Liliang Ren
revert to V0 as latest vLLM has removed V0 support and V1 integration is still in progress
057c6c3
| # coding=utf-8 | |
| # Copyright 2025 Microsoft and the HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ Phi4Flash model configuration""" | |
| from transformers.configuration_utils import PretrainedConfig | |
| from transformers.utils import logging | |
| import math | |
| logger = logging.get_logger(__name__) | |
| class Phi4FlashConfig(PretrainedConfig): | |
| r""" | |
| This is the configuration class to store the configuration of a [`Phi4FlashModel`]. It is used to instantiate an Phi4Flash | |
| model according to the specified arguments, defining the model architecture. | |
| Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
| documentation from [`PretrainedConfig`] for more information. | |
| Args: | |
| vocab_size (`int`, *optional*, defaults to 51200): | |
| Vocabulary size of the Phi4Flash model. Defines the number of different tokens that can be represented by the | |
| `inputs_ids` passed when calling [`Phi4FlashModel`]. | |
| hidden_size (`int`, *optional*, defaults to 2048): | |
| Dimension of the hidden representations. | |
| intermediate_size (`int`, *optional*, defaults to 8192): | |
| Dimension of the MLP representations. | |
| num_hidden_layers (`int`, *optional*, defaults to 24): | |
| Number of hidden layers in the Transformer decoder. | |
| num_attention_heads (`int`, *optional*, defaults to 32): | |
| Number of attention heads for each attention layer in the Transformer decoder. | |
| num_key_value_heads (`int`, *optional*): | |
| This is the number of key_value heads that should be used to implement Grouped Query Attention. If | |
| `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if | |
| `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When | |
| converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed | |
| by meanpooling all the original heads within that group. For more details checkout [this | |
| paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to | |
| `num_attention_heads`. | |
| resid_pdrop (`float`, *optional*, defaults to 0.0): | |
| Dropout probability for mlp outputs. | |
| embd_pdrop (`int`, *optional*, defaults to 0.0): | |
| The dropout ratio for the embeddings. | |
| attention_dropout (`float`, *optional*, defaults to 0.0): | |
| The dropout ratio after computing the attention scores. | |
| hidden_act (`str` or `function`, *optional*, defaults to `"gelu_new"`): | |
| The non-linear activation function (function or string) in the decoder. | |
| max_position_embeddings (`int`, *optional*, defaults to 2048): | |
| The maximum sequence length that this model might ever be used with. Phi-1 and Phi-1.5 supports up to 2048 | |
| tokens. | |
| initializer_range (`float`, *optional*, defaults to 0.02): | |
| The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
| layer_norm_eps (`float`, *optional*, defaults to 1e-05): | |
| The epsilon used by the rms normalization layers. | |
| use_cache (`bool`, *optional*, defaults to `True`): | |
| Whether or not the model should return the last key/values attentions (not used by all models). Only | |
| relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not. | |
| tie_word_embeddings (`bool`, *optional*, defaults to `False`): | |
| Whether to tie weight embeddings | |
| rope_theta (`float`, *optional*, defaults to 10000.0): | |
| The base period of the RoPE embeddings. | |
| Example: | |
| ```python | |
| >>> from transformers import Phi4FlashModel, Phi4FlashConfig | |
| >>> # Initializing a Phi4Flash style configuration | |
| >>> configuration = Phi4FlashConfig.from_pretrained("microsoft/Phi4-mini-flash-reasoning") | |
| >>> # Initializing a model from the configuration | |
| >>> model = Phi4FlashModel(configuration) | |
| >>> # Accessing the model configuration | |
| >>> configuration = model.config | |
| ```""" | |
| model_type = "phi4flash" | |
| keys_to_ignore_at_inference = ["past_key_values"] | |
| def __init__( | |
| self, | |
| vocab_size=51200, | |
| hidden_size=2560, | |
| intermediate_size=9216, | |
| num_hidden_layers=32, | |
| num_attention_heads=40, | |
| num_key_value_heads=4, | |
| resid_pdrop=0.0, | |
| embd_pdrop=0.0, | |
| attention_dropout=0.0, | |
| hidden_act="silu", | |
| max_position_embeddings=4096, | |
| initializer_range=0.02, | |
| layer_norm_eps=1e-5, | |
| use_cache=True, | |
| tie_word_embeddings=True, | |
| rope_theta=10000.0, | |
| bos_token_id=1, | |
| eos_token_id=2, | |
| sliding_window=2047, | |
| mb_per_layer= 2, | |
| mamba_d_state=16, | |
| mamba_d_conv=4, | |
| mamba_expand=2, | |
| mamba_dt_rank="auto", | |
| mamba_conv_bias=True, | |
| mamba_proj_bias=False, | |
| **kwargs, | |
| ): | |
| self.vocab_size = vocab_size | |
| self.hidden_size = hidden_size | |
| self.intermediate_size = intermediate_size | |
| self.num_hidden_layers = num_hidden_layers | |
| self.num_attention_heads = num_attention_heads | |
| if num_key_value_heads is None: | |
| num_key_value_heads = num_attention_heads | |
| self.num_key_value_heads = num_key_value_heads | |
| self.resid_pdrop = resid_pdrop | |
| self.embd_pdrop = embd_pdrop | |
| self.attention_dropout = attention_dropout | |
| self.hidden_act = hidden_act | |
| self.max_position_embeddings = max_position_embeddings | |
| self.initializer_range = initializer_range | |
| self.layer_norm_eps = layer_norm_eps | |
| self.use_cache = use_cache | |
| self.rope_theta = rope_theta | |
| self.mb_per_layer = mb_per_layer | |
| self.sliding_window = [ | |
| sliding_window if layer_idx < num_hidden_layers // 2 and layer_idx % 2 == 1 else None | |
| for layer_idx in range(num_hidden_layers) | |
| ] | |
| self.mamba_d_state = mamba_d_state | |
| self.mamba_d_conv = mamba_d_conv | |
| self.mamba_expand = mamba_expand | |
| self.mamba_dt_rank = math.ceil(self.hidden_size / 16) if mamba_dt_rank == "auto" else mamba_dt_rank | |
| self.mamba_conv_bias = mamba_conv_bias | |
| self.mamba_proj_bias = mamba_proj_bias | |
| super().__init__( | |
| bos_token_id=bos_token_id, | |
| eos_token_id=eos_token_id, | |
| tie_word_embeddings=tie_word_embeddings, | |
| **kwargs, | |
| ) | |
| def layers_block_type(self): | |
| layer_block_types = [] | |
| for i in range(self.num_hidden_layers): | |
| if i % 2 == 1: | |
| layer_block_type = "attention" if i <= (self.num_hidden_layers //2 +1) else "shared_attention" | |
| else: | |
| layer_block_type = "mamba" | |
| layer_block_types.append(layer_block_type) | |
| return layer_block_types | |