|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  | Processor class for Phi3-V. | 
					
						
						|  | """ | 
					
						
						|  | import re | 
					
						
						|  | from typing import List, Optional, Union | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  |  | 
					
						
						|  | import transformers | 
					
						
						|  | from transformers.feature_extraction_utils import BatchFeature | 
					
						
						|  | from transformers.image_utils import ImageInput | 
					
						
						|  | from transformers.processing_utils import ProcessorMixin | 
					
						
						|  | from transformers.tokenization_utils_base import PaddingStrategy, TextInput, TruncationStrategy | 
					
						
						|  | from transformers.utils import TensorType | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """Image processor class for Phi3-V.""" | 
					
						
						|  |  | 
					
						
						|  | from typing import List, Optional, Union | 
					
						
						|  |  | 
					
						
						|  | import numpy as np | 
					
						
						|  |  | 
					
						
						|  | from transformers.image_processing_utils import BaseImageProcessor, BatchFeature | 
					
						
						|  | from transformers.image_transforms import ( | 
					
						
						|  | convert_to_rgb, | 
					
						
						|  | ) | 
					
						
						|  | from transformers.image_utils import ( | 
					
						
						|  | OPENAI_CLIP_MEAN, | 
					
						
						|  | OPENAI_CLIP_STD, | 
					
						
						|  | ImageInput, | 
					
						
						|  | make_list_of_images, | 
					
						
						|  | valid_images, | 
					
						
						|  | ) | 
					
						
						|  | from transformers.utils import TensorType, is_vision_available, logging | 
					
						
						|  |  | 
					
						
						|  | from transformers import AutoImageProcessor | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if is_vision_available(): | 
					
						
						|  | from PIL import Image | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | import torchvision | 
					
						
						|  |  | 
					
						
						|  | def padding_336(b): | 
					
						
						|  | width, height = b.size | 
					
						
						|  | tar = int(np.ceil(height / 336) * 336) | 
					
						
						|  | top_padding = int((tar - height)/2) | 
					
						
						|  | bottom_padding = tar - height - top_padding | 
					
						
						|  | left_padding = 0 | 
					
						
						|  | right_padding = 0 | 
					
						
						|  | b = torchvision.transforms.functional.pad(b, [left_padding, top_padding, right_padding, bottom_padding], fill=[255,255,255]) | 
					
						
						|  |  | 
					
						
						|  | return b | 
					
						
						|  |  | 
					
						
						|  | def calc_padded_size(width, height, padding_unit=336): | 
					
						
						|  | target_height = int(np.ceil(height / padding_unit) * padding_unit) | 
					
						
						|  | top_padding = int((target_height - height) / 2) | 
					
						
						|  | bottom_padding = target_height - height - top_padding | 
					
						
						|  | left_padding = 0 | 
					
						
						|  | right_padding = 0 | 
					
						
						|  | padded_width = width + left_padding + right_padding | 
					
						
						|  | padded_height = height + top_padding + bottom_padding | 
					
						
						|  | return padded_width, padded_height | 
					
						
						|  |  | 
					
						
						|  | def HD_transform(img, hd_num=16): | 
					
						
						|  | width, height = img.size | 
					
						
						|  | trans = False | 
					
						
						|  | if width < height: | 
					
						
						|  | img = img.transpose(Image.TRANSPOSE) | 
					
						
						|  | trans = True | 
					
						
						|  | width, height = img.size | 
					
						
						|  | ratio = (width/ height) | 
					
						
						|  | scale = 1 | 
					
						
						|  | while scale*np.ceil(scale/ratio) <= hd_num: | 
					
						
						|  | scale += 1 | 
					
						
						|  | scale -= 1 | 
					
						
						|  | new_w = int(scale * 336) | 
					
						
						|  | new_h = int(new_w / ratio) | 
					
						
						|  |  | 
					
						
						|  | img = torchvision.transforms.functional.resize(img, [new_h, new_w],) | 
					
						
						|  | img = padding_336(img) | 
					
						
						|  | width, height = img.size | 
					
						
						|  | if trans: | 
					
						
						|  | img = img.transpose(Image.TRANSPOSE) | 
					
						
						|  |  | 
					
						
						|  | return img | 
					
						
						|  |  | 
					
						
						|  | def calc_hd_transform_size(width, height, hd_num=16): | 
					
						
						|  | transposed = False | 
					
						
						|  | if width < height: | 
					
						
						|  | width, height = height, width | 
					
						
						|  | transposed = True | 
					
						
						|  |  | 
					
						
						|  | ratio = width / height | 
					
						
						|  | scale = 1 | 
					
						
						|  | while scale * np.ceil(scale / ratio) <= hd_num: | 
					
						
						|  | scale += 1 | 
					
						
						|  | scale -= 1 | 
					
						
						|  |  | 
					
						
						|  | new_width = int(scale * 336) | 
					
						
						|  | new_height = int(new_width / ratio) | 
					
						
						|  |  | 
					
						
						|  | padded_width, padded_height = calc_padded_size(new_width, new_height) | 
					
						
						|  |  | 
					
						
						|  | if transposed: | 
					
						
						|  | padded_width, padded_height = padded_height, padded_width | 
					
						
						|  |  | 
					
						
						|  | return padded_width, padded_height | 
					
						
						|  |  | 
					
						
						|  | def pad_to_max_num_crops_tensor(images, max_crops=5): | 
					
						
						|  | """ | 
					
						
						|  | images: B x 3 x H x W, B<=max_crops | 
					
						
						|  | """ | 
					
						
						|  | B, _, H, W = images.shape | 
					
						
						|  | if B < max_crops: | 
					
						
						|  | pad = torch.zeros(max_crops - B, 3, H, W, dtype=images.dtype, device=images.device) | 
					
						
						|  | images = torch.cat([images, pad], dim=0) | 
					
						
						|  | return images | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Phi3VImageProcessor(BaseImageProcessor): | 
					
						
						|  | r""" | 
					
						
						|  | Constructs a Phi3 image processor. Based on [`CLIPImageProcessor`] with incorporation of additional techniques | 
					
						
						|  | for processing high resolution images as explained in the [InternLM-XComposer2-4KHD](https://arxiv.org/pdf/2404.06512) | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`): | 
					
						
						|  | Mean to use if normalizing the image. This is a float or list of floats the length of the number of | 
					
						
						|  | channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. | 
					
						
						|  | image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`): | 
					
						
						|  | Standard deviation to use if normalizing the image. This is a float or list of floats the length of the | 
					
						
						|  | number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. | 
					
						
						|  | Can be overridden by the `image_std` parameter in the `preprocess` method. | 
					
						
						|  | do_convert_rgb (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether to convert the image to RGB. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | model_input_names = ["pixel_values"] | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | num_crops: int = 1, | 
					
						
						|  | image_mean: Optional[Union[float, List[float]]] = None, | 
					
						
						|  | image_std: Optional[Union[float, List[float]]] = None, | 
					
						
						|  | do_convert_rgb: bool = True, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> None: | 
					
						
						|  | super().__init__(**kwargs) | 
					
						
						|  | self.num_crops = num_crops | 
					
						
						|  | self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN | 
					
						
						|  | self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD | 
					
						
						|  | self.do_convert_rgb = do_convert_rgb | 
					
						
						|  |  | 
					
						
						|  | def calc_num_image_tokens( | 
					
						
						|  | self, | 
					
						
						|  | images: ImageInput | 
					
						
						|  | ): | 
					
						
						|  | """ Calculate the number of image tokens for each image. | 
					
						
						|  | Args: | 
					
						
						|  | images (`ImageInput`): | 
					
						
						|  | Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If | 
					
						
						|  | passing in images with pixel values between 0 and 1, set `do_rescale=False`. | 
					
						
						|  | """ | 
					
						
						|  | images = make_list_of_images(images) | 
					
						
						|  |  | 
					
						
						|  | if not valid_images(images): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " | 
					
						
						|  | "torch.Tensor, tf.Tensor or jax.ndarray." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | images = [image.convert('RGB') for image in images] | 
					
						
						|  |  | 
					
						
						|  | elems = [HD_transform(im, hd_num = self.num_crops) for im in images] | 
					
						
						|  | shapes = [[im.size[1], im.size[0]] for im in elems] | 
					
						
						|  | num_img_tokens = [int((h//336*w//336+1)*144 + 1 + (h//336+1)*12) for h, w in shapes] | 
					
						
						|  | return num_img_tokens | 
					
						
						|  |  | 
					
						
						|  | def calc_num_image_tokens_from_image_size(self, width, height): | 
					
						
						|  | """ | 
					
						
						|  | Calculate the number of image tokens for a given image size. | 
					
						
						|  | Args: | 
					
						
						|  | width (`int`): Width of the image. | 
					
						
						|  | height (`int`): Height of the image. | 
					
						
						|  | """ | 
					
						
						|  | new_width, new_height = calc_hd_transform_size(width, height, hd_num=self.num_crops) | 
					
						
						|  | num_img_tokens = int((new_height // 336 * new_width // 336 + 1) * 144 + 1 + (new_height // 336 + 1) * 12) | 
					
						
						|  | return num_img_tokens | 
					
						
						|  |  | 
					
						
						|  | def preprocess( | 
					
						
						|  | self, | 
					
						
						|  | images: ImageInput, | 
					
						
						|  | image_mean: Optional[Union[float, List[float]]] = None, | 
					
						
						|  | image_std: Optional[Union[float, List[float]]] = None, | 
					
						
						|  | do_convert_rgb: bool = None, | 
					
						
						|  | return_tensors: Optional[Union[str, TensorType]] = None, | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Args: | 
					
						
						|  | images (`ImageInput`): | 
					
						
						|  | Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If | 
					
						
						|  | passing in images with pixel values between 0 and 1, set `do_rescale=False`. | 
					
						
						|  | image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): | 
					
						
						|  | Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`. | 
					
						
						|  | image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): | 
					
						
						|  | Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to | 
					
						
						|  | `True`. | 
					
						
						|  | do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`): | 
					
						
						|  | Whether to convert the image to RGB. | 
					
						
						|  | return_tensors (`str` or `TensorType`, *optional*): | 
					
						
						|  | The type of tensors to return. Can be one of: | 
					
						
						|  | - Unset: Return a list of `np.ndarray`. | 
					
						
						|  | - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. | 
					
						
						|  | - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. | 
					
						
						|  | - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. | 
					
						
						|  | - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. | 
					
						
						|  | """ | 
					
						
						|  | image_mean = image_mean if image_mean is not None else self.image_mean | 
					
						
						|  | image_std = image_std if image_std is not None else self.image_std | 
					
						
						|  | do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb | 
					
						
						|  |  | 
					
						
						|  | images = make_list_of_images(images) | 
					
						
						|  |  | 
					
						
						|  | if not valid_images(images): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " | 
					
						
						|  | "torch.Tensor, tf.Tensor or jax.ndarray." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if do_convert_rgb: | 
					
						
						|  | images = [convert_to_rgb(image) for image in images] | 
					
						
						|  |  | 
					
						
						|  | image_sizes = [] | 
					
						
						|  | img_processor = torchvision.transforms.Compose([ | 
					
						
						|  | torchvision.transforms.ToTensor(), | 
					
						
						|  | torchvision.transforms.Normalize(image_mean, image_std) | 
					
						
						|  | ]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | images = [image.convert('RGB') for image in images] | 
					
						
						|  | elems = [HD_transform(im, hd_num = self.num_crops) for im in images] | 
					
						
						|  |  | 
					
						
						|  | hd_images = [img_processor(im) for im in elems] | 
					
						
						|  |  | 
					
						
						|  | global_image = [torch.nn.functional.interpolate(im.unsqueeze(0).float(), size=(336, 336), mode='bicubic',).to(im.dtype) for im in hd_images] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | shapes = [[im.size(1), im.size(2)] for im in hd_images] | 
					
						
						|  | num_img_tokens = [int(((h//336)*(w//336)+1)*144 + 1 + (h//336+1)*12) for h, w in shapes] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hd_images_reshape = [im.reshape(1, 3, h//336, 336, w//336, 336).permute(0,2,4,1,3,5).reshape(-1, 3, 336, 336).contiguous() for im, (h, w) in zip(hd_images, shapes)] | 
					
						
						|  |  | 
					
						
						|  | hd_images_reshape = [torch.cat([_global_image] + [_im], dim=0) for _global_image, _im in zip(global_image, hd_images_reshape)] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | image_transformed = [pad_to_max_num_crops_tensor(im, self.num_crops+1) for im in hd_images_reshape] | 
					
						
						|  | image_transformed = torch.stack(image_transformed, dim=0) | 
					
						
						|  | image_sizes = [torch.LongTensor(_shapes) for _shapes in shapes] | 
					
						
						|  | padded_images = image_transformed | 
					
						
						|  | image_sizes = shapes | 
					
						
						|  |  | 
					
						
						|  | data = {"pixel_values": padded_images, | 
					
						
						|  | "image_sizes": image_sizes, | 
					
						
						|  | "num_img_tokens": num_img_tokens | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | return BatchFeature(data=data, tensor_type=return_tensors) | 
					
						
						|  |  | 
					
						
						|  | AutoImageProcessor.register("Phi3VImageProcessor", Phi3VImageProcessor) | 
					
						
						|  |  | 
					
						
						|  | transformers.Phi3VImageProcessor = Phi3VImageProcessor | 
					
						
						|  |  | 
					
						
						|  | class Phi3VProcessor(ProcessorMixin): | 
					
						
						|  | r""" | 
					
						
						|  | Constructs a Phi3-V processor which wraps a Phi3-V image processor and a LLaMa tokenizer into a single processor. | 
					
						
						|  |  | 
					
						
						|  | [`Phi3VProcessor`] offers all the functionalities of [`Phi3VImageProcessor`] and [`LlamaTokenizerFast`]. See the | 
					
						
						|  | [`~Phi3VProcessor.__call__`] and [`~Phi3VProcessor.decode`] for more information. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | image_processor ([`Phi3VImageProcessor`], *optional*): | 
					
						
						|  | The image processor is a required input. | 
					
						
						|  | tokenizer ([`LlamaTokenizerFast`], *optional*): | 
					
						
						|  | The tokenizer is a required input. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | attributes = ["image_processor", "tokenizer"] | 
					
						
						|  | image_processor_class = "Phi3VImageProcessor" | 
					
						
						|  | tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast") | 
					
						
						|  | special_image_token = "<|image|>" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, image_processor, tokenizer): | 
					
						
						|  | self.image_processor = image_processor | 
					
						
						|  | self.tokenizer = tokenizer | 
					
						
						|  | self.num_img_tokens = image_processor.num_img_tokens | 
					
						
						|  | self.img_tokens = [f"<|image_{i+1}|>" for i in range(1000000)] | 
					
						
						|  |  | 
					
						
						|  | def __call__( | 
					
						
						|  | self, | 
					
						
						|  | text: Union[TextInput, List[TextInput]], | 
					
						
						|  | images: ImageInput = None, | 
					
						
						|  | padding: Union[bool, str, PaddingStrategy] = False, | 
					
						
						|  | truncation: Union[bool, str, TruncationStrategy] = None, | 
					
						
						|  | max_length=None, | 
					
						
						|  | return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH, | 
					
						
						|  | ) -> BatchFeature: | 
					
						
						|  | """ | 
					
						
						|  | Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` | 
					
						
						|  | and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode | 
					
						
						|  | the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to | 
					
						
						|  | Phi3ImageProcessor's [`~Phi3ImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring | 
					
						
						|  | of the above two methods for more information. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | text (`str`, `List[str]`, `List[List[str]]`): | 
					
						
						|  | The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings | 
					
						
						|  | (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set | 
					
						
						|  | `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). | 
					
						
						|  | images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): | 
					
						
						|  | The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch | 
					
						
						|  | tensor. Both channels-first and channels-last formats are supported. | 
					
						
						|  | padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): | 
					
						
						|  | Select a strategy to pad the returned sequences (according to the model's padding side and padding | 
					
						
						|  | index) among: | 
					
						
						|  | - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single | 
					
						
						|  | sequence if provided). | 
					
						
						|  | - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum | 
					
						
						|  | acceptable input length for the model if that argument is not provided. | 
					
						
						|  | - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different | 
					
						
						|  | lengths). | 
					
						
						|  | max_length (`int`, *optional*): | 
					
						
						|  | Maximum length of the returned list and optionally padding length (see above). | 
					
						
						|  | truncation (`bool`, *optional*): | 
					
						
						|  | Activates truncation to cut input sequences longer than `max_length` to `max_length`. | 
					
						
						|  | return_tensors (`str` or [`~utils.TensorType`], *optional*): | 
					
						
						|  | If set, will return tensors of a particular framework. Acceptable values are: | 
					
						
						|  |  | 
					
						
						|  | - `'tf'`: Return TensorFlow `tf.constant` objects. | 
					
						
						|  | - `'pt'`: Return PyTorch `torch.Tensor` objects. | 
					
						
						|  | - `'np'`: Return NumPy `np.ndarray` objects. | 
					
						
						|  | - `'jax'`: Return JAX `jnp.ndarray` objects. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | [`BatchFeature`]: A [`BatchFeature`] with the following fields: | 
					
						
						|  |  | 
					
						
						|  | - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. | 
					
						
						|  | - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when | 
					
						
						|  | `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not | 
					
						
						|  | `None`). | 
					
						
						|  | - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. | 
					
						
						|  | """ | 
					
						
						|  | if images is not None: | 
					
						
						|  | image_inputs = self.image_processor(images, return_tensors=return_tensors) | 
					
						
						|  | else: | 
					
						
						|  | image_inputs = {} | 
					
						
						|  | inputs = self._convert_images_texts_to_inputs(image_inputs, text, padding=padding, truncation=truncation, max_length=max_length, return_tensors=return_tensors) | 
					
						
						|  | return inputs | 
					
						
						|  |  | 
					
						
						|  | def calc_num_image_tokens(self, images: ImageInput): | 
					
						
						|  | """ Calculate the number of image tokens for each image. | 
					
						
						|  | Args: | 
					
						
						|  | images (`ImageInput`): | 
					
						
						|  | Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If | 
					
						
						|  | passing in images with pixel values between 0 and 1, set `do_rescale=False`. | 
					
						
						|  | """ | 
					
						
						|  | return self.image_processor.calc_num_image_tokens(images) | 
					
						
						|  |  | 
					
						
						|  | def calc_num_image_tokens_from_image_size(self, width, height): | 
					
						
						|  | """ Calculate the number of image token for an image with given width and height. | 
					
						
						|  | Args: | 
					
						
						|  | width (`int`): | 
					
						
						|  | Width of the image. | 
					
						
						|  | height (`int`): | 
					
						
						|  | Height of the image. | 
					
						
						|  | """ | 
					
						
						|  | return self.image_processor.calc_num_image_tokens_from_image_size(width, height) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def special_image_token_id(self): | 
					
						
						|  | return self.tokenizer.convert_tokens_to_ids(self.special_image_token) | 
					
						
						|  |  | 
					
						
						|  | def get_special_image_token_id(self): | 
					
						
						|  | return self.tokenizer.convert_tokens_to_ids(self.special_image_token) | 
					
						
						|  |  | 
					
						
						|  | def _convert_images_texts_to_inputs(self, images, texts, padding=False, truncation=None, max_length=None, return_tensors=None): | 
					
						
						|  |  | 
					
						
						|  | if not len(images): | 
					
						
						|  | model_inputs = self.tokenizer(texts, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length) | 
					
						
						|  | return BatchFeature(data={**model_inputs}) | 
					
						
						|  |  | 
					
						
						|  | pattern = r"<\|image_\d+\|>" | 
					
						
						|  | prompt_chunks = [self.tokenizer(chunk).input_ids for chunk in re.split(pattern, texts)] | 
					
						
						|  |  | 
					
						
						|  | if 'num_img_tokens' in images: | 
					
						
						|  | num_img_tokens = images['num_img_tokens'] | 
					
						
						|  | else: | 
					
						
						|  | assert 'num_crops' in images, 'num_crops must be provided in images if num_img_tokens is not provided' | 
					
						
						|  | num_crops = images['num_crops'] | 
					
						
						|  | num_img_tokens = [_num_crops * self.num_img_tokens for _num_crops in num_crops] | 
					
						
						|  |  | 
					
						
						|  | images, image_sizes = images['pixel_values'], images['image_sizes'] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | image_tags = re.findall(pattern, texts) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | image_ids = [int(s.split("|")[1].split("_")[-1]) for s in image_tags] | 
					
						
						|  | unique_image_ids = sorted(list(set(image_ids))) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | assert unique_image_ids == list(range(1, len(unique_image_ids)+1)), f"image_ids must start from 1, and must be continuous int, e.g. [1, 2, 3], cannot be {unique_image_ids}" | 
					
						
						|  |  | 
					
						
						|  | assert len(unique_image_ids) == len(images), f"total images must be the same as the number of image tags, got {len(unique_image_ids)} image tags and {len(images)} images" | 
					
						
						|  |  | 
					
						
						|  | image_ids_pad = [[-iid]*num_img_tokens[iid-1] for iid in image_ids] | 
					
						
						|  |  | 
					
						
						|  | def insert_separator(X, sep_list): | 
					
						
						|  | if len(X) > len(sep_list): | 
					
						
						|  | sep_list.append([]) | 
					
						
						|  | return [ele for sublist in zip(X, sep_list) for ele in sublist] | 
					
						
						|  | input_ids = [] | 
					
						
						|  | offset = 0 | 
					
						
						|  | for x in insert_separator(prompt_chunks, image_ids_pad): | 
					
						
						|  | input_ids.extend(x[offset:]) | 
					
						
						|  |  | 
					
						
						|  | input_ids = torch.tensor(input_ids, dtype=torch.long).unsqueeze(0) | 
					
						
						|  | attention_mask = (input_ids > -1000000).to(torch.long) | 
					
						
						|  |  | 
					
						
						|  | return BatchFeature(data={"input_ids": input_ids, | 
					
						
						|  | "attention_mask": attention_mask, | 
					
						
						|  | "pixel_values": images, | 
					
						
						|  | "image_sizes": image_sizes}) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def batch_decode(self, *args, **kwargs): | 
					
						
						|  | """ | 
					
						
						|  | This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please | 
					
						
						|  | refer to the docstring of this method for more information. | 
					
						
						|  | """ | 
					
						
						|  | return self.tokenizer.batch_decode(*args, **kwargs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def decode(self, *args, **kwargs): | 
					
						
						|  | """ | 
					
						
						|  | This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to | 
					
						
						|  | the docstring of this method for more information. | 
					
						
						|  | """ | 
					
						
						|  | return self.tokenizer.decode(*args, **kwargs) | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  |  | 
					
						
						|  | def model_input_names(self): | 
					
						
						|  | tokenizer_input_names = self.tokenizer.model_input_names | 
					
						
						|  | image_processor_input_names = self.image_processor.model_input_names | 
					
						
						|  | return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) |