache: bool = False, | 
					
						
						|  | ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | 
					
						
						|  | logger.warning_once("You are not running the flash-attention implementation, expect numerical differences.") | 
					
						
						|  |  | 
					
						
						|  | bsz, q_len, _ = hidden_states.size() | 
					
						
						|  |  | 
					
						
						|  | qkv = self.qkv_proj(hidden_states) | 
					
						
						|  | query_pos = self.num_heads * self.head_dim | 
					
						
						|  | query_states = qkv[..., :query_pos] | 
					
						
						|  | key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim] | 
					
						
						|  | value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :] | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  | key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  | value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | kv_seq_len = key_states.shape[-2] | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  | if self.layer_idx is None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " | 
					
						
						|  | "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " | 
					
						
						|  | "with a layer index." | 
					
						
						|  | ) | 
					
						
						|  | kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) | 
					
						
						|  | cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len) | 
					
						
						|  |  | 
					
						
						|  | query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) | 
					
						
						|  |  | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  | cache_kwargs = {"sin": sin, "cos": cos} | 
					
						
						|  | key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | key_states = repeat_kv(key_states, self.num_key_value_groups) | 
					
						
						|  | value_states = repeat_kv(value_states, self.num_key_value_groups) | 
					
						
						|  |  | 
					
						
						|  | attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) | 
					
						
						|  |  | 
					
						
						|  | if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" | 
					
						
						|  | f" {attn_weights.size()}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" | 
					
						
						|  | ) | 
					
						
						|  | attn_weights = attn_weights + attention_mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(value_states.dtype) | 
					
						
						|  | attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) | 
					
						
						|  |  | 
					
						
						|  | attn_output = torch.matmul(attn_weights, value_states) | 
					
						
						|  |  | 
					
						
						|  | if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" | 
					
						
						|  | f" {attn_output.size()}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attn_output = attn_output.transpose(1, 2).contiguous() | 
					
						
						|  | attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) | 
					
						
						|  |  | 
					
						
						|  | attn_output = self.o_proj(attn_output) | 
					
						
						|  |  | 
					
						
						|  | if not output_attentions: | 
					
						
						|  | attn_weights = None | 
					
						
						|  |  | 
					
						
						|  | return attn_output, attn_weights, past_key_value | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Phi3FlashAttention2(Phi3Attention): | 
					
						
						|  | """ | 
					
						
						|  | Phi-3 flash attention module. This module inherits from `Phi3Attention` as the weights of the module stays | 
					
						
						|  | untouched. The only required change would be on the forward pass where it needs to correctly call the public API of | 
					
						
						|  | flash attention and deal with padding tokens in case the input contains any of them. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, *args, **kwargs): | 
					
						
						|  | super().__init__(*args, **kwargs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.LongTensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_value: Optional[Cache] = None, | 
					
						
						|  | output_attentions: bool = False, | 
					
						
						|  | use_cache: bool = False, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if not _flash_supports_window_size: | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | "The current flash attention version does not support sliding window attention. Please use `attn_implementation='eager'` or upgrade flash-attn library." | 
					
						
						|  | ) | 
					
						
						|  | raise ValueError("The current flash attention version does not support sliding window attention.") | 
					
						
						|  |  | 
					
						
						|  | output_attentions = False | 
					
						
						|  |  | 
					
						
						|  | if "padding_mask" in kwargs: | 
					
						
						|  | warnings.warn( | 
					
						
						|  | "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attention_mask = kwargs.pop("padding_mask") | 
					
						
						|  |  | 
					
						
						|  | bsz, q_len, _ = hidden_states.size() | 
					
						
						|  |  | 
					
						
						|  | qkv = self.qkv_proj(hidden_states) | 
					
						
						|  | query_pos = self.num_heads * self.head_dim | 
					
						
						|  | query_states = qkv[..., :query_pos] | 
					
						
						|  | key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim] | 
					
						
						|  | value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  | key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  | value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | kv_seq_len = key_states.shape[-2] | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  | if self.layer_idx is None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " | 
					
						
						|  | "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " | 
					
						
						|  | "with a layer index." | 
					
						
						|  | ) | 
					
						
						|  | kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1 | 
					
						
						|  | cos, sin = self.rotary_emb(value_states, position_ids, seq_len=rotary_seq_len) | 
					
						
						|  |  | 
					
						
						|  | query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) | 
					
						
						|  |  | 
					
						
						|  | use_sliding_windows = ( | 
					
						
						|  | _flash_supports_window_size | 
					
						
						|  | and getattr(self.config, "sliding_window", None) is not None | 
					
						
						|  | and kv_seq_len > self.config.sliding_window | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  |  | 
					
						
						|  | cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0 | 
					
						
						|  | if ( | 
					
						
						|  | getattr(self.config, "sliding_window", None) is not None | 
					
						
						|  | and kv_seq_len > self.config.sliding_window | 
					
						
						|  | and cache_has_contents | 
					
						
						|  | ): | 
					
						
						|  | slicing_tokens = 1 - self.config.sliding_window | 
					
						
						|  |  | 
					
						
						|  | past_key = past_key_value[self.layer_idx][0] | 
					
						
						|  | past_value = past_key_value[self.layer_idx][1] | 
					
						
						|  |  | 
					
						
						|  | past_key = past_key[:, :, slicing_tokens:, :].contiguous() | 
					
						
						|  | past_value = past_value[:, :, slicing_tokens:, :].contiguous() | 
					
						
						|  |  | 
					
						
						|  | if past_key.shape[-2] != self.config.sliding_window - 1: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got" | 
					
						
						|  | f" {past_key.shape}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | attention_mask = attention_mask[:, slicing_tokens:] | 
					
						
						|  | attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1) | 
					
						
						|  |  | 
					
						
						|  | cache_kwargs = {"sin": sin, "cos": cos} | 
					
						
						|  | key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | key_states = repeat_kv(key_states, self.num_key_value_groups) | 
					
						
						|  | value_states = repeat_kv(value_states, self.num_key_value_groups) | 
					
						
						|  |  | 
					
						
						|  | attn_dropout = self.attention_dropout if self.training else 0.0 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if query_states.dtype == torch.float32: | 
					
						
						|  | if torch.is_autocast_enabled(): | 
					
						
						|  | target_dtype = torch.get_autocast_gpu_dtype() | 
					
						
						|  |  | 
					
						
						|  | elif hasattr(self.config, "_pre_quantization_dtype"): | 
					
						
						|  | target_dtype = self.config._pre_quantization_dtype | 
					
						
						|  | else: | 
					
						
						|  | target_dtype = self.qkv_proj.weight.dtype | 
					
						
						|  |  | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | f"The input hidden states seems to be silently casted in float32, this might be related to" | 
					
						
						|  | f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" | 
					
						
						|  | f" {target_dtype}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states.to(target_dtype) | 
					
						
						|  | key_states = key_states.to(target_dtype) | 
					
						
						|  | value_states = value_states.to(target_dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states.transpose(1, 2) | 
					
						
						|  | key_states = key_states.transpose(1, 2) | 
					
						
						|  | value_states = value_states.transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | attn_output = self._flash_attention_forward( | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | attention_mask, | 
					
						
						|  | q_len, | 
					
						
						|  | dropout=attn_dropout, | 
					
						
						|  | use_sliding_windows=use_sliding_windows, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() | 
					
						
						|  | attn_output = self.o_proj(attn_output) | 
					
						
						|  |  | 
					
						
						|  | if not output_attentions: | 
					
						
						|  | attn_weights = None | 
					
						
						|  |  | 
					
						
						|  | return attn_output, attn_weights, past_key_value | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _flash_attention_forward( | 
					
						
						|  | self, | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | attention_mask, | 
					
						
						|  | query_length, | 
					
						
						|  | dropout=0.0, | 
					
						
						|  | softmax_scale=None, | 
					
						
						|  | use_sliding_windows=False, | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token | 
					
						
						|  | first unpad the input, then computes the attention scores and pad the final attention scores. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | query_states (`torch.Tensor`): | 
					
						
						|  | Input query states to be passed to Flash Attention API | 
					
						
						|  | key_states (`torch.Tensor`): | 
					
						
						|  | Input key states to be passed to Flash Attention API | 
					
						
						|  | value_states (`torch.Tensor`): | 
					
						
						|  | Input value states to be passed to Flash Attention API | 
					
						
						|  | attention_mask (`torch.Tensor`): | 
					
						
						|  | The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the | 
					
						
						|  | position of padding tokens and 1 for the position of non-padding tokens. | 
					
						
						|  | dropout (`float`): | 
					
						
						|  | Attention dropout | 
					
						
						|  | softmax_scale (`float`, *optional*): | 
					
						
						|  | The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) | 
					
						
						|  | use_sliding_windows (`bool`, *optional*): | 
					
						
						|  | Whether to activate sliding window attention. | 
					
						
						|  | """ | 
					
						
						|  | if not self._flash_attn_uses_top_left_mask: | 
					
						
						|  | causal = self.is_causal | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | causal = self.is_causal and query_length != 1 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | batch_size = query_states.shape[0] | 
					
						
						|  | query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( | 
					
						
						|  | query_states, key_states, value_states, attention_mask, query_length | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | cu_seqlens_q, cu_seqlens_k = cu_seq_lens | 
					
						
						|  | max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens | 
					
						
						|  |  | 
					
						
						|  | if not use_sliding_windows: | 
					
						
						|  | attn_output_unpad = flash_attn_varlen_func( | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | cu_seqlens_q=cu_seqlens_q, | 
					
						
						|  | cu_seqlens_k=cu_seqlens_k, | 
					
						
						|  | max_seqlen_q=max_seqlen_in_batch_q, | 
					
						
						|  | max_seqlen_k=max_seqlen_in_batch_k, | 
					
						
						|  | dropout_p=dropout, | 
					
						
						|  | softmax_scale=softmax_scale, | 
					
						
						|  | causal=causal, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | attn_output_unpad = flash_attn_varlen_func( | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | cu_seqlens_q=cu_seqlens_q, | 
					
						
						|  | cu_seqlens_k=cu_seqlens_k, | 
					
						
						|  | max_seqlen_q=max_seqlen_in_batch_q, | 
					
						
						|  | max_seqlen_k=max_seqlen_in_batch_k, | 
					
						
						|  | dropout_p=dropout, | 
					
						
						|  | softmax_scale=softmax_scale, | 
					
						
						|  | causal=causal, | 
					
						
						|  | window_size=(self.config.sliding_window, self.config.sliding_window), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) | 
					
						
						|  | else: | 
					
						
						|  | if not use_sliding_windows: | 
					
						
						|  | attn_output = flash_attn_func( | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | dropout, | 
					
						
						|  | softmax_scale=softmax_scale, | 
					
						
						|  | causal=causal, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | attn_output = flash_attn_func( | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | dropout, | 
					
						
						|  | softmax_scale=softmax_scale, | 
					
						
						|  | causal=causal, | 
					
						
						|  | window_size=(self.config.sliding_window, self.config.sliding_window), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return attn_output | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): | 
					
						
						|  | batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if kv_seq_len != attention_mask.shape[-1]: | 
					
						
						|  | attention_mask_num_tokens = attention_mask.shape[-1] | 
					
						
						|  | attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :] | 
					
						
						|  |  | 
					
						
						|  | indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) | 
					
						
						|  |  | 
					
						
						|  | key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) | 
					
						
						|  | value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) | 
					
						
						|  |  | 
					
						
						|  | if query_length == kv_seq_len: | 
					
						
						|  | query_layer = index_first_axis( | 
					
						
						|  | query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k | 
					
						
						|  | ) | 
					
						
						|  | cu_seqlens_q = cu_seqlens_k | 
					
						
						|  | max_seqlen_in_batch_q = max_seqlen_in_batch_k | 
					
						
						|  | indices_q = indices_k | 
					
						
						|  | elif query_length == 1: | 
					
						
						|  | max_seqlen_in_batch_q = 1 | 
					
						
						|  | cu_seqlens_q = torch.arange( | 
					
						
						|  | batch_size + 1, dtype=torch.int32, device=query_layer.device | 
					
						
						|  | ) | 
					
						
						|  | indices_q = cu_seqlens_q[:-1] | 
					
						
						|  | query_layer = query_layer.squeeze(1) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | attention_mask = attention_mask[:, -query_length:] | 
					
						
						|  | query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) | 
					
						
						|  |  | 
					
						
						|  | return ( | 
					
						
						|  | query_layer, | 
					
						
						|  | key_layer, | 
					
						
						|  | value_layer, | 
					
						
						|  | indices_q, | 
					
						
						|  | (cu_seqlens_q, cu_seqlens_k), | 
					
						
						|  | (max_seqlen_in_batch_q, max_seqlen_in_batch_k), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Phi3SdpaAttention(Phi3Attention): | 
					
						
						|  | """ | 
					
						
						|  | Phi3 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from | 
					
						
						|  | `Phi3Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to | 
					
						
						|  | SDPA API. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_value: Optional[Cache] = None, | 
					
						
						|  | output_attentions: bool = False, | 
					
						
						|  | use_cache: bool = False, | 
					
						
						|  | ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | 
					
						
						|  | if output_attentions: | 
					
						
						|  |  | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | "Phi3Model is using Phi3SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " | 
					
						
						|  | 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' | 
					
						
						|  | ) | 
					
						
						|  | return super().forward( | 
					
						
						|  | hidden_states=hidden_states, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_value=past_key_value, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | bsz, q_len, _ = hidden_states.size() | 
					
						
						|  |  | 
					
						
						|  | qkv = self.qkv_proj(hidden_states) | 
					
						
						|  | query_pos = self.num_heads * self.head_dim | 
					
						
						|  | query_states = qkv[..., :query_pos] | 
					
						
						|  | key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim] | 
					
						
						|  | value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :] | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  | key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  | value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | kv_seq_len = key_states.shape[-2] | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  | kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) | 
					
						
						|  | cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len) | 
					
						
						|  |  | 
					
						
						|  | query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) | 
					
						
						|  |  | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  | cache_kwargs = {"sin": sin, "cos": cos} | 
					
						
						|  | key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | 
					
						
						|  |  | 
					
						
						|  | key_states = repeat_kv(key_states, self.num_key_value_groups) | 
					
						
						|  | value_states = repeat_kv(value_states, self.num_key_value_groups) | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if query_states.device.type == "cuda" and attention_mask is not None: | 
					
						
						|  | query_states = query_states.contiguous() | 
					
						
						|  | key_states = key_states.contiguous() | 
					
						
						|  | value_states = value_states.contiguous() | 
					
						
						|  |  | 
					
						
						|  | attn_output = torch.nn.functional.scaled_dot_product_attention( | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | attn_mask=attention_mask, | 
					
						
						|  | dropout_p=self.attention_dropout if self.training else 0.0, | 
					
						
						|  |  | 
					
						
						|  | is_causal=self.is_causal and attention_mask is None and q_len > 1, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attn_output = attn_output.transpose(1, 2).contiguous() | 
					
						
						|  | attn_output = attn_output.view(bsz, q_len, self.hidden_size) | 
					
						
						|  |  | 
					
						
						|  | attn_output = self.o_proj(attn_output) | 
					
						
						|  |  | 
					
						
						|  | return attn_output, None, past_key_value | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | PHI3_ATTENTION_CLASSES = { | 
					
						
						|  | "eager": Phi3Attention, | 
					
						
						|  | "flash_attention_2": Phi3FlashAttention2, | 
					
						
						|  | "sdpa": Phi3SdpaAttention, | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Phi3DecoderLayer(nn.Module): | 
					
						
						|  | def __init__(self, config: Phi3VConfig, layer_idx: int): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | self.config = config | 
					
						
						|  | self.self_attn = PHI3_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx) | 
					
						
						|  |  | 
					
						
						|  | self.mlp = Phi3MLP(config) | 
					
						
						|  | self.input_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
						
						|  |  | 
					
						
						|  | self.resid_attn_dropout = nn.Dropout(config.resid_pdrop) | 
					
						
						|  | self.resid_mlp_dropout = nn.Dropout(config.resid_pdrop) | 
					
						
						|  | self.post_attention_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_value: Optional[Tuple[torch.Tensor]] = None, | 
					
						
						|  | output_attentions: Optional[bool] = False, | 
					
						
						|  | use_cache: Optional[bool] = False, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: | 
					
						
						|  | if "padding_mask" in kwargs: | 
					
						
						|  | warnings.warn( | 
					
						
						|  | "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" | 
					
						
						|  | ) | 
					
						
						|  | """ | 
					
						
						|  | Args: | 
					
						
						|  | hidden_states (`torch.FloatTensor`): | 
					
						
						|  | input to the layer of shape `(batch, seq_len, embed_dim)` | 
					
						
						|  | attention_mask (`torch.FloatTensor`, *optional*): attention mask of size | 
					
						
						|  | `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | 
					
						
						|  | position_ids (`torch.LongTensor` of shape `({0})`, *optional*): | 
					
						
						|  | Indices of positions of each input sequence tokens in the position embeddings. Selected in the range | 
					
						
						|  | `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) | 
					
						
						|  | output_attentions (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the attentions tensors of all attention layers. See `attentions` under | 
					
						
						|  | returned tensors for more detail. | 
					
						
						|  | use_cache (`bool`, *optional*): | 
					
						
						|  | If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding | 
					
						
						|  | (see `past_key_values`). | 
					
						
						|  | past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | residual = hidden_states | 
					
						
						|  |  | 
					
						
						|  | hidden_states = self.input_layernorm(hidden_states) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attn_outputs, self_attn_weights, present_key_value = self.self_attn( | 
					
						
						|  | hidden_states=hidden_states, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_value=past_key_value, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = residual + self.resid_attn_dropout(attn_outputs) | 
					
						
						|  |  | 
					
						
						|  | residual = hidden_states | 
					
						
						|  | hidden_states = self.post_attention_layernorm(hidden_states) | 
					
						
						|  | hidden_states = self.mlp(hidden_states) | 
					
						
						|  | hidden_states = residual + self.resid_mlp_dropout(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | outputs = (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | if output_attentions: | 
					
						
						|  | outputs += (self_attn_weights,) | 
					
						
						|  |  | 
					
						
						|  | if use_cache: | 
					
						
						|  | outputs += (present_key_value,) | 
					
						
						|  |  | 
					
						
						|  | return outputs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | PHI3V_START_DOCSTRING = r""" | 
					
						
						|  | This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | 
					
						
						|  | library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | 
					
						
						|  | etc.) | 
					
						
						|  |  | 
					
						
						|  | This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | 
					
						
						|  | Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | 
					
						
						|  | and behavior. | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | config ([`Phi3VConfig`]): | 
					
						
						|  | Model configuration class with all the parameters of the model. Initializing with a config file does not | 
					
						
						|  | load the weights associated with the model, only the configuration. Check out the | 
					
						
						|  | [`~PreTrainedModel.from_pretrained`] method to load the model weights. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | "The bare Phi-3-V model outputting raw hidden-states without any specific head on top.", | 
					
						
						|  | PHI3V_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  | class Phi3VPreTrainedModel(PreTrainedModel): | 
					
						
						|  | config_class = Phi3VConfig | 
					
						
						|  | base_model_prefix = "model" | 
					
						
						|  | supports_gradient_checkpointing = True | 
					
						
						|  | _no_split_modules = ["Phi3DecoderLayer"] | 
					
						
						|  | _skip_keys_device_placement = "past_key_values" | 
					
						
						|  | _supports_flash_attn_2 = True | 
					
						
						|  | _supports_sdpa = False | 
					
						
						|  | _supports_cache_class = True | 
					
						
						|  |  | 
					
						
						|  | _version = "0.0.5" | 
					
						
						|  |  | 
					
						
						|  | def _init_weights(self, module): | 
					
						
						|  | std = self.config.initializer_range | 
					
						
						|  | if isinstance(module, nn.Linear): | 
					
						
						|  | module.weight.data.normal_(mean=0.0, std=std) | 
					
						
						|  | if module.bias is not None: | 
					
						
						|  | module.bias.data.zero_() | 
					
						
						|  | elif isinstance(module, nn.Embedding): | 
					
						
						|  | module.weight.data.normal_(mean=0.0, std=std) | 
					
						
						|  | if module.padding_idx is not None: | 
					
						
						|  | module.weight.data[module.padding_idx].zero_() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | PHI3V_INPUTS_DOCSTRING = r""" | 
					
						
						|  | Args: | 
					
						
						|  | input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | 
					
						
						|  | Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | 
					
						
						|  | it. | 
					
						
						|  |  | 
					
						
						|  | Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | 
					
						
						|  | [`PreTrainedTokenizer.__call__`] for details. | 
					
						
						|  |  | 
					
						
						|  | [What are input IDs?](../glossary#input-ids) | 
					
						
						|  | attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | 
					
						
						|  |  | 
					
						
						|  | - 1 for tokens that are **not masked**, | 
					
						
						|  | - 0 for tokens that are **masked**. | 
					
						
						|  |  | 
					
						
						|  | [What are attention masks?](../glossary#attention-mask) | 
					
						
						|  |  | 
					
						
						|  | Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | 
					
						
						|  | [`PreTrainedTokenizer.__call__`] for details. | 
					
						
						|  |  | 
					
						
						|  | If `past_key_values` is used, optionally only the last `input_ids` have to be input (see | 
					
						
						|  | `past_key_values`). | 
					
						
						|  |  | 
					
						
						|  | If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] | 
					
						
						|  | and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more | 
					
						
						|  | information on the default strategy. | 
					
						
						|  |  | 
					
						
						|  | - 1 indicates the head is **not masked**, | 
					
						
						|  | - 0 indicates the head is **masked**. | 
					
						
						|  | position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | 
					
						
						|  | config.n_positions - 1]`. | 
					
						
						|  |  | 
					
						
						|  | [What are position IDs?](../glossary#position-ids) | 
					
						
						|  | past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): | 
					
						
						|  | Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention | 
					
						
						|  | blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` | 
					
						
						|  | returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. | 
					
						
						|  |  | 
					
						
						|  | Two formats are allowed: | 
					
						
						|  | - a [`~cache_utils.Cache`] instance; | 
					
						
						|  | - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of | 
					
						
						|  | shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy | 
					
						
						|  | cache format. | 
					
						
						|  |  | 
					
						
						|  | The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the | 
					
						
						|  | legacy cache format will be returned. | 
					
						
						|  |  | 
					
						
						|  | If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't | 
					
						
						|  | have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` | 
					
						
						|  | of shape `(batch_size, sequence_length)`. | 
					
						
						|  | inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | 
					
						
						|  | Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | 
					
						
						|  | is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | 
					
						
						|  | model's internal embedding lookup matrix. | 
					
						
						|  | pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)): | 
					
						
						|  | The tensors corresponding to the input images. Pixel values can be obtained using [`AutoImageProcessor`]. | 
					
						
						|  | See [`Phi3ImageProcessor.__call__`] for details. | 
					
						
						|  | image_sizes (`torch.LongTensor` of shape `(batch_size, 2)`, *optional*): | 
					
						
						|  | The sizes of the images in the batch, being (height, width) for each image. | 
					
						
						|  | use_cache (`bool`, *optional*): | 
					
						
						|  | If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | 
					
						
						|  | `past_key_values`). | 
					
						
						|  | output_attentions (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | 
					
						
						|  | tensors for more detail. | 
					
						
						|  | output_hidden_states (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | 
					
						
						|  | more detail. | 
					
						
						|  | return_dict (`bool`, *optional*): | 
					
						
						|  | Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | "The bare Phi-3-V model outputting raw hidden-states without any specific head on top.", | 
					
						
						|  | PHI3V_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  | class Phi3VModel(Phi3VPreTrainedModel): | 
					
						
						|  | """ | 
					
						
						|  | Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Phi3DecoderLayer`] | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | config: Phi3Config | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: Phi3VConfig): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.padding_idx = config.pad_token_id | 
					
						
						|  | self.vocab_size = config.vocab_size | 
					
						
						|  |  | 
					
						
						|  | self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) | 
					
						
						|  | self.embed_dropout = nn.Dropout(config.embd_pdrop) | 
					
						
						|  |  | 
					
						
						|  | self.vision_embed_tokens = None | 
					
						
						|  | if isinstance(config.embd_layer, dict): | 
					
						
						|  |  | 
					
						
						|  | embedding_config = { | 
					
						
						|  | 'embedding_cls': config.embd_layer['embedding_cls'], | 
					
						
						|  | **config.embd_layer | 
					
						
						|  | } | 
					
						
						|  | self.vision_embed_tokens = Phi3ImageEmbedding(config, wte=self.embed_tokens, **embedding_config) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.layers = nn.ModuleList( | 
					
						
						|  | [Phi3DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] | 
					
						
						|  | ) | 
					
						
						|  | self._attn_implementation = config._attn_implementation | 
					
						
						|  | self.norm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
						
						|  |  | 
					
						
						|  | self.gradient_checkpointing = False | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.embed_tokens | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, value): | 
					
						
						|  | self.embed_tokens = value | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(PHI3V_INPUTS_DOCSTRING) | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: torch.LongTensor = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_values: Optional[List[torch.FloatTensor]] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | pixel_values: Optional[torch.FloatTensor] = None, | 
					
						
						|  | image_sizes: Optional[torch.LongTensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | ) -> Union[Tuple, BaseModelOutputWithPast]: | 
					
						
						|  | output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
						
						|  | output_hidden_states = ( | 
					
						
						|  | output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
						
						|  | ) | 
					
						
						|  | use_cache = use_cache if use_cache is not None else self.config.use_cache | 
					
						
						|  |  | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if input_ids is not None and inputs_embeds is not None: | 
					
						
						|  | raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | 
					
						
						|  | elif input_ids is not None: | 
					
						
						|  | batch_size, seq_length = input_ids.shape[:2] | 
					
						
						|  | elif inputs_embeds is not None: | 
					
						
						|  | batch_size, seq_length = inputs_embeds.shape[:2] | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError("You have to specify either input_ids or inputs_embeds") | 
					
						
						|  |  | 
					
						
						|  | past_key_values_length = 0 | 
					
						
						|  |  | 
					
						
						|  | if self.gradient_checkpointing and self.training: | 
					
						
						|  | if use_cache: | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | 
					
						
						|  | ) | 
					
						
						|  | use_cache = False | 
					
						
						|  |  | 
					
						
						|  | if use_cache: | 
					
						
						|  | use_legacy_cache = not isinstance(past_key_values, Cache) | 
					
						
						|  | if use_legacy_cache: | 
					
						
						|  | past_key_values = DynamicCache.from_legacy_cache(past_key_values) | 
					
						
						|  | past_key_values_length = past_key_values.get_usable_length(seq_length) | 
					
						
						|  |  | 
					
						
						|  | if position_ids is None: | 
					
						
						|  | device = input_ids.device if input_ids is not None else inputs_embeds.device | 
					
						
						|  | position_ids = torch.arange( | 
					
						
						|  | past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device | 
					
						
						|  | ) | 
					
						
						|  | position_ids = position_ids.unsqueeze(0).view(-1, seq_length) | 
					
						
						|  | else: | 
					
						
						|  | position_ids = position_ids.view(-1, seq_length).long() | 
					
						
						|  |  | 
					
						
						|  | if inputs_embeds is None: | 
					
						
						|  | if pixel_values is not None and image_sizes is not None: | 
					
						
						|  | assert self.vision_embed_tokens is not None, "Vision embedding layer is not defined" | 
					
						
						|  | inputs_embeds = self.vision_embed_tokens(input_ids, pixel_values=pixel_values, image_sizes=image_sizes) | 
					
						
						|  | else: | 
					
						
						|  | inputs_embeds = self.embed_tokens(input_ids) | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache: | 
					
						
						|  | is_padding_right = attention_mask[:, -1].sum().item() != batch_size | 
					
						
						|  | if is_padding_right: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "You are attempting to perform batched generation with padding_side='right'" | 
					
						
						|  | " this may lead to unexpected behaviour for Flash Attention version of Phi3. Make sure to " | 
					
						
						|  | " call `tokenizer.padding_side  = 'left'` before tokenizing the input. " | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if self._attn_implementation == "flash_attention_2": | 
					
						
						|  |  | 
					
						
						|  | attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | attention_mask = _prepare_4d_causal_attention_mask( | 
					
						
						|  | attention_mask, | 
					
						
						|  | (batch_size, seq_length), | 
					
						
						|  | inputs_embeds, | 
					
						
						|  | past_key_values_length, | 
					
						
						|  | sliding_window=self.config.sliding_window, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = inputs_embeds | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | all_hidden_states = () if output_hidden_states else None | 
					
						
						|  | all_self_attns = () if output_attentions else None | 
					
						
						|  | next_decoder_cache = None | 
					
						
						|  |  | 
					
						
						|  | for decoder_layer in self.layers: | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | all_hidden_states += (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | if self.gradient_checkpointing and self.training: | 
					
						
						|  | layer_outputs = self._gradient_checkpointing_func( | 
					
						
						|  | decoder_layer.__call__, | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask, | 
					
						
						|  | position_ids, | 
					
						
						|  | past_key_values, | 
					
						
						|  | output_attentions, | 
					
						
						|  | use_cache, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | layer_outputs = decoder_layer( | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_value=past_key_values, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = layer_outputs[0] | 
					
						
						|  |  | 
					
						
						|  | if use_cache: | 
					
						
						|  | next_decoder_cache = layer_outputs[2 if output_attentions else 1] | 
					
						
						|  |  | 
					
						
						|  | if output_attentions: | 
					
						
						|  | all_self_attns += (layer_outputs[1],) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = self.norm(hidden_states) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | all_hidden_states += (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | next_cache = None | 
					
						
						|  | if use_cache: | 
					
						
						|  | next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) | 
					
						
						|  | return BaseModelOutputWithPast( | 
					
						
						|  | last_hidden_state=hidden_states, | 
					
						
						|  | past_key_values=next_cache, | 
					
						
						|  | hidden_states=all_hidden_states, | 
					
						
						|  | attentions=all_self_attns, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Phi3VForCausalLM(Phi3VPreTrainedModel): | 
					
						
						|  | _tied_weights_keys = ["lm_head.weight"] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.model = Phi3VModel(config) | 
					
						
						|  | self.vocab_size = config.vocab_size | 
					
						
						|  | self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.model.embed_tokens | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, value): | 
					
						
						|  | self.model.embed_tokens = value | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_output_embeddings(self): | 
					
						
						|  | return self.lm_head | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def set_output_embeddings(self, new_embeddings): | 
					
						
						|  | self.lm_head = new_embeddings | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def set_decoder(self, decoder): | 
					
						
						|  | self.model = decoder | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_decoder(self): | 
					
						
						|  | return self.model | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(PHI3V_INPUTS_DOCSTRING) | 
					
						
						|  | @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: torch.LongTensor = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_values: Optional[List[torch.FloatTensor]] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | pixel_values: Optional[torch.FloatTensor] = None, | 
					
						
						|  | image_sizes: Optional[torch.LongTensor] = None, | 
					
						
						|  | labels: Optional[torch.LongTensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | ) -> Union[Tuple, CausalLMOutputWithPast]: | 
					
						
						|  | r""" | 
					
						
						|  | Args: | 
					
						
						|  | labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., | 
					
						
						|  | config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored | 
					
						
						|  | (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  |  | 
					
						
						|  | Example: | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | >>> from transformers import AutoTokenizer, Phi3ForCausalLM | 
					
						
						|  |  | 
					
						
						|  | >>> model = Phi3ForCausalLM.from_pretrained("microsoft/phi-3-mini-4k-instruct") | 
					
						
						|  | >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-3-mini-4k-instruct") | 
					
						
						|  |  | 
					
						
						|  | >>> prompt = "This is an example script ." | 
					
						
						|  | >>> inputs = tokenizer(prompt, return_tensors="pt") | 
					
						
						|  |  | 
					
						
						|  | >>> # Generate | 
					
						
						|  | >>> generate_ids = model.generate(inputs.input_ids, max_length=30) | 
					
						
						|  | >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | 
					
						
						|  | 'This is an example script .\n Certainly! Below is a sample script that demonstrates a simple task, such as calculating the sum' | 
					
						
						|  | ```""" | 
					
						
						|  |  | 
					
						
						|  | output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
						
						|  | output_hidden_states = ( | 
					
						
						|  | output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
						
						|  | ) | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | outputs = self.model( | 
					
						
						|  | input_ids=input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | pixel_values=pixel_values, | 
					
						
						|  | image_sizes=image_sizes, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = outputs[0] | 
					
						
						|  | logits = self.lm_head(hidden_states) | 
					
						
						|  | logits = logits.float() | 
					
						
						|  |  | 
					
						
						|  | loss = None | 
					
						
						|  | if labels is not None: | 
					
						
						|  |  | 
					
						
						|  | shift_logits = logits[..., :-1, :].contiguous() | 
					
						
						|  | shift_labels = labels[..., 1:].contiguous() | 
					
						
						|  |  | 
					
						
						|  | loss_fct = CrossEntropyLoss() | 
					
						
						|  | shift_logits = shift_logits.view(-1, self.config.vocab_size) | 
					
						
						|  | shift_labels = shift_labels.view(-1) | 
					
						
						|  |  | 
					
						
						|  | shift_labels = shift_labels.to(shift_logits.device) | 
					
						
						|  | loss = loss_fct(shift_logits, shift_labels) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (logits,) + outputs[1:] | 
					
						
						|  | return (loss,) + output if loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | return CausalLMOutputWithPast( | 
					
						
						|  | loss=loss, | 
					
						
						|  | logits=logits, | 
					
						
						|  | past_key_values=outputs.past_key_values, | 
					
						
						|  | hidden_states=outputs.hidden_states, | 
					
						
						|  | attentions=outputs.attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def prepare_inputs_for_generation( | 
					
						
						|  | self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, pixel_values=None, image_sizes=None, **kwargs | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if past_key_values and self.config.rope_scaling and input_ids.shape[1] >= self.config.original_max_position_embeddings + 1: | 
					
						
						|  | past_length = past_key_values.seen_tokens if isinstance(past_key_values, Cache) else past_key_values[0][0].shape[2] | 
					
						
						|  | if past_length <= self.config.original_max_position_embeddings: | 
					
						
						|  | past_key_values = None | 
					
						
						|  |  | 
					
						
						|  | if past_key_values is not None: | 
					
						
						|  | if isinstance(past_key_values, Cache): | 
					
						
						|  | cache_length = past_key_values.get_seq_length() | 
					
						
						|  | past_length = past_key_values.seen_tokens | 
					
						
						|  | max_cache_length = past_key_values.get_max_length() | 
					
						
						|  | else: | 
					
						
						|  | cache_length = past_length = past_key_values[0][0].shape[2] | 
					
						
						|  | max_cache_length = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: | 
					
						
						|  | input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | elif past_length < input_ids.shape[1]: | 
					
						
						|  | input_ids = input_ids[:, past_length:] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if ( | 
					
						
						|  | max_cache_length is not None | 
					
						
						|  | and attention_mask is not None | 
					
						
						|  | and cache_length + input_ids.shape[1] > max_cache_length | 
					
						
						|  | ): | 
					
						
						|  | attention_mask = attention_mask[:, -max_cache_length:] | 
					
						
						|  |  | 
					
						
						|  | position_ids = kwargs.get("position_ids", None) | 
					
						
						|  | if attention_mask is not None and position_ids is None: | 
					
						
						|  |  | 
					
						
						|  | position_ids = attention_mask.long().cumsum(-1) - 1 | 
					
						
						|  | position_ids.masked_fill_(attention_mask == 0, 1) | 
					
						
						|  | if past_key_values: | 
					
						
						|  | position_ids = position_ids[:, -input_ids.shape[1] :] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if inputs_embeds is not None and past_key_values is None: | 
					
						
						|  | model_inputs = {"inputs_embeds": inputs_embeds} | 
					
						
						|  | else: | 
					
						
						|  | model_inputs = {"input_ids": input_ids} | 
					
						
						|  |  | 
					
						
						|  | model_inputs.update( | 
					
						
						|  | { | 
					
						
						|  | "position_ids": position_ids, | 
					
						
						|  | "past_key_values": past_key_values, | 
					
						
						|  | "use_cache": kwargs.get("use_cache"), | 
					
						
						|  | "attention_mask": attention_mask, | 
					
						
						|  | "pixel_values": pixel_values, | 
					
						
						|  | "image_sizes": image_sizes, | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  | return model_inputs | 
					
						
						|  |  | 
					
						
						|  | @staticmethod | 
					
						
						|  |  | 
					
						
						|  | def _reorder_cache(past_key_values, beam_idx): | 
					
						
						|  | reordered_past = () | 
					
						
						|  | for layer_past in past_key_values: | 
					
						
						|  | reordered_past += ( | 
					
						
						|  | tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), | 
					
						
						|  | ) | 
					
						
						|  | return reordered_past | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | """ | 
					
						
						|  | The [`Phi3VModel`] with a sequence classification head on top (linear layer). | 
					
						
						|  |  | 
					
						
						|  | [`Phi3VForSequenceClassification`] uses the last token in order to do the classification, as other causal models | 
					
						
						|  | (e.g. GPT-2) do. | 
					
						
						|  |  | 
					
						
						|  | Since it does classification on the last token, it requires to know the position of the last token. If a | 
					
						
						|  | `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If | 
					
						
						|  | no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the | 
					
						
						|  | padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in | 
					
						
						|  | each row of the batch). | 
					
						
						|  | """, | 
					
						
						|  | PHI3V_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | class Phi3VForSequenceClassification(Phi3VPreTrainedModel): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.num_labels = config.num_labels | 
					
						
						|  | self.model = Phi3VModel(config) | 
					
						
						|  | self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.model.embed_tokens | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, value): | 
					
						
						|  | self.model.embed_tokens = value | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(PHI3V_INPUTS_DOCSTRING) | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: torch.LongTensor = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | pixel_values: Optional[torch.FloatTensor] = None, | 
					
						
						|  | image_sizes: Optional[torch.LongTensor] = None, | 
					
						
						|  | labels: Optional[torch.LongTensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | ) -> Union[Tuple, SequenceClassifierOutputWithPast]: | 
					
						
						|  | r""" | 
					
						
						|  | labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | 
					
						
						|  | Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | 
					
						
						|  | config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | 
					
						
						|  | `config.num_labels > 1` a classification loss is computed (Cross-Entropy). | 
					
						
						|  | """ | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | model_outputs = self.model( | 
					
						
						|  | input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | pixel_values=pixel_values, | 
					
						
						|  | image_sizes=image_sizes, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  | hidden_states = model_outputs[0] | 
					
						
						|  | logits = self.score(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | if input_ids is not None: | 
					
						
						|  | batch_size = input_ids.shape[0] | 
					
						
						|  | else: | 
					
						
						|  | batch_size = inputs_embeds.shape[0] | 
					
						
						|  |  | 
					
						
						|  | if self.config.pad_token_id is None and batch_size != 1: | 
					
						
						|  | raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") | 
					
						
						|  | if self.config.pad_token_id is None: | 
					
						
						|  | sequence_lengths = -1 | 
					
						
						|  | else: | 
					
						
						|  | if input_ids is not None: | 
					
						
						|  |  | 
					
						
						|  | sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 | 
					
						
						|  | sequence_lengths = sequence_lengths % input_ids.shape[-1] | 
					
						
						|  | sequence_lengths = sequence_lengths.to(logits.device) | 
					
						
						|  | else: | 
					
						
						|  | sequence_lengths = -1 | 
					
						
						|  |  | 
					
						
						|  | pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] | 
					
						
						|  |  | 
					
						
						|  | loss = None | 
					
						
						|  | if labels is not None: | 
					
						
						|  | labels = labels.to(logits.device) | 
					
						
						|  | if self.config.problem_type is None: | 
					
						
						|  | if self.num_labels == 1: | 
					
						
						|  | self.config.problem_type = "regression" | 
					
						
						|  | elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | 
					
						
						|  | self.config.problem_type = "single_label_classification" | 
					
						
						|  | else: | 
					
						
						|  | self.config.problem_type = "multi_label_classification" | 
					
						
						|  |  | 
					
						
						|  | if self.config.problem_type == "regression": | 
					
						
						|  | loss_fct = MSELoss() | 
					
						
						|  | if self.num_labels == 1: | 
					
						
						|  | loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) | 
					
						
						|  | else: | 
					
						
						|  | loss = loss_fct(pooled_logits, labels) | 
					
						
						|  | elif self.config.problem_type == "single_label_classification": | 
					
						
						|  | loss_fct = CrossEntropyLoss() | 
					
						
						|  | loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) | 
					
						
						|  | elif self.config.problem_type == "multi_label_classification": | 
					
						
						|  | loss_fct = BCEWithLogitsLoss() | 
					
						
						|  | loss = loss_fct(pooled_logits, labels) | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (pooled_logits,) + model_outputs[1:] | 
					
						
						|  | return ((loss,) + output) if loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | return SequenceClassifierOutputWithPast( | 
					
						
						|  | loss=loss, | 
					
						
						|  | logits=pooled_logits, | 
					
						
						|  | past_key_values=model_outputs.past_key_values, | 
					
						
						|  | hidden_states=model_outputs.hidden_states, | 
					
						
						|  | attentions=model_outputs.attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | """ | 
					
						
						|  | [`Phi3VModel`] with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for | 
					
						
						|  | Named-Entity-Recognition (NER) tasks. | 
					
						
						|  | """, | 
					
						
						|  | PHI3V_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | class Phi3VForTokenClassification(Phi3VPreTrainedModel): | 
					
						
						|  | def __init__(self, config: Phi3VConfig): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.num_labels = config.num_labels | 
					
						
						|  |  | 
					
						
						|  | self.model = Phi3VModel(config) | 
					
						
						|  | if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None: | 
					
						
						|  | classifier_dropout = config.classifier_dropout | 
					
						
						|  | elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None: | 
					
						
						|  | classifier_dropout = config.hidden_dropout | 
					
						
						|  | else: | 
					
						
						|  | classifier_dropout = 0.1 | 
					
						
						|  | self.dropout = nn.Dropout(classifier_dropout) | 
					
						
						|  | self.classifier = nn.Linear(config.hidden_size, config.num_labels) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(PHI3V_INPUTS_DOCSTRING) | 
					
						
						|  | @add_code_sample_docstrings( | 
					
						
						|  | checkpoint=_CHECKPOINT_FOR_DOC, | 
					
						
						|  | output_type=TokenClassifierOutput, | 
					
						
						|  | config_class=_CONFIG_FOR_DOC, | 
					
						
						|  | ) | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.Tensor] = None, | 
					
						
						|  | pixel_values: Optional[torch.FloatTensor] = None, | 
					
						
						|  | image_sizes: Optional[torch.LongTensor] = None, | 
					
						
						|  | labels: Optional[torch.Tensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | **deprecated_arguments, | 
					
						
						|  | ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: | 
					
						
						|  | r""" | 
					
						
						|  | labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | 
					
						
						|  | Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | 
					
						
						|  | config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | 
					
						
						|  | `config.num_labels > 1` a classification loss is computed (Cross-Entropy). | 
					
						
						|  | """ | 
					
						
						|  | return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  |  | 
					
						
						|  | model_outputs = self.model( | 
					
						
						|  | input_ids, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | pixel_values=pixel_values, | 
					
						
						|  | image_sizes=image_sizes, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = model_outputs[0] | 
					
						
						|  | hidden_states = self.dropout(hidden_states) | 
					
						
						|  | logits = self.classifier(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | loss = None | 
					
						
						|  | if labels is not None: | 
					
						
						|  |  | 
					
						
						|  | labels = labels.to(logits.device) | 
					
						
						|  | batch_size, seq_length = labels.shape | 
					
						
						|  | loss_fct = CrossEntropyLoss() | 
					
						
						|  | loss = loss_fct( | 
					
						
						|  | logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (logits,) + model_outputs[2:] | 
					
						
						|  | return ((loss,) + output) if loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | return TokenClassifierOutput( | 
					
						
						|  | loss=loss, | 
					
						
						|  | logits=logits, | 
					
						
						|  | hidden_states=model_outputs.hidden_states, | 
					
						
						|  | attentions=model_outputs.attentions, | 
					
						
						|  | ) | 
					
						
						|  |  |