Upload 12 files
Browse files- added_tokens.json +12 -0
- config.json +37 -0
- configuration_phi4flash.py +173 -0
- generation_config.json +10 -0
- model-00001-of-00002.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model.safetensors.index.json +442 -0
- modeling_phi4flash.py +2098 -0
- special_tokens_map.json +30 -0
- tokenizer.json +0 -0
- tokenizer_config.json +111 -0
- vocab.json +0 -0
added_tokens.json
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"<|/tool_call|>": 200026,
|
| 3 |
+
"<|/tool|>": 200024,
|
| 4 |
+
"<|assistant|>": 200019,
|
| 5 |
+
"<|end|>": 200020,
|
| 6 |
+
"<|system|>": 200022,
|
| 7 |
+
"<|tag|>": 200028,
|
| 8 |
+
"<|tool_call|>": 200025,
|
| 9 |
+
"<|tool_response|>": 200027,
|
| 10 |
+
"<|tool|>": 200023,
|
| 11 |
+
"<|user|>": 200021
|
| 12 |
+
}
|
config.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"Phi4FlashForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"attention_dropout": 0.0,
|
| 6 |
+
"auto_map": {
|
| 7 |
+
"AutoConfig": "configuration_phi4flash.Phi4FlashConfig",
|
| 8 |
+
"AutoModelForCausalLM": "modeling_phi4flash.Phi4FlashForCausalLM",
|
| 9 |
+
"AutoTokenizer": "Xenova/gpt-4o"
|
| 10 |
+
},
|
| 11 |
+
"pad_token_id": 199999,
|
| 12 |
+
"bos_token_id": 199999,
|
| 13 |
+
"embd_pdrop": 0.0,
|
| 14 |
+
"eos_token_id": 199999,
|
| 15 |
+
"hidden_act": "silu",
|
| 16 |
+
"hidden_size": 2560,
|
| 17 |
+
"initializer_range": 0.02,
|
| 18 |
+
"intermediate_size": 10240,
|
| 19 |
+
"layer_norm_eps": 1e-5,
|
| 20 |
+
"max_position_embeddings": 262144,
|
| 21 |
+
"_attn_implementation": "flash_attention_2",
|
| 22 |
+
"mb_per_layer": 2,
|
| 23 |
+
"model_type": "phi4flash",
|
| 24 |
+
"num_attention_heads": 40,
|
| 25 |
+
"num_hidden_layers": 32,
|
| 26 |
+
"num_key_value_heads": 20,
|
| 27 |
+
"resid_pdrop": 0.0,
|
| 28 |
+
"sliding_window": 512,
|
| 29 |
+
"torch_dtype": "bfloat16",
|
| 30 |
+
"tie_word_embeddings": true,
|
| 31 |
+
"transformers_version": "4.46.1",
|
| 32 |
+
"use_cache": true,
|
| 33 |
+
"mlp_bias": false,
|
| 34 |
+
"lm_head_bias": false,
|
| 35 |
+
"vocab_size": 200064
|
| 36 |
+
}
|
| 37 |
+
|
configuration_phi4flash.py
ADDED
|
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2025 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
|
| 16 |
+
""" Phi4Flash model configuration"""
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 20 |
+
from transformers.utils import logging
|
| 21 |
+
import math
|
| 22 |
+
logger = logging.get_logger(__name__)
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class Phi4FlashConfig(PretrainedConfig):
|
| 26 |
+
r"""
|
| 27 |
+
This is the configuration class to store the configuration of a [`Phi4FlashModel`]. It is used to instantiate an Phi4Flash
|
| 28 |
+
model according to the specified arguments, defining the model architecture.
|
| 29 |
+
|
| 30 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 31 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 32 |
+
|
| 33 |
+
Args:
|
| 34 |
+
vocab_size (`int`, *optional*, defaults to 51200):
|
| 35 |
+
Vocabulary size of the Phi4Flash model. Defines the number of different tokens that can be represented by the
|
| 36 |
+
`inputs_ids` passed when calling [`Phi4FlashModel`].
|
| 37 |
+
hidden_size (`int`, *optional*, defaults to 2048):
|
| 38 |
+
Dimension of the hidden representations.
|
| 39 |
+
intermediate_size (`int`, *optional*, defaults to 8192):
|
| 40 |
+
Dimension of the MLP representations.
|
| 41 |
+
num_hidden_layers (`int`, *optional*, defaults to 24):
|
| 42 |
+
Number of hidden layers in the Transformer decoder.
|
| 43 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
| 44 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
| 45 |
+
num_key_value_heads (`int`, *optional*):
|
| 46 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
| 47 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
| 48 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
| 49 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
| 50 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
| 51 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
| 52 |
+
`num_attention_heads`.
|
| 53 |
+
resid_pdrop (`float`, *optional*, defaults to 0.0):
|
| 54 |
+
Dropout probability for mlp outputs.
|
| 55 |
+
embd_pdrop (`int`, *optional*, defaults to 0.0):
|
| 56 |
+
The dropout ratio for the embeddings.
|
| 57 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 58 |
+
The dropout ratio after computing the attention scores.
|
| 59 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_new"`):
|
| 60 |
+
The non-linear activation function (function or string) in the decoder.
|
| 61 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
| 62 |
+
The maximum sequence length that this model might ever be used with. Phi-1 and Phi-1.5 supports up to 2048
|
| 63 |
+
tokens.
|
| 64 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 65 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 66 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
|
| 67 |
+
The epsilon used by the rms normalization layers.
|
| 68 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
| 69 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
| 70 |
+
relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
|
| 71 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
| 72 |
+
Whether to tie weight embeddings
|
| 73 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
| 74 |
+
The base period of the RoPE embeddings.
|
| 75 |
+
|
| 76 |
+
Example:
|
| 77 |
+
|
| 78 |
+
```python
|
| 79 |
+
>>> from transformers import Phi4FlashModel, Phi4FlashConfig
|
| 80 |
+
|
| 81 |
+
>>> # Initializing a Phi4Flash style configuration
|
| 82 |
+
>>> configuration = Phi4FlashConfig.from_pretrained("microsoft/Phi4-mini-flash-reasoning")
|
| 83 |
+
|
| 84 |
+
>>> # Initializing a model from the configuration
|
| 85 |
+
>>> model = Phi4FlashModel(configuration)
|
| 86 |
+
|
| 87 |
+
>>> # Accessing the model configuration
|
| 88 |
+
>>> configuration = model.config
|
| 89 |
+
```"""
|
| 90 |
+
|
| 91 |
+
model_type = "phi4flash"
|
| 92 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 93 |
+
|
| 94 |
+
def __init__(
|
| 95 |
+
self,
|
| 96 |
+
vocab_size=51200,
|
| 97 |
+
hidden_size=2560,
|
| 98 |
+
intermediate_size=9216,
|
| 99 |
+
num_hidden_layers=32,
|
| 100 |
+
num_attention_heads=40,
|
| 101 |
+
num_key_value_heads=4,
|
| 102 |
+
resid_pdrop=0.0,
|
| 103 |
+
embd_pdrop=0.0,
|
| 104 |
+
attention_dropout=0.0,
|
| 105 |
+
hidden_act="silu",
|
| 106 |
+
max_position_embeddings=4096,
|
| 107 |
+
initializer_range=0.02,
|
| 108 |
+
layer_norm_eps=1e-5,
|
| 109 |
+
use_cache=True,
|
| 110 |
+
tie_word_embeddings=True,
|
| 111 |
+
rope_theta=10000.0,
|
| 112 |
+
bos_token_id=1,
|
| 113 |
+
eos_token_id=2,
|
| 114 |
+
sliding_window=2047,
|
| 115 |
+
mb_per_layer= 2,
|
| 116 |
+
mamba_d_state=16,
|
| 117 |
+
mamba_d_conv=4,
|
| 118 |
+
mamba_expand=2,
|
| 119 |
+
mamba_dt_rank="auto",
|
| 120 |
+
mamba_conv_bias=True,
|
| 121 |
+
mamba_proj_bias=False,
|
| 122 |
+
**kwargs,
|
| 123 |
+
):
|
| 124 |
+
self.vocab_size = vocab_size
|
| 125 |
+
self.hidden_size = hidden_size
|
| 126 |
+
self.intermediate_size = intermediate_size
|
| 127 |
+
self.num_hidden_layers = num_hidden_layers
|
| 128 |
+
self.num_attention_heads = num_attention_heads
|
| 129 |
+
|
| 130 |
+
if num_key_value_heads is None:
|
| 131 |
+
num_key_value_heads = num_attention_heads
|
| 132 |
+
|
| 133 |
+
self.num_key_value_heads = num_key_value_heads
|
| 134 |
+
self.resid_pdrop = resid_pdrop
|
| 135 |
+
self.embd_pdrop = embd_pdrop
|
| 136 |
+
self.attention_dropout = attention_dropout
|
| 137 |
+
self.hidden_act = hidden_act
|
| 138 |
+
self.max_position_embeddings = max_position_embeddings
|
| 139 |
+
self.initializer_range = initializer_range
|
| 140 |
+
self.layer_norm_eps = layer_norm_eps
|
| 141 |
+
self.use_cache = use_cache
|
| 142 |
+
self.rope_theta = rope_theta
|
| 143 |
+
self.mb_per_layer = mb_per_layer
|
| 144 |
+
self.sliding_window = [
|
| 145 |
+
sliding_window if layer_idx < num_hidden_layers // 2 and layer_idx % 2 == 1 else None
|
| 146 |
+
for layer_idx in range(num_hidden_layers)
|
| 147 |
+
]
|
| 148 |
+
|
| 149 |
+
self.mamba_d_state = mamba_d_state
|
| 150 |
+
self.mamba_d_conv = mamba_d_conv
|
| 151 |
+
self.mamba_expand = mamba_expand
|
| 152 |
+
self.mamba_dt_rank = math.ceil(self.hidden_size / 16) if mamba_dt_rank == "auto" else mamba_dt_rank
|
| 153 |
+
self.mamba_conv_bias = mamba_conv_bias
|
| 154 |
+
self.mamba_proj_bias = mamba_proj_bias
|
| 155 |
+
|
| 156 |
+
super().__init__(
|
| 157 |
+
bos_token_id=bos_token_id,
|
| 158 |
+
eos_token_id=eos_token_id,
|
| 159 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 160 |
+
**kwargs,
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
@property
|
| 165 |
+
def layers_block_type(self):
|
| 166 |
+
layer_block_types = []
|
| 167 |
+
for i in range(self.num_hidden_layers):
|
| 168 |
+
if i % 2 == 1:
|
| 169 |
+
layer_block_type = "attention" if i <= (self.num_hidden_layers //2 +1) else "shared_attention"
|
| 170 |
+
else:
|
| 171 |
+
layer_block_type = "mamba"
|
| 172 |
+
layer_block_types.append(layer_block_type)
|
| 173 |
+
return layer_block_types
|
generation_config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 199999,
|
| 4 |
+
"eos_token_id": [
|
| 5 |
+
200020,
|
| 6 |
+
199999
|
| 7 |
+
],
|
| 8 |
+
"pad_token_id": 199999,
|
| 9 |
+
"transformers_version": "4.45.0"
|
| 10 |
+
}
|
model-00001-of-00002.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4683d17ca19ab12e0278b6a1db98db76301cbbc3119d9599739df14f45554d03
|
| 3 |
+
size 4952270280
|
model-00002-of-00002.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:40beaf0c37ad2788ccb63d698afe9725e84479d68bf7a1e9c0ce921af0e3916e
|
| 3 |
+
size 3777232440
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,442 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 8729453568
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"lm_head.weight": "model-00002-of-00002.safetensors",
|
| 7 |
+
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
| 8 |
+
"model.final_layernorm.bias": "model-00002-of-00002.safetensors",
|
| 9 |
+
"model.final_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 10 |
+
"model.layers.0.attn.A_log": "model-00001-of-00002.safetensors",
|
| 11 |
+
"model.layers.0.attn.D": "model-00001-of-00002.safetensors",
|
| 12 |
+
"model.layers.0.attn.conv1d.bias": "model-00001-of-00002.safetensors",
|
| 13 |
+
"model.layers.0.attn.conv1d.weight": "model-00001-of-00002.safetensors",
|
| 14 |
+
"model.layers.0.attn.dt_proj.bias": "model-00001-of-00002.safetensors",
|
| 15 |
+
"model.layers.0.attn.dt_proj.weight": "model-00001-of-00002.safetensors",
|
| 16 |
+
"model.layers.0.attn.in_proj.weight": "model-00001-of-00002.safetensors",
|
| 17 |
+
"model.layers.0.attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 18 |
+
"model.layers.0.attn.x_proj.weight": "model-00001-of-00002.safetensors",
|
| 19 |
+
"model.layers.0.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
| 20 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 21 |
+
"model.layers.0.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 22 |
+
"model.layers.0.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 23 |
+
"model.layers.0.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
| 24 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 25 |
+
"model.layers.1.attn.Wqkv.bias": "model-00001-of-00002.safetensors",
|
| 26 |
+
"model.layers.1.attn.Wqkv.weight": "model-00001-of-00002.safetensors",
|
| 27 |
+
"model.layers.1.attn.inner_cross_attn.lambda_k1": "model-00001-of-00002.safetensors",
|
| 28 |
+
"model.layers.1.attn.inner_cross_attn.lambda_k2": "model-00001-of-00002.safetensors",
|
| 29 |
+
"model.layers.1.attn.inner_cross_attn.lambda_q1": "model-00001-of-00002.safetensors",
|
| 30 |
+
"model.layers.1.attn.inner_cross_attn.lambda_q2": "model-00001-of-00002.safetensors",
|
| 31 |
+
"model.layers.1.attn.inner_cross_attn.subln.weight": "model-00001-of-00002.safetensors",
|
| 32 |
+
"model.layers.1.attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 33 |
+
"model.layers.1.attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 34 |
+
"model.layers.1.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
| 35 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 36 |
+
"model.layers.1.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 37 |
+
"model.layers.1.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 38 |
+
"model.layers.1.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
| 39 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 40 |
+
"model.layers.10.attn.A_log": "model-00001-of-00002.safetensors",
|
| 41 |
+
"model.layers.10.attn.D": "model-00001-of-00002.safetensors",
|
| 42 |
+
"model.layers.10.attn.conv1d.bias": "model-00001-of-00002.safetensors",
|
| 43 |
+
"model.layers.10.attn.conv1d.weight": "model-00001-of-00002.safetensors",
|
| 44 |
+
"model.layers.10.attn.dt_proj.bias": "model-00001-of-00002.safetensors",
|
| 45 |
+
"model.layers.10.attn.dt_proj.weight": "model-00001-of-00002.safetensors",
|
| 46 |
+
"model.layers.10.attn.in_proj.weight": "model-00001-of-00002.safetensors",
|
| 47 |
+
"model.layers.10.attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 48 |
+
"model.layers.10.attn.x_proj.weight": "model-00001-of-00002.safetensors",
|
| 49 |
+
"model.layers.10.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
| 50 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 51 |
+
"model.layers.10.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 52 |
+
"model.layers.10.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 53 |
+
"model.layers.10.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
| 54 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 55 |
+
"model.layers.11.attn.Wqkv.bias": "model-00001-of-00002.safetensors",
|
| 56 |
+
"model.layers.11.attn.Wqkv.weight": "model-00001-of-00002.safetensors",
|
| 57 |
+
"model.layers.11.attn.inner_cross_attn.lambda_k1": "model-00001-of-00002.safetensors",
|
| 58 |
+
"model.layers.11.attn.inner_cross_attn.lambda_k2": "model-00001-of-00002.safetensors",
|
| 59 |
+
"model.layers.11.attn.inner_cross_attn.lambda_q1": "model-00001-of-00002.safetensors",
|
| 60 |
+
"model.layers.11.attn.inner_cross_attn.lambda_q2": "model-00001-of-00002.safetensors",
|
| 61 |
+
"model.layers.11.attn.inner_cross_attn.subln.weight": "model-00001-of-00002.safetensors",
|
| 62 |
+
"model.layers.11.attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 63 |
+
"model.layers.11.attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 64 |
+
"model.layers.11.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
| 65 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 66 |
+
"model.layers.11.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 67 |
+
"model.layers.11.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 68 |
+
"model.layers.11.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
| 69 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 70 |
+
"model.layers.12.attn.A_log": "model-00001-of-00002.safetensors",
|
| 71 |
+
"model.layers.12.attn.D": "model-00001-of-00002.safetensors",
|
| 72 |
+
"model.layers.12.attn.conv1d.bias": "model-00001-of-00002.safetensors",
|
| 73 |
+
"model.layers.12.attn.conv1d.weight": "model-00001-of-00002.safetensors",
|
| 74 |
+
"model.layers.12.attn.dt_proj.bias": "model-00001-of-00002.safetensors",
|
| 75 |
+
"model.layers.12.attn.dt_proj.weight": "model-00001-of-00002.safetensors",
|
| 76 |
+
"model.layers.12.attn.in_proj.weight": "model-00001-of-00002.safetensors",
|
| 77 |
+
"model.layers.12.attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 78 |
+
"model.layers.12.attn.x_proj.weight": "model-00001-of-00002.safetensors",
|
| 79 |
+
"model.layers.12.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
| 80 |
+
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 81 |
+
"model.layers.12.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 82 |
+
"model.layers.12.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 83 |
+
"model.layers.12.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
| 84 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 85 |
+
"model.layers.13.attn.Wqkv.bias": "model-00001-of-00002.safetensors",
|
| 86 |
+
"model.layers.13.attn.Wqkv.weight": "model-00001-of-00002.safetensors",
|
| 87 |
+
"model.layers.13.attn.inner_cross_attn.lambda_k1": "model-00001-of-00002.safetensors",
|
| 88 |
+
"model.layers.13.attn.inner_cross_attn.lambda_k2": "model-00001-of-00002.safetensors",
|
| 89 |
+
"model.layers.13.attn.inner_cross_attn.lambda_q1": "model-00001-of-00002.safetensors",
|
| 90 |
+
"model.layers.13.attn.inner_cross_attn.lambda_q2": "model-00001-of-00002.safetensors",
|
| 91 |
+
"model.layers.13.attn.inner_cross_attn.subln.weight": "model-00001-of-00002.safetensors",
|
| 92 |
+
"model.layers.13.attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 93 |
+
"model.layers.13.attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 94 |
+
"model.layers.13.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
| 95 |
+
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 96 |
+
"model.layers.13.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 97 |
+
"model.layers.13.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 98 |
+
"model.layers.13.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
| 99 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 100 |
+
"model.layers.14.attn.A_log": "model-00001-of-00002.safetensors",
|
| 101 |
+
"model.layers.14.attn.D": "model-00001-of-00002.safetensors",
|
| 102 |
+
"model.layers.14.attn.conv1d.bias": "model-00001-of-00002.safetensors",
|
| 103 |
+
"model.layers.14.attn.conv1d.weight": "model-00001-of-00002.safetensors",
|
| 104 |
+
"model.layers.14.attn.dt_proj.bias": "model-00001-of-00002.safetensors",
|
| 105 |
+
"model.layers.14.attn.dt_proj.weight": "model-00001-of-00002.safetensors",
|
| 106 |
+
"model.layers.14.attn.in_proj.weight": "model-00001-of-00002.safetensors",
|
| 107 |
+
"model.layers.14.attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 108 |
+
"model.layers.14.attn.x_proj.weight": "model-00001-of-00002.safetensors",
|
| 109 |
+
"model.layers.14.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
| 110 |
+
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 111 |
+
"model.layers.14.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 112 |
+
"model.layers.14.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 113 |
+
"model.layers.14.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
| 114 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 115 |
+
"model.layers.15.attn.Wqkv.bias": "model-00001-of-00002.safetensors",
|
| 116 |
+
"model.layers.15.attn.Wqkv.weight": "model-00001-of-00002.safetensors",
|
| 117 |
+
"model.layers.15.attn.inner_cross_attn.lambda_k1": "model-00001-of-00002.safetensors",
|
| 118 |
+
"model.layers.15.attn.inner_cross_attn.lambda_k2": "model-00001-of-00002.safetensors",
|
| 119 |
+
"model.layers.15.attn.inner_cross_attn.lambda_q1": "model-00001-of-00002.safetensors",
|
| 120 |
+
"model.layers.15.attn.inner_cross_attn.lambda_q2": "model-00001-of-00002.safetensors",
|
| 121 |
+
"model.layers.15.attn.inner_cross_attn.subln.weight": "model-00001-of-00002.safetensors",
|
| 122 |
+
"model.layers.15.attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 123 |
+
"model.layers.15.attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 124 |
+
"model.layers.15.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
| 125 |
+
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 126 |
+
"model.layers.15.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 127 |
+
"model.layers.15.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 128 |
+
"model.layers.15.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
| 129 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 130 |
+
"model.layers.16.attn.A_log": "model-00001-of-00002.safetensors",
|
| 131 |
+
"model.layers.16.attn.D": "model-00001-of-00002.safetensors",
|
| 132 |
+
"model.layers.16.attn.conv1d.bias": "model-00001-of-00002.safetensors",
|
| 133 |
+
"model.layers.16.attn.conv1d.weight": "model-00001-of-00002.safetensors",
|
| 134 |
+
"model.layers.16.attn.dt_proj.bias": "model-00001-of-00002.safetensors",
|
| 135 |
+
"model.layers.16.attn.dt_proj.weight": "model-00001-of-00002.safetensors",
|
| 136 |
+
"model.layers.16.attn.in_proj.weight": "model-00001-of-00002.safetensors",
|
| 137 |
+
"model.layers.16.attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 138 |
+
"model.layers.16.attn.x_proj.weight": "model-00001-of-00002.safetensors",
|
| 139 |
+
"model.layers.16.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
| 140 |
+
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 141 |
+
"model.layers.16.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 142 |
+
"model.layers.16.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 143 |
+
"model.layers.16.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
| 144 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 145 |
+
"model.layers.17.attn.Wqkv.bias": "model-00001-of-00002.safetensors",
|
| 146 |
+
"model.layers.17.attn.Wqkv.weight": "model-00001-of-00002.safetensors",
|
| 147 |
+
"model.layers.17.attn.inner_cross_attn.lambda_k1": "model-00001-of-00002.safetensors",
|
| 148 |
+
"model.layers.17.attn.inner_cross_attn.lambda_k2": "model-00001-of-00002.safetensors",
|
| 149 |
+
"model.layers.17.attn.inner_cross_attn.lambda_q1": "model-00001-of-00002.safetensors",
|
| 150 |
+
"model.layers.17.attn.inner_cross_attn.lambda_q2": "model-00001-of-00002.safetensors",
|
| 151 |
+
"model.layers.17.attn.inner_cross_attn.subln.weight": "model-00001-of-00002.safetensors",
|
| 152 |
+
"model.layers.17.attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 153 |
+
"model.layers.17.attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 154 |
+
"model.layers.17.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
| 155 |
+
"model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 156 |
+
"model.layers.17.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 157 |
+
"model.layers.17.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 158 |
+
"model.layers.17.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
| 159 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 160 |
+
"model.layers.18.attn.in_proj.weight": "model-00002-of-00002.safetensors",
|
| 161 |
+
"model.layers.18.attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
| 162 |
+
"model.layers.18.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
| 163 |
+
"model.layers.18.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 164 |
+
"model.layers.18.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
| 165 |
+
"model.layers.18.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
| 166 |
+
"model.layers.18.post_attention_layernorm.bias": "model-00002-of-00002.safetensors",
|
| 167 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 168 |
+
"model.layers.19.attn.Wqkv.bias": "model-00002-of-00002.safetensors",
|
| 169 |
+
"model.layers.19.attn.Wqkv.weight": "model-00002-of-00002.safetensors",
|
| 170 |
+
"model.layers.19.attn.inner_cross_attn.lambda_k1": "model-00002-of-00002.safetensors",
|
| 171 |
+
"model.layers.19.attn.inner_cross_attn.lambda_k2": "model-00002-of-00002.safetensors",
|
| 172 |
+
"model.layers.19.attn.inner_cross_attn.lambda_q1": "model-00002-of-00002.safetensors",
|
| 173 |
+
"model.layers.19.attn.inner_cross_attn.lambda_q2": "model-00002-of-00002.safetensors",
|
| 174 |
+
"model.layers.19.attn.inner_cross_attn.subln.weight": "model-00002-of-00002.safetensors",
|
| 175 |
+
"model.layers.19.attn.out_proj.bias": "model-00002-of-00002.safetensors",
|
| 176 |
+
"model.layers.19.attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
| 177 |
+
"model.layers.19.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
| 178 |
+
"model.layers.19.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 179 |
+
"model.layers.19.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
| 180 |
+
"model.layers.19.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
| 181 |
+
"model.layers.19.post_attention_layernorm.bias": "model-00002-of-00002.safetensors",
|
| 182 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 183 |
+
"model.layers.2.attn.A_log": "model-00001-of-00002.safetensors",
|
| 184 |
+
"model.layers.2.attn.D": "model-00001-of-00002.safetensors",
|
| 185 |
+
"model.layers.2.attn.conv1d.bias": "model-00001-of-00002.safetensors",
|
| 186 |
+
"model.layers.2.attn.conv1d.weight": "model-00001-of-00002.safetensors",
|
| 187 |
+
"model.layers.2.attn.dt_proj.bias": "model-00001-of-00002.safetensors",
|
| 188 |
+
"model.layers.2.attn.dt_proj.weight": "model-00001-of-00002.safetensors",
|
| 189 |
+
"model.layers.2.attn.in_proj.weight": "model-00001-of-00002.safetensors",
|
| 190 |
+
"model.layers.2.attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 191 |
+
"model.layers.2.attn.x_proj.weight": "model-00001-of-00002.safetensors",
|
| 192 |
+
"model.layers.2.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
| 193 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 194 |
+
"model.layers.2.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 195 |
+
"model.layers.2.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 196 |
+
"model.layers.2.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
| 197 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 198 |
+
"model.layers.20.attn.in_proj.weight": "model-00002-of-00002.safetensors",
|
| 199 |
+
"model.layers.20.attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
| 200 |
+
"model.layers.20.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
| 201 |
+
"model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 202 |
+
"model.layers.20.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
| 203 |
+
"model.layers.20.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
| 204 |
+
"model.layers.20.post_attention_layernorm.bias": "model-00002-of-00002.safetensors",
|
| 205 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 206 |
+
"model.layers.21.attn.Wqkv.bias": "model-00002-of-00002.safetensors",
|
| 207 |
+
"model.layers.21.attn.Wqkv.weight": "model-00002-of-00002.safetensors",
|
| 208 |
+
"model.layers.21.attn.inner_cross_attn.lambda_k1": "model-00002-of-00002.safetensors",
|
| 209 |
+
"model.layers.21.attn.inner_cross_attn.lambda_k2": "model-00002-of-00002.safetensors",
|
| 210 |
+
"model.layers.21.attn.inner_cross_attn.lambda_q1": "model-00002-of-00002.safetensors",
|
| 211 |
+
"model.layers.21.attn.inner_cross_attn.lambda_q2": "model-00002-of-00002.safetensors",
|
| 212 |
+
"model.layers.21.attn.inner_cross_attn.subln.weight": "model-00002-of-00002.safetensors",
|
| 213 |
+
"model.layers.21.attn.out_proj.bias": "model-00002-of-00002.safetensors",
|
| 214 |
+
"model.layers.21.attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
| 215 |
+
"model.layers.21.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
| 216 |
+
"model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 217 |
+
"model.layers.21.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
| 218 |
+
"model.layers.21.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
| 219 |
+
"model.layers.21.post_attention_layernorm.bias": "model-00002-of-00002.safetensors",
|
| 220 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 221 |
+
"model.layers.22.attn.in_proj.weight": "model-00002-of-00002.safetensors",
|
| 222 |
+
"model.layers.22.attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
| 223 |
+
"model.layers.22.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
| 224 |
+
"model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 225 |
+
"model.layers.22.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
| 226 |
+
"model.layers.22.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
| 227 |
+
"model.layers.22.post_attention_layernorm.bias": "model-00002-of-00002.safetensors",
|
| 228 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 229 |
+
"model.layers.23.attn.Wqkv.bias": "model-00002-of-00002.safetensors",
|
| 230 |
+
"model.layers.23.attn.Wqkv.weight": "model-00002-of-00002.safetensors",
|
| 231 |
+
"model.layers.23.attn.inner_cross_attn.lambda_k1": "model-00002-of-00002.safetensors",
|
| 232 |
+
"model.layers.23.attn.inner_cross_attn.lambda_k2": "model-00002-of-00002.safetensors",
|
| 233 |
+
"model.layers.23.attn.inner_cross_attn.lambda_q1": "model-00002-of-00002.safetensors",
|
| 234 |
+
"model.layers.23.attn.inner_cross_attn.lambda_q2": "model-00002-of-00002.safetensors",
|
| 235 |
+
"model.layers.23.attn.inner_cross_attn.subln.weight": "model-00002-of-00002.safetensors",
|
| 236 |
+
"model.layers.23.attn.out_proj.bias": "model-00002-of-00002.safetensors",
|
| 237 |
+
"model.layers.23.attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
| 238 |
+
"model.layers.23.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
| 239 |
+
"model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 240 |
+
"model.layers.23.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
| 241 |
+
"model.layers.23.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
| 242 |
+
"model.layers.23.post_attention_layernorm.bias": "model-00002-of-00002.safetensors",
|
| 243 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 244 |
+
"model.layers.24.attn.in_proj.weight": "model-00002-of-00002.safetensors",
|
| 245 |
+
"model.layers.24.attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
| 246 |
+
"model.layers.24.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
| 247 |
+
"model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 248 |
+
"model.layers.24.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
| 249 |
+
"model.layers.24.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
| 250 |
+
"model.layers.24.post_attention_layernorm.bias": "model-00002-of-00002.safetensors",
|
| 251 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 252 |
+
"model.layers.25.attn.Wqkv.bias": "model-00002-of-00002.safetensors",
|
| 253 |
+
"model.layers.25.attn.Wqkv.weight": "model-00002-of-00002.safetensors",
|
| 254 |
+
"model.layers.25.attn.inner_cross_attn.lambda_k1": "model-00002-of-00002.safetensors",
|
| 255 |
+
"model.layers.25.attn.inner_cross_attn.lambda_k2": "model-00002-of-00002.safetensors",
|
| 256 |
+
"model.layers.25.attn.inner_cross_attn.lambda_q1": "model-00002-of-00002.safetensors",
|
| 257 |
+
"model.layers.25.attn.inner_cross_attn.lambda_q2": "model-00002-of-00002.safetensors",
|
| 258 |
+
"model.layers.25.attn.inner_cross_attn.subln.weight": "model-00002-of-00002.safetensors",
|
| 259 |
+
"model.layers.25.attn.out_proj.bias": "model-00002-of-00002.safetensors",
|
| 260 |
+
"model.layers.25.attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
| 261 |
+
"model.layers.25.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
| 262 |
+
"model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 263 |
+
"model.layers.25.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
| 264 |
+
"model.layers.25.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
| 265 |
+
"model.layers.25.post_attention_layernorm.bias": "model-00002-of-00002.safetensors",
|
| 266 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 267 |
+
"model.layers.26.attn.in_proj.weight": "model-00002-of-00002.safetensors",
|
| 268 |
+
"model.layers.26.attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
| 269 |
+
"model.layers.26.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
| 270 |
+
"model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 271 |
+
"model.layers.26.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
| 272 |
+
"model.layers.26.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
| 273 |
+
"model.layers.26.post_attention_layernorm.bias": "model-00002-of-00002.safetensors",
|
| 274 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 275 |
+
"model.layers.27.attn.Wqkv.bias": "model-00002-of-00002.safetensors",
|
| 276 |
+
"model.layers.27.attn.Wqkv.weight": "model-00002-of-00002.safetensors",
|
| 277 |
+
"model.layers.27.attn.inner_cross_attn.lambda_k1": "model-00002-of-00002.safetensors",
|
| 278 |
+
"model.layers.27.attn.inner_cross_attn.lambda_k2": "model-00002-of-00002.safetensors",
|
| 279 |
+
"model.layers.27.attn.inner_cross_attn.lambda_q1": "model-00002-of-00002.safetensors",
|
| 280 |
+
"model.layers.27.attn.inner_cross_attn.lambda_q2": "model-00002-of-00002.safetensors",
|
| 281 |
+
"model.layers.27.attn.inner_cross_attn.subln.weight": "model-00002-of-00002.safetensors",
|
| 282 |
+
"model.layers.27.attn.out_proj.bias": "model-00002-of-00002.safetensors",
|
| 283 |
+
"model.layers.27.attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
| 284 |
+
"model.layers.27.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
| 285 |
+
"model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 286 |
+
"model.layers.27.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
| 287 |
+
"model.layers.27.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
| 288 |
+
"model.layers.27.post_attention_layernorm.bias": "model-00002-of-00002.safetensors",
|
| 289 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 290 |
+
"model.layers.28.attn.in_proj.weight": "model-00002-of-00002.safetensors",
|
| 291 |
+
"model.layers.28.attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
| 292 |
+
"model.layers.28.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
| 293 |
+
"model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 294 |
+
"model.layers.28.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
| 295 |
+
"model.layers.28.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
| 296 |
+
"model.layers.28.post_attention_layernorm.bias": "model-00002-of-00002.safetensors",
|
| 297 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 298 |
+
"model.layers.29.attn.Wqkv.bias": "model-00002-of-00002.safetensors",
|
| 299 |
+
"model.layers.29.attn.Wqkv.weight": "model-00002-of-00002.safetensors",
|
| 300 |
+
"model.layers.29.attn.inner_cross_attn.lambda_k1": "model-00002-of-00002.safetensors",
|
| 301 |
+
"model.layers.29.attn.inner_cross_attn.lambda_k2": "model-00002-of-00002.safetensors",
|
| 302 |
+
"model.layers.29.attn.inner_cross_attn.lambda_q1": "model-00002-of-00002.safetensors",
|
| 303 |
+
"model.layers.29.attn.inner_cross_attn.lambda_q2": "model-00002-of-00002.safetensors",
|
| 304 |
+
"model.layers.29.attn.inner_cross_attn.subln.weight": "model-00002-of-00002.safetensors",
|
| 305 |
+
"model.layers.29.attn.out_proj.bias": "model-00002-of-00002.safetensors",
|
| 306 |
+
"model.layers.29.attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
| 307 |
+
"model.layers.29.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
| 308 |
+
"model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 309 |
+
"model.layers.29.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
| 310 |
+
"model.layers.29.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
| 311 |
+
"model.layers.29.post_attention_layernorm.bias": "model-00002-of-00002.safetensors",
|
| 312 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 313 |
+
"model.layers.3.attn.Wqkv.bias": "model-00001-of-00002.safetensors",
|
| 314 |
+
"model.layers.3.attn.Wqkv.weight": "model-00001-of-00002.safetensors",
|
| 315 |
+
"model.layers.3.attn.inner_cross_attn.lambda_k1": "model-00001-of-00002.safetensors",
|
| 316 |
+
"model.layers.3.attn.inner_cross_attn.lambda_k2": "model-00001-of-00002.safetensors",
|
| 317 |
+
"model.layers.3.attn.inner_cross_attn.lambda_q1": "model-00001-of-00002.safetensors",
|
| 318 |
+
"model.layers.3.attn.inner_cross_attn.lambda_q2": "model-00001-of-00002.safetensors",
|
| 319 |
+
"model.layers.3.attn.inner_cross_attn.subln.weight": "model-00001-of-00002.safetensors",
|
| 320 |
+
"model.layers.3.attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 321 |
+
"model.layers.3.attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 322 |
+
"model.layers.3.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
| 323 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 324 |
+
"model.layers.3.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 325 |
+
"model.layers.3.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 326 |
+
"model.layers.3.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
| 327 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 328 |
+
"model.layers.30.attn.in_proj.weight": "model-00002-of-00002.safetensors",
|
| 329 |
+
"model.layers.30.attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
| 330 |
+
"model.layers.30.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
| 331 |
+
"model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 332 |
+
"model.layers.30.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
| 333 |
+
"model.layers.30.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
| 334 |
+
"model.layers.30.post_attention_layernorm.bias": "model-00002-of-00002.safetensors",
|
| 335 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 336 |
+
"model.layers.31.attn.Wqkv.bias": "model-00002-of-00002.safetensors",
|
| 337 |
+
"model.layers.31.attn.Wqkv.weight": "model-00002-of-00002.safetensors",
|
| 338 |
+
"model.layers.31.attn.inner_cross_attn.lambda_k1": "model-00002-of-00002.safetensors",
|
| 339 |
+
"model.layers.31.attn.inner_cross_attn.lambda_k2": "model-00002-of-00002.safetensors",
|
| 340 |
+
"model.layers.31.attn.inner_cross_attn.lambda_q1": "model-00002-of-00002.safetensors",
|
| 341 |
+
"model.layers.31.attn.inner_cross_attn.lambda_q2": "model-00002-of-00002.safetensors",
|
| 342 |
+
"model.layers.31.attn.inner_cross_attn.subln.weight": "model-00002-of-00002.safetensors",
|
| 343 |
+
"model.layers.31.attn.out_proj.bias": "model-00002-of-00002.safetensors",
|
| 344 |
+
"model.layers.31.attn.out_proj.weight": "model-00002-of-00002.safetensors",
|
| 345 |
+
"model.layers.31.input_layernorm.bias": "model-00002-of-00002.safetensors",
|
| 346 |
+
"model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 347 |
+
"model.layers.31.mlp.fc1.weight": "model-00002-of-00002.safetensors",
|
| 348 |
+
"model.layers.31.mlp.fc2.weight": "model-00002-of-00002.safetensors",
|
| 349 |
+
"model.layers.31.post_attention_layernorm.bias": "model-00002-of-00002.safetensors",
|
| 350 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 351 |
+
"model.layers.4.attn.A_log": "model-00001-of-00002.safetensors",
|
| 352 |
+
"model.layers.4.attn.D": "model-00001-of-00002.safetensors",
|
| 353 |
+
"model.layers.4.attn.conv1d.bias": "model-00001-of-00002.safetensors",
|
| 354 |
+
"model.layers.4.attn.conv1d.weight": "model-00001-of-00002.safetensors",
|
| 355 |
+
"model.layers.4.attn.dt_proj.bias": "model-00001-of-00002.safetensors",
|
| 356 |
+
"model.layers.4.attn.dt_proj.weight": "model-00001-of-00002.safetensors",
|
| 357 |
+
"model.layers.4.attn.in_proj.weight": "model-00001-of-00002.safetensors",
|
| 358 |
+
"model.layers.4.attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 359 |
+
"model.layers.4.attn.x_proj.weight": "model-00001-of-00002.safetensors",
|
| 360 |
+
"model.layers.4.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
| 361 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 362 |
+
"model.layers.4.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 363 |
+
"model.layers.4.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 364 |
+
"model.layers.4.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
| 365 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 366 |
+
"model.layers.5.attn.Wqkv.bias": "model-00001-of-00002.safetensors",
|
| 367 |
+
"model.layers.5.attn.Wqkv.weight": "model-00001-of-00002.safetensors",
|
| 368 |
+
"model.layers.5.attn.inner_cross_attn.lambda_k1": "model-00001-of-00002.safetensors",
|
| 369 |
+
"model.layers.5.attn.inner_cross_attn.lambda_k2": "model-00001-of-00002.safetensors",
|
| 370 |
+
"model.layers.5.attn.inner_cross_attn.lambda_q1": "model-00001-of-00002.safetensors",
|
| 371 |
+
"model.layers.5.attn.inner_cross_attn.lambda_q2": "model-00001-of-00002.safetensors",
|
| 372 |
+
"model.layers.5.attn.inner_cross_attn.subln.weight": "model-00001-of-00002.safetensors",
|
| 373 |
+
"model.layers.5.attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 374 |
+
"model.layers.5.attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 375 |
+
"model.layers.5.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
| 376 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 377 |
+
"model.layers.5.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 378 |
+
"model.layers.5.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 379 |
+
"model.layers.5.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
| 380 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 381 |
+
"model.layers.6.attn.A_log": "model-00001-of-00002.safetensors",
|
| 382 |
+
"model.layers.6.attn.D": "model-00001-of-00002.safetensors",
|
| 383 |
+
"model.layers.6.attn.conv1d.bias": "model-00001-of-00002.safetensors",
|
| 384 |
+
"model.layers.6.attn.conv1d.weight": "model-00001-of-00002.safetensors",
|
| 385 |
+
"model.layers.6.attn.dt_proj.bias": "model-00001-of-00002.safetensors",
|
| 386 |
+
"model.layers.6.attn.dt_proj.weight": "model-00001-of-00002.safetensors",
|
| 387 |
+
"model.layers.6.attn.in_proj.weight": "model-00001-of-00002.safetensors",
|
| 388 |
+
"model.layers.6.attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 389 |
+
"model.layers.6.attn.x_proj.weight": "model-00001-of-00002.safetensors",
|
| 390 |
+
"model.layers.6.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
| 391 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 392 |
+
"model.layers.6.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 393 |
+
"model.layers.6.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 394 |
+
"model.layers.6.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
| 395 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 396 |
+
"model.layers.7.attn.Wqkv.bias": "model-00001-of-00002.safetensors",
|
| 397 |
+
"model.layers.7.attn.Wqkv.weight": "model-00001-of-00002.safetensors",
|
| 398 |
+
"model.layers.7.attn.inner_cross_attn.lambda_k1": "model-00001-of-00002.safetensors",
|
| 399 |
+
"model.layers.7.attn.inner_cross_attn.lambda_k2": "model-00001-of-00002.safetensors",
|
| 400 |
+
"model.layers.7.attn.inner_cross_attn.lambda_q1": "model-00001-of-00002.safetensors",
|
| 401 |
+
"model.layers.7.attn.inner_cross_attn.lambda_q2": "model-00001-of-00002.safetensors",
|
| 402 |
+
"model.layers.7.attn.inner_cross_attn.subln.weight": "model-00001-of-00002.safetensors",
|
| 403 |
+
"model.layers.7.attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 404 |
+
"model.layers.7.attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 405 |
+
"model.layers.7.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
| 406 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 407 |
+
"model.layers.7.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 408 |
+
"model.layers.7.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 409 |
+
"model.layers.7.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
| 410 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 411 |
+
"model.layers.8.attn.A_log": "model-00001-of-00002.safetensors",
|
| 412 |
+
"model.layers.8.attn.D": "model-00001-of-00002.safetensors",
|
| 413 |
+
"model.layers.8.attn.conv1d.bias": "model-00001-of-00002.safetensors",
|
| 414 |
+
"model.layers.8.attn.conv1d.weight": "model-00001-of-00002.safetensors",
|
| 415 |
+
"model.layers.8.attn.dt_proj.bias": "model-00001-of-00002.safetensors",
|
| 416 |
+
"model.layers.8.attn.dt_proj.weight": "model-00001-of-00002.safetensors",
|
| 417 |
+
"model.layers.8.attn.in_proj.weight": "model-00001-of-00002.safetensors",
|
| 418 |
+
"model.layers.8.attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 419 |
+
"model.layers.8.attn.x_proj.weight": "model-00001-of-00002.safetensors",
|
| 420 |
+
"model.layers.8.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
| 421 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 422 |
+
"model.layers.8.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 423 |
+
"model.layers.8.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 424 |
+
"model.layers.8.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
| 425 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 426 |
+
"model.layers.9.attn.Wqkv.bias": "model-00001-of-00002.safetensors",
|
| 427 |
+
"model.layers.9.attn.Wqkv.weight": "model-00001-of-00002.safetensors",
|
| 428 |
+
"model.layers.9.attn.inner_cross_attn.lambda_k1": "model-00001-of-00002.safetensors",
|
| 429 |
+
"model.layers.9.attn.inner_cross_attn.lambda_k2": "model-00001-of-00002.safetensors",
|
| 430 |
+
"model.layers.9.attn.inner_cross_attn.lambda_q1": "model-00001-of-00002.safetensors",
|
| 431 |
+
"model.layers.9.attn.inner_cross_attn.lambda_q2": "model-00001-of-00002.safetensors",
|
| 432 |
+
"model.layers.9.attn.inner_cross_attn.subln.weight": "model-00001-of-00002.safetensors",
|
| 433 |
+
"model.layers.9.attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 434 |
+
"model.layers.9.attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 435 |
+
"model.layers.9.input_layernorm.bias": "model-00001-of-00002.safetensors",
|
| 436 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 437 |
+
"model.layers.9.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 438 |
+
"model.layers.9.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 439 |
+
"model.layers.9.post_attention_layernorm.bias": "model-00001-of-00002.safetensors",
|
| 440 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors"
|
| 441 |
+
}
|
| 442 |
+
}
|
modeling_phi4flash.py
ADDED
|
@@ -0,0 +1,2098 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2025 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
|
| 16 |
+
""" PyTorch Phi4Flash model."""
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
import inspect
|
| 20 |
+
import math
|
| 21 |
+
import warnings
|
| 22 |
+
from typing import List, Optional, Tuple, Union, Dict, Any
|
| 23 |
+
import copy
|
| 24 |
+
import torch
|
| 25 |
+
import torch.nn.functional as F
|
| 26 |
+
import torch.utils.checkpoint
|
| 27 |
+
from torch import nn
|
| 28 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
| 29 |
+
from transformers.activations import ACT2FN
|
| 30 |
+
from transformers.cache_utils import Cache, DynamicCache
|
| 31 |
+
from transformers.utils import is_torchdynamo_compiling
|
| 32 |
+
from transformers.modeling_outputs import (
|
| 33 |
+
BaseModelOutputWithPast,
|
| 34 |
+
CausalLMOutputWithPast,
|
| 35 |
+
SequenceClassifierOutputWithPast,
|
| 36 |
+
TokenClassifierOutput,
|
| 37 |
+
)
|
| 38 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 39 |
+
from transformers.generation import GenerationMixin
|
| 40 |
+
from transformers.utils import (
|
| 41 |
+
add_code_sample_docstrings,
|
| 42 |
+
add_start_docstrings,
|
| 43 |
+
add_start_docstrings_to_model_forward,
|
| 44 |
+
is_flash_attn_greater_or_equal_2_10,
|
| 45 |
+
logging,
|
| 46 |
+
replace_return_docstrings,
|
| 47 |
+
)
|
| 48 |
+
from einops import rearrange, repeat
|
| 49 |
+
|
| 50 |
+
from .configuration_phi4flash import Phi4FlashConfig
|
| 51 |
+
|
| 52 |
+
logger = logging.get_logger(__name__)
|
| 53 |
+
|
| 54 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
| 55 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
| 56 |
+
|
| 57 |
+
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
|
| 58 |
+
|
| 59 |
+
if not _flash_supports_window_size:
|
| 60 |
+
raise ValueError("Please update flash-attention to support window size.")
|
| 61 |
+
|
| 62 |
+
from causal_conv1d import causal_conv1d_fn, causal_conv1d_update
|
| 63 |
+
import causal_conv1d_cuda
|
| 64 |
+
from mamba_ssm.ops.triton.selective_state_update import selective_state_update
|
| 65 |
+
|
| 66 |
+
from torch.amp import custom_bwd, custom_fwd
|
| 67 |
+
import selective_scan_cuda
|
| 68 |
+
|
| 69 |
+
_CHECKPOINT_FOR_DOC = "microsoft/Phi-4-mini-flash-reasoning"
|
| 70 |
+
_CONFIG_FOR_DOC = "Phi4FlashConfig"
|
| 71 |
+
|
| 72 |
+
# monkey patch to add support for our cache
|
| 73 |
+
def _prepare_cache_for_generation(
|
| 74 |
+
self,
|
| 75 |
+
generation_config,
|
| 76 |
+
model_kwargs: Dict,
|
| 77 |
+
assistant_model: "PreTrainedModel",
|
| 78 |
+
batch_size: int,
|
| 79 |
+
max_cache_length: int,
|
| 80 |
+
device: torch.device,
|
| 81 |
+
) -> bool:
|
| 82 |
+
"""
|
| 83 |
+
Prepares the cache for generation (if applicable), given `generate`'s parameterization. If a cache is
|
| 84 |
+
instantiated, writes it to `model_kwargs`, under the name expected by the model.
|
| 85 |
+
"""
|
| 86 |
+
|
| 87 |
+
cache_name = "past_key_values"
|
| 88 |
+
|
| 89 |
+
# Quick escape route 2: if the user specifies no cache is to be used. (conflicting arguments are handled in
|
| 90 |
+
# `generation_config.validate()`)
|
| 91 |
+
if generation_config.use_cache is False:
|
| 92 |
+
return
|
| 93 |
+
|
| 94 |
+
# Otherwise we NEED to prepare a cache, based on `generation_config.cache_implementation`
|
| 95 |
+
|
| 96 |
+
# TODO(joao): support static caches in assisted generation. assisted generation needs to roll back caches,
|
| 97 |
+
# which is only supported in dynamic caches atm
|
| 98 |
+
if assistant_model is not None:
|
| 99 |
+
logger.warning_once(
|
| 100 |
+
"An assistant model is provided, using a dynamic cache instead of a cache of type="
|
| 101 |
+
f"'{generation_config.cache_implementation}'."
|
| 102 |
+
)
|
| 103 |
+
model_kwargs[cache_name] = DynamicCache()
|
| 104 |
+
return
|
| 105 |
+
|
| 106 |
+
model_kwargs[cache_name] = self._get_cache(
|
| 107 |
+
cache_implementation="sambay",
|
| 108 |
+
batch_size=max(generation_config.num_beams, generation_config.num_return_sequences) * batch_size,
|
| 109 |
+
max_cache_len=max_cache_length,
|
| 110 |
+
device=device,
|
| 111 |
+
model_kwargs=model_kwargs,
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
def _get_cache(
|
| 115 |
+
self, cache_implementation: str, batch_size: int, max_cache_len: int, device: torch.device, model_kwargs
|
| 116 |
+
) -> Cache:
|
| 117 |
+
"""
|
| 118 |
+
Sets a cache for `generate`, that will persist across calls. A new cache will only be initialized a
|
| 119 |
+
new `generate` call requires a larger cache or uses a different batch size.
|
| 120 |
+
|
| 121 |
+
Returns the resulting cache object.
|
| 122 |
+
"""
|
| 123 |
+
cache_cls: Cache = SambaYCache
|
| 124 |
+
requires_cross_attention_cache = (
|
| 125 |
+
self.config.is_encoder_decoder or model_kwargs.get("encoder_outputs") is not None
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
if hasattr(self, "_cache"):
|
| 129 |
+
cache_to_check = self._cache.self_attention_cache if requires_cross_attention_cache else self._cache
|
| 130 |
+
|
| 131 |
+
if cache_implementation == "sliding_window":
|
| 132 |
+
max_cache_len = min(self.config.sliding_window[1], max_cache_len)
|
| 133 |
+
|
| 134 |
+
need_new_cache = (
|
| 135 |
+
not hasattr(self, "_cache")
|
| 136 |
+
or (not isinstance(cache_to_check, cache_cls))
|
| 137 |
+
or cache_to_check.batch_size != batch_size
|
| 138 |
+
)
|
| 139 |
+
if cache_implementation != "mamba":
|
| 140 |
+
need_new_cache = need_new_cache or cache_to_check.max_cache_len < max_cache_len
|
| 141 |
+
|
| 142 |
+
if requires_cross_attention_cache and hasattr(self, "_cache"):
|
| 143 |
+
need_new_cache = (
|
| 144 |
+
need_new_cache
|
| 145 |
+
or self._cache.cross_attention_cache.max_cache_len != model_kwargs["encoder_outputs"][0].shape[1]
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
if need_new_cache:
|
| 149 |
+
if hasattr(self.config, "_pre_quantization_dtype"):
|
| 150 |
+
cache_dtype = self.config._pre_quantization_dtype
|
| 151 |
+
else:
|
| 152 |
+
if not is_torchdynamo_compiling():
|
| 153 |
+
cache_dtype = self.dtype
|
| 154 |
+
else:
|
| 155 |
+
# NOTE: self.dtype is not compatible with torch.compile, as it calls `self.parameters()`.
|
| 156 |
+
# Workaround: trust the lm_head, whose attribute name is somewhat consistent across generative
|
| 157 |
+
# models. May cause trobles with non-text modalities.
|
| 158 |
+
cache_dtype = self.get_output_embeddings().weight.dtype
|
| 159 |
+
|
| 160 |
+
def get_layer_device_map(execution_device_map: Optional[dict] = None):
|
| 161 |
+
if execution_device_map is None:
|
| 162 |
+
return None
|
| 163 |
+
elif len(execution_device_map) == 1 and "" in execution_device_map:
|
| 164 |
+
return {idx: execution_device_map[""] for idx in range(self.config.num_hidden_layers)}
|
| 165 |
+
layer_device_map = {}
|
| 166 |
+
for layer in execution_device_map:
|
| 167 |
+
for idx in range(self.config.num_hidden_layers):
|
| 168 |
+
if f".{idx}." in f"{layer}.":
|
| 169 |
+
layer_device_map[idx] = execution_device_map[layer]
|
| 170 |
+
break
|
| 171 |
+
for idx in range(self.config.num_hidden_layers):
|
| 172 |
+
if idx not in layer_device_map:
|
| 173 |
+
raise RuntimeError(f"layer {idx} has not been mapped to a device.")
|
| 174 |
+
return layer_device_map
|
| 175 |
+
|
| 176 |
+
execution_device_map = None
|
| 177 |
+
# Taken from dispatch_model from accelerate.
|
| 178 |
+
# This is needed here if we don't want to make changes in accelerate in order to save execution_device
|
| 179 |
+
# For offloaded case, we need to get the execution device, not just the device where it is offloaded
|
| 180 |
+
if hasattr(self, "hf_device_map"):
|
| 181 |
+
main_device = [d for d in self.hf_device_map.values() if d not in ["cpu", "disk"]][0]
|
| 182 |
+
execution_device_map = {
|
| 183 |
+
name: main_device if device in ["cpu", "disk"] else device
|
| 184 |
+
for name, device in self.hf_device_map.items()
|
| 185 |
+
}
|
| 186 |
+
layer_device_map = get_layer_device_map(execution_device_map)
|
| 187 |
+
|
| 188 |
+
cache_kwargs = {
|
| 189 |
+
"config": self.config.get_text_config(),
|
| 190 |
+
"batch_size": batch_size,
|
| 191 |
+
"max_cache_len": max_cache_len,
|
| 192 |
+
"device": device,
|
| 193 |
+
"dtype": cache_dtype,
|
| 194 |
+
"layer_device_map": layer_device_map,
|
| 195 |
+
}
|
| 196 |
+
self._cache = cache_cls(**cache_kwargs)
|
| 197 |
+
else:
|
| 198 |
+
self._cache.reset()
|
| 199 |
+
return self._cache
|
| 200 |
+
|
| 201 |
+
GenerationMixin._prepare_cache_for_generation = _prepare_cache_for_generation
|
| 202 |
+
GenerationMixin._get_cache = _get_cache
|
| 203 |
+
|
| 204 |
+
class SambaYCache(Cache):
|
| 205 |
+
"""
|
| 206 |
+
A dynamic cache that can handle the sliding window attention cache, one layer of full attention cache and the mamba cache
|
| 207 |
+
(which has a constant shape regardless of seq_len).
|
| 208 |
+
|
| 209 |
+
"""
|
| 210 |
+
|
| 211 |
+
def __init__(self,
|
| 212 |
+
config: Phi4FlashConfig,
|
| 213 |
+
batch_size: int = None,
|
| 214 |
+
max_cache_len: int = None,
|
| 215 |
+
device: Union[torch.device, str] = "cuda",
|
| 216 |
+
dtype: torch.dtype = torch.float16,
|
| 217 |
+
max_batch_size: Optional[int] = None,
|
| 218 |
+
layer_device_map: Optional[Dict[int, Union[str, torch.device, int]]] = None,
|
| 219 |
+
) -> None:
|
| 220 |
+
super().__init__()
|
| 221 |
+
self.dtype = dtype
|
| 222 |
+
self.has_previous_state = False # only used by mamba
|
| 223 |
+
intermediate_size = config.mamba_expand * config.hidden_size
|
| 224 |
+
ssm_state_size = config.mamba_d_state
|
| 225 |
+
conv_kernel_size = config.mamba_d_conv
|
| 226 |
+
self.conv_kernel_size = conv_kernel_size
|
| 227 |
+
|
| 228 |
+
if batch_size is not None:
|
| 229 |
+
logger.warning_once(
|
| 230 |
+
f"The 'batch_size' argument of {self.__class__.__name__} is deprecated and will be removed in "
|
| 231 |
+
"v4.49. Use the more precisely named 'max_batch_size' argument instead."
|
| 232 |
+
)
|
| 233 |
+
|
| 234 |
+
self.max_cache_len = max_cache_len
|
| 235 |
+
self.max_batch_size = batch_size or max_batch_size
|
| 236 |
+
# Some model define a custom `head_dim` != config.hidden_size // config.num_attention_heads
|
| 237 |
+
self.head_dim = config.hidden_size // config.num_attention_heads
|
| 238 |
+
self.num_key_value_heads = config.num_key_value_heads
|
| 239 |
+
self.global_attn_idx = config.num_hidden_layers//2 + 1
|
| 240 |
+
self.key_cache: List[torch.Tensor] = []
|
| 241 |
+
self.value_cache: List[torch.Tensor] = []
|
| 242 |
+
global_cache_shape = (self.max_batch_size, self.num_key_value_heads, max_cache_len, self.head_dim)
|
| 243 |
+
sliding_cache_shape = (
|
| 244 |
+
self.max_batch_size,
|
| 245 |
+
self.num_key_value_heads,
|
| 246 |
+
min(config.sliding_window[1], max_cache_len),
|
| 247 |
+
self.head_dim,
|
| 248 |
+
)
|
| 249 |
+
conv_cache_shape = (self.max_batch_size, intermediate_size, conv_kernel_size)
|
| 250 |
+
ssm_cache_shape = (self.max_batch_size, intermediate_size, ssm_state_size)
|
| 251 |
+
for i in range(config.num_hidden_layers//2 + 2):
|
| 252 |
+
if layer_device_map is not None:
|
| 253 |
+
layer_device = layer_device_map[i]
|
| 254 |
+
else:
|
| 255 |
+
layer_device = device
|
| 256 |
+
# Note: `mark_static_address` is used to tag the cache as an fixed data pointer, preventing cuda graph
|
| 257 |
+
# breaks when updating the cache.
|
| 258 |
+
if i == self.global_attn_idx:
|
| 259 |
+
key_cache_shape = value_cache_shape = global_cache_shape
|
| 260 |
+
elif i % 2 == 0:
|
| 261 |
+
key_cache_shape = conv_cache_shape
|
| 262 |
+
value_cache_shape = ssm_cache_shape
|
| 263 |
+
else:
|
| 264 |
+
key_cache_shape = value_cache_shape = sliding_cache_shape
|
| 265 |
+
new_layer_key_cache = torch.zeros(key_cache_shape, dtype=dtype, device=layer_device)
|
| 266 |
+
new_layer_value_cache = torch.zeros(value_cache_shape, dtype=dtype, device=layer_device)
|
| 267 |
+
torch._dynamo.mark_static_address(new_layer_key_cache)
|
| 268 |
+
torch._dynamo.mark_static_address(new_layer_value_cache)
|
| 269 |
+
self.key_cache.append(new_layer_key_cache)
|
| 270 |
+
self.value_cache.append(new_layer_value_cache)
|
| 271 |
+
|
| 272 |
+
def _sliding_update(self, cache_position, layer_idx, key_states, value_states, k_out, v_out, max_cache_len):
|
| 273 |
+
if cache_position.shape[0] > max_cache_len:
|
| 274 |
+
k_out = key_states[:, :, -max_cache_len:, :]
|
| 275 |
+
v_out = value_states[:, :, -max_cache_len:, :]
|
| 276 |
+
# Assumption: caches are all zeros at this point, `+=` is equivalent to `=` but compile-friendly
|
| 277 |
+
self.key_cache[layer_idx] += k_out
|
| 278 |
+
self.value_cache[layer_idx] += v_out
|
| 279 |
+
# we should return the whole states instead of k_out, v_out to take the whole prompt
|
| 280 |
+
# into consideration when building kv cache instead of just throwing away tokens outside of the window
|
| 281 |
+
return key_states, value_states
|
| 282 |
+
|
| 283 |
+
slicing = torch.ones(max_cache_len, dtype=torch.long, device=value_states.device).cumsum(0)
|
| 284 |
+
cache_position = cache_position.clamp(0, max_cache_len - 1)
|
| 285 |
+
to_shift = cache_position >= max_cache_len - 1
|
| 286 |
+
indices = (slicing + to_shift[-1].int() - 1) % max_cache_len
|
| 287 |
+
k_out = k_out[:, :, indices]
|
| 288 |
+
v_out = v_out[:, :, indices]
|
| 289 |
+
|
| 290 |
+
k_out[:, :, cache_position] = key_states
|
| 291 |
+
v_out[:, :, cache_position] = value_states
|
| 292 |
+
# `_.zero()` followed by `+=` is equivalent `=`, but compile-friendly (without graph breaks due to assignment)
|
| 293 |
+
self.key_cache[layer_idx].zero_()
|
| 294 |
+
self.value_cache[layer_idx].zero_()
|
| 295 |
+
|
| 296 |
+
self.key_cache[layer_idx] += k_out
|
| 297 |
+
self.value_cache[layer_idx] += v_out
|
| 298 |
+
return k_out, v_out
|
| 299 |
+
|
| 300 |
+
def _static_update(self, cache_position, layer_idx, key_states, value_states, k_out, v_out, max_cache_len):
|
| 301 |
+
k_out[:, :, cache_position] = key_states
|
| 302 |
+
v_out[:, :, cache_position] = value_states
|
| 303 |
+
|
| 304 |
+
self.key_cache[layer_idx] = k_out
|
| 305 |
+
self.value_cache[layer_idx] = v_out
|
| 306 |
+
return k_out, v_out
|
| 307 |
+
|
| 308 |
+
def update(
|
| 309 |
+
self,
|
| 310 |
+
key_states: torch.Tensor,
|
| 311 |
+
value_states: torch.Tensor,
|
| 312 |
+
layer_idx: int,
|
| 313 |
+
cache_kwargs: Optional[Dict[str, Any]] = None,
|
| 314 |
+
) -> Tuple[torch.Tensor]:
|
| 315 |
+
cache_position = cache_kwargs.get("cache_position")
|
| 316 |
+
k_out = self.key_cache[layer_idx]
|
| 317 |
+
v_out = self.value_cache[layer_idx]
|
| 318 |
+
if layer_idx == self.global_attn_idx:
|
| 319 |
+
update_fn = self._static_update
|
| 320 |
+
elif layer_idx % 2 == 1:
|
| 321 |
+
update_fn = self._sliding_update
|
| 322 |
+
|
| 323 |
+
return update_fn(
|
| 324 |
+
cache_position,
|
| 325 |
+
layer_idx,
|
| 326 |
+
key_states,
|
| 327 |
+
value_states,
|
| 328 |
+
k_out,
|
| 329 |
+
v_out,
|
| 330 |
+
k_out.shape[2],
|
| 331 |
+
)
|
| 332 |
+
|
| 333 |
+
def get_max_cache_shape(self) -> Optional[int]:
|
| 334 |
+
return self.max_cache_len
|
| 335 |
+
|
| 336 |
+
def get_seq_length(self, layer_idx: Optional[int] = 0):
|
| 337 |
+
# Occupied cache == any slot in the 3rd dim (sequence length) holds a non-zero value. To save on compute, let's
|
| 338 |
+
# limit the check to the first batch member and head dimension.
|
| 339 |
+
# TODO: deprecate this function in favor of `cache_position`
|
| 340 |
+
return (self.key_cache[self.global_attn_idx][0, 0].any(dim=-1)).sum()
|
| 341 |
+
|
| 342 |
+
def reset(self):
|
| 343 |
+
"""Resets the cache values while preserving the objects"""
|
| 344 |
+
for layer_idx in range(len(self.key_cache)):
|
| 345 |
+
# In-place ops prevent breaking the static address
|
| 346 |
+
self.key_cache[layer_idx].zero_()
|
| 347 |
+
self.value_cache[layer_idx].zero_()
|
| 348 |
+
|
| 349 |
+
@property
|
| 350 |
+
def batch_size(self):
|
| 351 |
+
logger.warning_once(
|
| 352 |
+
f"The 'batch_size' attribute of {self.__class__.__name__} is deprecated and will be removed in "
|
| 353 |
+
"v4.49. Use the more precisely named 'self.max_batch_size' attribute instead."
|
| 354 |
+
)
|
| 355 |
+
return self.max_batch_size
|
| 356 |
+
|
| 357 |
+
|
| 358 |
+
|
| 359 |
+
|
| 360 |
+
swiglu_fwd_codestring = """
|
| 361 |
+
template <typename T> T swiglu_fwd(T x, T y) {
|
| 362 |
+
return float(x) * float(y) / (1.0f + ::exp(-float(x)));
|
| 363 |
+
}
|
| 364 |
+
"""
|
| 365 |
+
swiglu_bwd_codestring = """
|
| 366 |
+
template <typename T> T swiglu_bwd(T x, T y, T g, T& dx, T& dy) {
|
| 367 |
+
float x_sigmoid = 1.0f / (1.0f + ::exp(-float(x)));
|
| 368 |
+
dx = x_sigmoid * (1 + float(x) * (1.0f - x_sigmoid)) * float(g) * float(y);
|
| 369 |
+
dy = float(x) * x_sigmoid * float(g);
|
| 370 |
+
}
|
| 371 |
+
"""
|
| 372 |
+
swiglu_fwd = torch.cuda.jiterator._create_jit_fn(swiglu_fwd_codestring)
|
| 373 |
+
swiglu_bwd = torch.cuda.jiterator._create_multi_output_jit_fn(swiglu_bwd_codestring, num_outputs=2)
|
| 374 |
+
|
| 375 |
+
|
| 376 |
+
class SwiGLUFunction(torch.autograd.Function):
|
| 377 |
+
|
| 378 |
+
@staticmethod
|
| 379 |
+
def forward(ctx, x, y):
|
| 380 |
+
ctx.save_for_backward(x, y)
|
| 381 |
+
return swiglu_fwd(x, y)
|
| 382 |
+
|
| 383 |
+
@staticmethod
|
| 384 |
+
def backward(ctx, dout):
|
| 385 |
+
x, y = ctx.saved_tensors
|
| 386 |
+
return swiglu_bwd(x, y, dout)
|
| 387 |
+
|
| 388 |
+
swiglu = SwiGLUFunction.apply
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->SambaY
|
| 392 |
+
class SambaYRMSNorm(nn.Module):
|
| 393 |
+
def __init__(self, hidden_size, eps=1e-5):
|
| 394 |
+
"""
|
| 395 |
+
SambaYRMSNorm is equivalent to T5LayerNorm
|
| 396 |
+
"""
|
| 397 |
+
super().__init__()
|
| 398 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 399 |
+
self.variance_epsilon = eps
|
| 400 |
+
|
| 401 |
+
def forward(self, hidden_states):
|
| 402 |
+
input_dtype = hidden_states.dtype
|
| 403 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 404 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
| 405 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 406 |
+
return self.weight * hidden_states.to(input_dtype)
|
| 407 |
+
|
| 408 |
+
|
| 409 |
+
PHI_NORM_CLASS = nn.LayerNorm
|
| 410 |
+
|
| 411 |
+
|
| 412 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
| 413 |
+
def _get_unpad_data(attention_mask):
|
| 414 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
| 415 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
| 416 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
| 417 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
| 418 |
+
return (
|
| 419 |
+
indices,
|
| 420 |
+
cu_seqlens,
|
| 421 |
+
max_seqlen_in_batch,
|
| 422 |
+
)
|
| 423 |
+
|
| 424 |
+
|
| 425 |
+
class SambaYMLP(nn.Module):
|
| 426 |
+
"""Gated Linear Unit.
|
| 427 |
+
|
| 428 |
+
Reference:
|
| 429 |
+
Language Modeling with Gated Convolutional Networks.
|
| 430 |
+
https://arxiv.org/pdf/1612.08083v3.pdf.
|
| 431 |
+
|
| 432 |
+
"""
|
| 433 |
+
|
| 434 |
+
def __init__(self, config):
|
| 435 |
+
super().__init__()
|
| 436 |
+
|
| 437 |
+
self.config = config
|
| 438 |
+
self.fc1 = nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False)
|
| 439 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
|
| 440 |
+
|
| 441 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
| 442 |
+
|
| 443 |
+
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
|
| 444 |
+
y = self.fc1(hidden_states)
|
| 445 |
+
|
| 446 |
+
# Special case for SwiGLU
|
| 447 |
+
if self.config.hidden_act == "silu" and swiglu is not None:
|
| 448 |
+
gate, y = y.chunk(2, dim=-1)
|
| 449 |
+
y = swiglu(gate, y)
|
| 450 |
+
else:
|
| 451 |
+
gate, y = y.chunk(2, dim=-1)
|
| 452 |
+
y = y * self.activation_fn(gate)
|
| 453 |
+
|
| 454 |
+
return self.fc2(y)
|
| 455 |
+
|
| 456 |
+
|
| 457 |
+
class SambaYAttention(nn.Module):
|
| 458 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 459 |
+
|
| 460 |
+
def __init__(self, config: Phi4FlashConfig, layer_idx: Optional[int] = None, yoco_cross: bool = False):
|
| 461 |
+
super().__init__()
|
| 462 |
+
self.config = config
|
| 463 |
+
self.layer_idx = layer_idx
|
| 464 |
+
if layer_idx is None:
|
| 465 |
+
logger.warning_once(
|
| 466 |
+
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
|
| 467 |
+
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
|
| 468 |
+
"when creating this class."
|
| 469 |
+
)
|
| 470 |
+
|
| 471 |
+
self.attention_dropout = config.attention_dropout
|
| 472 |
+
self.hidden_size = config.hidden_size
|
| 473 |
+
self.num_heads = config.num_attention_heads
|
| 474 |
+
self.head_dim = self.hidden_size // self.num_heads
|
| 475 |
+
self.num_key_value_heads = config.num_key_value_heads
|
| 476 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
| 477 |
+
self.max_position_embeddings = config.max_position_embeddings
|
| 478 |
+
self.is_causal = True
|
| 479 |
+
self.yoco_cross = yoco_cross
|
| 480 |
+
|
| 481 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
| 482 |
+
raise ValueError(
|
| 483 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
| 484 |
+
f" and `num_heads`: {self.num_heads})."
|
| 485 |
+
)
|
| 486 |
+
|
| 487 |
+
op_size = self.num_heads * self.head_dim + 2 * (self.num_key_value_heads * self.head_dim)
|
| 488 |
+
self.out_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=True)
|
| 489 |
+
if yoco_cross:
|
| 490 |
+
self.Wqkv = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True)
|
| 491 |
+
else:
|
| 492 |
+
self.Wqkv = nn.Linear(self.hidden_size, op_size, bias=True)
|
| 493 |
+
|
| 494 |
+
self.inner_cross_attn = FlashDiffCustomAttention(self.head_dim, self.layer_idx,)
|
| 495 |
+
|
| 496 |
+
|
| 497 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
| 498 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
| 499 |
+
|
| 500 |
+
def forward(
|
| 501 |
+
self,
|
| 502 |
+
hidden_states: torch.Tensor,
|
| 503 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 504 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 505 |
+
past_key_value: Optional[Cache] = None,
|
| 506 |
+
output_attentions: bool = False,
|
| 507 |
+
use_cache: bool = False,
|
| 508 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 509 |
+
raise NotImplementedError("SambaYAttention only support flash attention")
|
| 510 |
+
|
| 511 |
+
|
| 512 |
+
class SambaYFlashAttention2(SambaYAttention):
|
| 513 |
+
"""
|
| 514 |
+
SambaY flash attention module. This module inherits from `SambaYAttention` as the weights of the module stays
|
| 515 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
| 516 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
| 517 |
+
"""
|
| 518 |
+
|
| 519 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
| 520 |
+
def __init__(self, *args, **kwargs):
|
| 521 |
+
super().__init__(*args, **kwargs)
|
| 522 |
+
|
| 523 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
| 524 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
| 525 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
| 526 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
| 527 |
+
|
| 528 |
+
|
| 529 |
+
|
| 530 |
+
def forward(
|
| 531 |
+
self,
|
| 532 |
+
hidden_states: torch.Tensor,
|
| 533 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
| 534 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 535 |
+
past_key_value: Optional[Cache] = None,
|
| 536 |
+
output_attentions: bool = False,
|
| 537 |
+
use_cache: bool = False,
|
| 538 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 539 |
+
yoco_key_values: Optional[torch.Tensor] = None,
|
| 540 |
+
**kwargs,
|
| 541 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 542 |
+
# SambaYFlashAttention2 attention does not support output_attentions
|
| 543 |
+
|
| 544 |
+
output_attentions = False
|
| 545 |
+
if "padding_mask" in kwargs:
|
| 546 |
+
warnings.warn(
|
| 547 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
| 548 |
+
)
|
| 549 |
+
|
| 550 |
+
# overwrite attention_mask with padding_mask
|
| 551 |
+
attention_mask = kwargs.pop("padding_mask")
|
| 552 |
+
|
| 553 |
+
bsz, q_len, _ = hidden_states.size()
|
| 554 |
+
if self.yoco_cross:
|
| 555 |
+
q = self.Wqkv(hidden_states)
|
| 556 |
+
q = rearrange(q, "... (h d) -> ... h d", d=self.head_dim).transpose(1,2)
|
| 557 |
+
key_states, value_states = yoco_key_values
|
| 558 |
+
query_states = q
|
| 559 |
+
|
| 560 |
+
use_sliding_windows = False
|
| 561 |
+
else:
|
| 562 |
+
|
| 563 |
+
qkv = self.Wqkv(hidden_states)
|
| 564 |
+
query_pos = self.num_heads * self.head_dim
|
| 565 |
+
query_states = qkv[..., :query_pos]
|
| 566 |
+
key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
|
| 567 |
+
value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
|
| 568 |
+
|
| 569 |
+
# Flash attention requires the input to have the shape
|
| 570 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
| 571 |
+
# therefore we just need to keep the original shape
|
| 572 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 573 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 574 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 575 |
+
|
| 576 |
+
use_sliding_windows = self.config.sliding_window is not None and self.config.sliding_window[self.layer_idx] is not None
|
| 577 |
+
|
| 578 |
+
if past_key_value is not None:
|
| 579 |
+
|
| 580 |
+
cache_kwargs = {"cache_position": cache_position}# Specific to RoPE models
|
| 581 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 582 |
+
|
| 583 |
+
|
| 584 |
+
yoco_key_values = key_states, value_states
|
| 585 |
+
|
| 586 |
+
attn_dropout = self.attention_dropout if self.training else 0.0
|
| 587 |
+
|
| 588 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
| 589 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
| 590 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
| 591 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
| 592 |
+
# in fp32.
|
| 593 |
+
|
| 594 |
+
if query_states.dtype == torch.float32:
|
| 595 |
+
if torch.is_autocast_enabled():
|
| 596 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
| 597 |
+
# Handle the case where the model is quantized
|
| 598 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
| 599 |
+
target_dtype = self.config._pre_quantization_dtype
|
| 600 |
+
else:
|
| 601 |
+
target_dtype = self.Wqkv.weight.dtype
|
| 602 |
+
|
| 603 |
+
logger.warning_once(
|
| 604 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
| 605 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
| 606 |
+
f" {target_dtype}."
|
| 607 |
+
)
|
| 608 |
+
|
| 609 |
+
query_states = query_states.to(target_dtype)
|
| 610 |
+
key_states = key_states.to(target_dtype)
|
| 611 |
+
value_states = value_states.to(target_dtype)
|
| 612 |
+
|
| 613 |
+
# Reashape to the expected shape for Flash Attention
|
| 614 |
+
# -> b,q,h,d
|
| 615 |
+
query_states = query_states.transpose(1, 2)
|
| 616 |
+
key_states = key_states.transpose(1, 2)
|
| 617 |
+
value_states = value_states.transpose(1, 2)
|
| 618 |
+
if attention_mask is not None:
|
| 619 |
+
key_states = key_states[:, :attention_mask.shape[-1]]
|
| 620 |
+
value_states = value_states[:, :attention_mask.shape[-1]]
|
| 621 |
+
attn_output = self._flash_attention_forward(
|
| 622 |
+
query_states,
|
| 623 |
+
key_states,
|
| 624 |
+
value_states,
|
| 625 |
+
attention_mask,
|
| 626 |
+
q_len,
|
| 627 |
+
dropout=attn_dropout,
|
| 628 |
+
use_sliding_windows=use_sliding_windows,
|
| 629 |
+
)
|
| 630 |
+
|
| 631 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
| 632 |
+
attn_output = self.out_proj(attn_output)
|
| 633 |
+
|
| 634 |
+
if not output_attentions:
|
| 635 |
+
attn_weights = None
|
| 636 |
+
|
| 637 |
+
return attn_output, attn_weights, yoco_key_values
|
| 638 |
+
|
| 639 |
+
def _flash_attention_forward(
|
| 640 |
+
self,
|
| 641 |
+
query_states,
|
| 642 |
+
key_states,
|
| 643 |
+
value_states,
|
| 644 |
+
attention_mask,
|
| 645 |
+
query_length,
|
| 646 |
+
dropout=0.0,
|
| 647 |
+
softmax_scale=None,
|
| 648 |
+
use_sliding_windows=False,
|
| 649 |
+
):
|
| 650 |
+
"""
|
| 651 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
| 652 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
| 653 |
+
|
| 654 |
+
Args:
|
| 655 |
+
query_states (`torch.Tensor`):
|
| 656 |
+
Input query states to be passed to Flash Attention API
|
| 657 |
+
key_states (`torch.Tensor`):
|
| 658 |
+
Input key states to be passed to Flash Attention API
|
| 659 |
+
value_states (`torch.Tensor`):
|
| 660 |
+
Input value states to be passed to Flash Attention API
|
| 661 |
+
attention_mask (`torch.Tensor`):
|
| 662 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
| 663 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
| 664 |
+
dropout (`float`):
|
| 665 |
+
Attention dropout
|
| 666 |
+
softmax_scale (`float`, *optional*):
|
| 667 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
| 668 |
+
use_sliding_windows (`bool`, *optional*):
|
| 669 |
+
Whether to activate sliding window attention.
|
| 670 |
+
"""
|
| 671 |
+
causal = self.is_causal
|
| 672 |
+
# Contains at least one padding token in the sequence
|
| 673 |
+
if attention_mask is not None:
|
| 674 |
+
batch_size = query_states.shape[0]
|
| 675 |
+
(
|
| 676 |
+
query_states,
|
| 677 |
+
key_states,
|
| 678 |
+
value_states,
|
| 679 |
+
indices_q,
|
| 680 |
+
cu_seq_lens,
|
| 681 |
+
max_seq_lens,
|
| 682 |
+
) = self._upad_input(query_states, key_states, value_states, attention_mask, query_length)
|
| 683 |
+
|
| 684 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
| 685 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
| 686 |
+
|
| 687 |
+
if not use_sliding_windows:
|
| 688 |
+
attn_output_unpad = self.inner_cross_attn(
|
| 689 |
+
query_states,
|
| 690 |
+
key_states,
|
| 691 |
+
value_states,
|
| 692 |
+
cu_seqlens_q=cu_seqlens_q,
|
| 693 |
+
cu_seqlens_k=cu_seqlens_k,
|
| 694 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
| 695 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
| 696 |
+
dropout_p=dropout,
|
| 697 |
+
softmax_scale=softmax_scale,
|
| 698 |
+
causal=causal,
|
| 699 |
+
)
|
| 700 |
+
else:
|
| 701 |
+
attn_output_unpad = self.inner_cross_attn(
|
| 702 |
+
query_states,
|
| 703 |
+
key_states,
|
| 704 |
+
value_states,
|
| 705 |
+
cu_seqlens_q=cu_seqlens_q,
|
| 706 |
+
cu_seqlens_k=cu_seqlens_k,
|
| 707 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
| 708 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
| 709 |
+
dropout_p=dropout,
|
| 710 |
+
softmax_scale=softmax_scale,
|
| 711 |
+
causal=causal,
|
| 712 |
+
window_size=(
|
| 713 |
+
self.config.sliding_window[self.layer_idx] -1,
|
| 714 |
+
self.config.sliding_window[self.layer_idx] -1,
|
| 715 |
+
),
|
| 716 |
+
)
|
| 717 |
+
|
| 718 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
| 719 |
+
else:
|
| 720 |
+
if not use_sliding_windows:
|
| 721 |
+
attn_output = self.inner_cross_attn(
|
| 722 |
+
query_states,
|
| 723 |
+
key_states,
|
| 724 |
+
value_states,
|
| 725 |
+
dropout_p=dropout,
|
| 726 |
+
softmax_scale=softmax_scale,
|
| 727 |
+
causal=causal,
|
| 728 |
+
)
|
| 729 |
+
else:
|
| 730 |
+
attn_output = self.inner_cross_attn(
|
| 731 |
+
query_states,
|
| 732 |
+
key_states,
|
| 733 |
+
value_states,
|
| 734 |
+
dropout_p=dropout,
|
| 735 |
+
softmax_scale=softmax_scale,
|
| 736 |
+
causal=causal,
|
| 737 |
+
window_size=(
|
| 738 |
+
self.config.sliding_window[self.layer_idx] -1,
|
| 739 |
+
self.config.sliding_window[self.layer_idx] -1,
|
| 740 |
+
),
|
| 741 |
+
)
|
| 742 |
+
|
| 743 |
+
return attn_output
|
| 744 |
+
|
| 745 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
| 746 |
+
batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
|
| 747 |
+
|
| 748 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
| 749 |
+
|
| 750 |
+
key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
| 751 |
+
value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
|
| 752 |
+
|
| 753 |
+
if query_length == kv_seq_len:
|
| 754 |
+
query_layer = index_first_axis(
|
| 755 |
+
query_layer.reshape(batch_size * kv_seq_len, -1, head_dim),
|
| 756 |
+
indices_k,
|
| 757 |
+
)
|
| 758 |
+
cu_seqlens_q = cu_seqlens_k
|
| 759 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
| 760 |
+
indices_q = indices_k
|
| 761 |
+
elif query_length == 1:
|
| 762 |
+
max_seqlen_in_batch_q = 1
|
| 763 |
+
cu_seqlens_q = torch.arange(
|
| 764 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
| 765 |
+
) # There is a memcpy here, that is very bad.
|
| 766 |
+
indices_q = cu_seqlens_q[:-1]
|
| 767 |
+
query_layer = query_layer.squeeze(1)
|
| 768 |
+
else:
|
| 769 |
+
# The -q_len: slice assumes left padding.
|
| 770 |
+
attention_mask = attention_mask[:, -query_length:]
|
| 771 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
| 772 |
+
|
| 773 |
+
return (
|
| 774 |
+
query_layer,
|
| 775 |
+
key_layer,
|
| 776 |
+
value_layer,
|
| 777 |
+
indices_q,
|
| 778 |
+
(cu_seqlens_q, cu_seqlens_k),
|
| 779 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
| 780 |
+
)
|
| 781 |
+
|
| 782 |
+
|
| 783 |
+
|
| 784 |
+
class Phi3Mamba(nn.Module):
|
| 785 |
+
def __init__(
|
| 786 |
+
self,
|
| 787 |
+
d_model,
|
| 788 |
+
d_state=16,
|
| 789 |
+
d_conv=4,
|
| 790 |
+
expand=2,
|
| 791 |
+
dt_rank="auto",
|
| 792 |
+
conv_bias=True,
|
| 793 |
+
bias=False,
|
| 794 |
+
use_fast_path=True, # Fused kernel options
|
| 795 |
+
layer_idx=None,
|
| 796 |
+
yoco_cross=False,
|
| 797 |
+
yoco_kv=False,
|
| 798 |
+
dtype=None,
|
| 799 |
+
):
|
| 800 |
+
factory_kwargs = {"dtype": dtype}
|
| 801 |
+
super().__init__()
|
| 802 |
+
self.d_model = d_model
|
| 803 |
+
self.d_state = d_state
|
| 804 |
+
self.d_conv = d_conv
|
| 805 |
+
self.expand = expand
|
| 806 |
+
self.d_inner = int(self.expand * self.d_model)
|
| 807 |
+
self.dt_rank = math.ceil(self.d_model / 16) if dt_rank == "auto" else dt_rank
|
| 808 |
+
self.use_fast_path = use_fast_path
|
| 809 |
+
self.layer_idx = layer_idx
|
| 810 |
+
|
| 811 |
+
self.yoco_cross = yoco_cross
|
| 812 |
+
self.yoco_kv = yoco_kv
|
| 813 |
+
if self.yoco_cross:
|
| 814 |
+
self.in_proj = nn.Linear(self.d_model, self.d_inner, bias=bias, **factory_kwargs)
|
| 815 |
+
self.out_proj = nn.Linear(self.d_inner, self.d_model, bias=bias, **factory_kwargs)
|
| 816 |
+
else:
|
| 817 |
+
self.in_proj = nn.Linear(self.d_model, self.d_inner * 2, bias=bias, **factory_kwargs)
|
| 818 |
+
|
| 819 |
+
self.conv1d = nn.Conv1d(
|
| 820 |
+
in_channels=self.d_inner,
|
| 821 |
+
out_channels=self.d_inner,
|
| 822 |
+
bias=conv_bias,
|
| 823 |
+
kernel_size=d_conv,
|
| 824 |
+
groups=self.d_inner,
|
| 825 |
+
padding=d_conv - 1,
|
| 826 |
+
**factory_kwargs,
|
| 827 |
+
)
|
| 828 |
+
|
| 829 |
+
self.activation = "silu"
|
| 830 |
+
self.act = nn.SiLU()
|
| 831 |
+
|
| 832 |
+
self.x_proj = nn.Linear(
|
| 833 |
+
self.d_inner, self.dt_rank + self.d_state * 2, bias=False, **factory_kwargs
|
| 834 |
+
)
|
| 835 |
+
self.dt_proj = nn.Linear(self.dt_rank, self.d_inner, bias=True, **factory_kwargs)
|
| 836 |
+
|
| 837 |
+
# S4D real initialization
|
| 838 |
+
A = repeat(
|
| 839 |
+
torch.arange(1, self.d_state + 1, dtype=torch.float32),
|
| 840 |
+
"n -> d n",
|
| 841 |
+
d=self.d_inner,
|
| 842 |
+
).contiguous()
|
| 843 |
+
A_log = torch.log(A) # Keep A_log in fp32
|
| 844 |
+
self.A_log = nn.Parameter(A_log)
|
| 845 |
+
|
| 846 |
+
# D "skip" parameter
|
| 847 |
+
self.D = nn.Parameter(torch.ones(self.d_inner)) # Keep in fp32
|
| 848 |
+
|
| 849 |
+
self.out_proj = nn.Linear(self.d_inner, self.d_model, bias=bias, **factory_kwargs)
|
| 850 |
+
|
| 851 |
+
def forward(self, hidden_states, inference_params=None, mask= None, yoco_key_values = None, cache_position = None):
|
| 852 |
+
"""
|
| 853 |
+
hidden_states: (B, L, D)
|
| 854 |
+
Returns: same shape as hidden_states
|
| 855 |
+
"""
|
| 856 |
+
|
| 857 |
+
if self.yoco_cross:
|
| 858 |
+
out = self.in_proj(hidden_states)
|
| 859 |
+
out = swiglu(out, yoco_key_values)
|
| 860 |
+
out = self.out_proj(out)
|
| 861 |
+
return out, yoco_key_values
|
| 862 |
+
|
| 863 |
+
batch, seqlen, _ = hidden_states.shape
|
| 864 |
+
conv_state, ssm_state = None, None
|
| 865 |
+
if inference_params is not None:
|
| 866 |
+
conv_state, ssm_state = self._get_states_from_cache(inference_params)
|
| 867 |
+
if cache_position[0] > 0: #inference_params.get_seq_length(self.layer_idx) > 0:
|
| 868 |
+
# The states are updated inplace
|
| 869 |
+
out, _, _, yoco_key_values = self.step(hidden_states, conv_state, ssm_state, yoco_key_values)
|
| 870 |
+
return out, yoco_key_values
|
| 871 |
+
|
| 872 |
+
# We do matmul and transpose BLH -> HBL at the same time
|
| 873 |
+
xz = rearrange(
|
| 874 |
+
self.in_proj.weight @ rearrange(hidden_states.to(dtype = self.in_proj.weight.dtype), "b l d -> d (b l)"),
|
| 875 |
+
"d (b l) -> b d l",
|
| 876 |
+
l=seqlen,
|
| 877 |
+
)
|
| 878 |
+
if self.in_proj.bias is not None:
|
| 879 |
+
xz = xz + rearrange(self.in_proj.bias.to(dtype=xz.dtype), "d -> d 1")
|
| 880 |
+
|
| 881 |
+
|
| 882 |
+
A = -torch.exp(self.A_log.float()) # (d_inner, d_state)
|
| 883 |
+
# In the backward pass we write dx and dz next to each other to avoid torch.cat
|
| 884 |
+
if (not self.yoco_kv) and self.use_fast_path and inference_params is None: # Doesn't support outputting the states
|
| 885 |
+
out = mamba_inner_fn(
|
| 886 |
+
xz,
|
| 887 |
+
self.conv1d.weight,
|
| 888 |
+
self.conv1d.bias,
|
| 889 |
+
self.x_proj.weight,
|
| 890 |
+
self.dt_proj.weight,
|
| 891 |
+
self.out_proj.weight,
|
| 892 |
+
self.out_proj.bias,
|
| 893 |
+
A,
|
| 894 |
+
None, # input-dependent B
|
| 895 |
+
None, # input-dependent C
|
| 896 |
+
self.D.float(),
|
| 897 |
+
delta_bias=self.dt_proj.bias.float(),
|
| 898 |
+
mask=mask,
|
| 899 |
+
delta_softplus=True,
|
| 900 |
+
)
|
| 901 |
+
else:
|
| 902 |
+
x, z = xz.chunk(2, dim=1)
|
| 903 |
+
if self.yoco_kv:
|
| 904 |
+
z = z.transpose(-1,-2).contiguous()
|
| 905 |
+
if mask is not None:
|
| 906 |
+
x = x * mask.unsqueeze(1)
|
| 907 |
+
# Compute short convolution
|
| 908 |
+
if conv_state is not None:
|
| 909 |
+
# If we just take x[:, :, -self.d_conv :], it will error if seqlen < self.d_conv
|
| 910 |
+
# Instead F.pad will pad with zeros if seqlen < self.d_conv, and truncate otherwise.
|
| 911 |
+
conv_state.copy_(F.pad(x, (self.d_conv - x.shape[-1], 0))) # Update state (B D W)
|
| 912 |
+
if causal_conv1d_fn is None:
|
| 913 |
+
x = self.act(self.conv1d(x)[..., :seqlen])
|
| 914 |
+
else:
|
| 915 |
+
assert self.activation in ["silu", "swish"]
|
| 916 |
+
x = causal_conv1d_fn(
|
| 917 |
+
x=x,
|
| 918 |
+
weight=rearrange(self.conv1d.weight, "d 1 w -> d w"),
|
| 919 |
+
bias=self.conv1d.bias,
|
| 920 |
+
activation=self.activation,
|
| 921 |
+
)
|
| 922 |
+
if mask is not None:
|
| 923 |
+
x = x * mask.unsqueeze(1)
|
| 924 |
+
# We're careful here about the layout, to avoid extra transposes.
|
| 925 |
+
# We want dt to have d as the slowest moving dimension
|
| 926 |
+
# and L as the fastest moving dimension, since those are what the ssm_scan kernel expects.
|
| 927 |
+
x_dbl = self.x_proj(rearrange(x, "b d l -> (b l) d")) # (bl d)
|
| 928 |
+
dt, B, C = torch.split(x_dbl, [self.dt_rank, self.d_state, self.d_state], dim=-1)
|
| 929 |
+
dt = self.dt_proj.weight @ dt.t()
|
| 930 |
+
dt = rearrange(dt, "d (b l) -> b d l", l=seqlen)
|
| 931 |
+
B = rearrange(B, "(b l) dstate -> b dstate l", l=seqlen).contiguous()
|
| 932 |
+
C = rearrange(C, "(b l) dstate -> b dstate l", l=seqlen).contiguous()
|
| 933 |
+
assert self.activation in ["silu", "swish"]
|
| 934 |
+
y = selective_scan_fn(
|
| 935 |
+
x,
|
| 936 |
+
dt,
|
| 937 |
+
A,
|
| 938 |
+
B,
|
| 939 |
+
C,
|
| 940 |
+
self.D.float(),
|
| 941 |
+
z= None if self.yoco_kv else z,
|
| 942 |
+
delta_bias=self.dt_proj.bias.float(),
|
| 943 |
+
delta_softplus=True,
|
| 944 |
+
return_last_state=ssm_state is not None,
|
| 945 |
+
)
|
| 946 |
+
if ssm_state is not None:
|
| 947 |
+
y, last_state = y
|
| 948 |
+
ssm_state.copy_(last_state)
|
| 949 |
+
y = rearrange(y, "b d l -> b l d")
|
| 950 |
+
if self.yoco_kv:
|
| 951 |
+
yoco_key_values = y
|
| 952 |
+
y = swiglu(z, y)
|
| 953 |
+
out = self.out_proj(y)
|
| 954 |
+
return out, yoco_key_values
|
| 955 |
+
|
| 956 |
+
def step(self, hidden_states, conv_state, ssm_state, yoco_key_values):
|
| 957 |
+
dtype = hidden_states.dtype
|
| 958 |
+
assert hidden_states.shape[1] == 1, "Only support decoding with 1 token at a time for now"
|
| 959 |
+
xz = self.in_proj(hidden_states.to(dtype = self.in_proj.weight.dtype).squeeze(1)) # (B 2D)
|
| 960 |
+
x, z = xz.chunk(2, dim=-1) # (B D)
|
| 961 |
+
|
| 962 |
+
# Conv step
|
| 963 |
+
if causal_conv1d_update is None:
|
| 964 |
+
conv_state.copy_(torch.roll(conv_state, shifts=-1, dims=-1)) # Update state (B D W)
|
| 965 |
+
conv_state[:, :, -1] = x
|
| 966 |
+
x = torch.sum(conv_state * rearrange(self.conv1d.weight, "d 1 w -> d w"), dim=-1) # (B D)
|
| 967 |
+
if self.conv1d.bias is not None:
|
| 968 |
+
x = x + self.conv1d.bias
|
| 969 |
+
x = self.act(x).to(dtype=dtype)
|
| 970 |
+
else:
|
| 971 |
+
x = causal_conv1d_update(
|
| 972 |
+
x,
|
| 973 |
+
conv_state,
|
| 974 |
+
rearrange(self.conv1d.weight, "d 1 w -> d w"),
|
| 975 |
+
self.conv1d.bias,
|
| 976 |
+
self.activation,
|
| 977 |
+
)
|
| 978 |
+
|
| 979 |
+
x_db = self.x_proj(x) # (B dt_rank+2*d_state)
|
| 980 |
+
dt, B, C = torch.split(x_db, [self.dt_rank, self.d_state, self.d_state], dim=-1)
|
| 981 |
+
# Don't add dt_bias here
|
| 982 |
+
dt = F.linear(dt, self.dt_proj.weight) # (B d_inner)
|
| 983 |
+
A = -torch.exp(self.A_log.float()) # (d_inner, d_state)
|
| 984 |
+
|
| 985 |
+
# SSM step
|
| 986 |
+
if selective_state_update is None:
|
| 987 |
+
# Discretize A and B
|
| 988 |
+
dt = F.softplus(dt + self.dt_proj.bias.to(dtype=dt.dtype))
|
| 989 |
+
dA = torch.exp(torch.einsum("bd,dn->bdn", dt, A))
|
| 990 |
+
dB = torch.einsum("bd,bn->bdn", dt, B)
|
| 991 |
+
ssm_state.copy_(ssm_state * dA + rearrange(x, "b d -> b d 1") * dB)
|
| 992 |
+
y = torch.einsum("bdn,bn->bd", ssm_state.to(dtype), C)
|
| 993 |
+
y = y + self.D.to(dtype) * x
|
| 994 |
+
y = y * self.act(z) # (B D)
|
| 995 |
+
else:
|
| 996 |
+
y = selective_state_update(
|
| 997 |
+
ssm_state, x, dt, A, B, C, self.D, z= None if self.yoco_kv else z, dt_bias=self.dt_proj.bias, dt_softplus=True
|
| 998 |
+
)
|
| 999 |
+
if self.yoco_kv:
|
| 1000 |
+
yoco_key_values = y.unsqueeze(1)
|
| 1001 |
+
y = swiglu(z, y)
|
| 1002 |
+
out = self.out_proj(y)
|
| 1003 |
+
return out.unsqueeze(1), conv_state, ssm_state, yoco_key_values
|
| 1004 |
+
|
| 1005 |
+
def _get_states_from_cache(self, inference_params):
|
| 1006 |
+
conv_state, ssm_state = inference_params.key_cache[self.layer_idx], inference_params.value_cache[self.layer_idx]
|
| 1007 |
+
return conv_state, ssm_state
|
| 1008 |
+
|
| 1009 |
+
|
| 1010 |
+
|
| 1011 |
+
|
| 1012 |
+
class SambaYDecoderLayer(nn.Module):
|
| 1013 |
+
def __init__(self, config: Phi4FlashConfig, layer_idx: int):
|
| 1014 |
+
super().__init__()
|
| 1015 |
+
|
| 1016 |
+
self.mlp = SambaYMLP(config)
|
| 1017 |
+
self.input_layernorm = PHI_NORM_CLASS(config.hidden_size, eps=config.layer_norm_eps)
|
| 1018 |
+
|
| 1019 |
+
self.yoco_kv = False
|
| 1020 |
+
self.yoco_cross = False
|
| 1021 |
+
self.yoco_mb = False
|
| 1022 |
+
self.layer_idx = layer_idx
|
| 1023 |
+
assert config.num_hidden_layers % 4 == 0, 'n_layer should be divisible by 4 for SambaY '
|
| 1024 |
+
if layer_idx >= config.num_hidden_layers//2:
|
| 1025 |
+
self.yoco_mb = True
|
| 1026 |
+
self.yoco_kv = (layer_idx >= (config.num_hidden_layers//2 +1))
|
| 1027 |
+
self.yoco_cross = (layer_idx >= (config.num_hidden_layers//2 +2))
|
| 1028 |
+
if (layer_idx >= (config.num_hidden_layers//2 +1)):
|
| 1029 |
+
config = copy.deepcopy(config)
|
| 1030 |
+
config.sliding_window = None
|
| 1031 |
+
self.config= config
|
| 1032 |
+
|
| 1033 |
+
self.use_mamba = config.mb_per_layer > 0 and layer_idx % config.mb_per_layer == 0
|
| 1034 |
+
if self.use_mamba:
|
| 1035 |
+
factory_kwargs = {"d_conv": config.mamba_d_conv, "d_state": config.mamba_d_state, "expand": config.mamba_expand , "dtype": None}
|
| 1036 |
+
self.attn = Phi3Mamba(config.hidden_size, layer_idx=layer_idx, yoco_cross=self.yoco_cross, yoco_kv=self.yoco_mb, **factory_kwargs)
|
| 1037 |
+
else:
|
| 1038 |
+
self.attn = SambaYFlashAttention2(config, layer_idx=layer_idx, yoco_cross=self.yoco_cross)
|
| 1039 |
+
|
| 1040 |
+
self.resid_attn_dropout = nn.Dropout(config.resid_pdrop)
|
| 1041 |
+
self.resid_mlp_dropout = nn.Dropout(config.resid_pdrop)
|
| 1042 |
+
self.post_attention_layernorm = PHI_NORM_CLASS(config.hidden_size, eps=config.layer_norm_eps)
|
| 1043 |
+
|
| 1044 |
+
def forward(
|
| 1045 |
+
self,
|
| 1046 |
+
hidden_states: torch.Tensor,
|
| 1047 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1048 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1049 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 1050 |
+
output_attentions: Optional[bool] = False,
|
| 1051 |
+
use_cache: Optional[bool] = False,
|
| 1052 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 1053 |
+
ssm_output: Optional[torch.Tensor] = None,
|
| 1054 |
+
yoco_key_values: Optional[torch.Tensor] = None,
|
| 1055 |
+
**kwargs,
|
| 1056 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
| 1057 |
+
"""
|
| 1058 |
+
Args:
|
| 1059 |
+
hidden_states (`torch.FloatTensor`):
|
| 1060 |
+
input to the layer of shape `(batch, seq_len, embed_dim)`
|
| 1061 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
| 1062 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
| 1063 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
| 1064 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
|
| 1065 |
+
`[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
|
| 1066 |
+
output_attentions (`bool`, *optional*):
|
| 1067 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 1068 |
+
returned tensors for more detail.
|
| 1069 |
+
use_cache (`bool`, *optional*):
|
| 1070 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
| 1071 |
+
(see `past_key_values`).
|
| 1072 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
| 1073 |
+
"""
|
| 1074 |
+
|
| 1075 |
+
residual = hidden_states
|
| 1076 |
+
|
| 1077 |
+
hidden_states = self.input_layernorm(hidden_states.to(dtype=self.input_layernorm.weight.dtype))
|
| 1078 |
+
|
| 1079 |
+
if self.use_mamba:
|
| 1080 |
+
attn_outputs, ssm_output = self.attn(
|
| 1081 |
+
hidden_states, inference_params=past_key_value,
|
| 1082 |
+
mask = attention_mask, yoco_key_values = ssm_output,
|
| 1083 |
+
cache_position=cache_position,
|
| 1084 |
+
)
|
| 1085 |
+
residual = residual.to(torch.float32)
|
| 1086 |
+
self_attn_weights = None
|
| 1087 |
+
else:
|
| 1088 |
+
if self.config.sliding_window is not None and self.config.sliding_window[self.layer_idx] is not None and attention_mask is not None: # efficient SDPA and no padding
|
| 1089 |
+
if past_key_value is not None and cache_position[0] > 0: # when decoding
|
| 1090 |
+
attention_mask = attention_mask[:, -self.config.sliding_window[self.layer_idx]:]
|
| 1091 |
+
#hidden_states = self.input_layernorm2(hidden_states.to(dtype=self.input_layernorm2.weight.dtype))
|
| 1092 |
+
# Self Attention
|
| 1093 |
+
attn_outputs, self_attn_weights, yoco_key_values = self.attn(
|
| 1094 |
+
hidden_states=hidden_states,
|
| 1095 |
+
attention_mask=attention_mask,
|
| 1096 |
+
position_ids=position_ids,
|
| 1097 |
+
past_key_value=past_key_value,
|
| 1098 |
+
output_attentions=output_attentions,
|
| 1099 |
+
use_cache=use_cache,
|
| 1100 |
+
cache_position=cache_position,
|
| 1101 |
+
yoco_key_values = yoco_key_values,
|
| 1102 |
+
)
|
| 1103 |
+
|
| 1104 |
+
hidden_states = residual + self.resid_attn_dropout(attn_outputs)
|
| 1105 |
+
|
| 1106 |
+
residual = hidden_states
|
| 1107 |
+
hidden_states = self.post_attention_layernorm(hidden_states.to(dtype=self.post_attention_layernorm.weight.dtype))
|
| 1108 |
+
hidden_states = self.mlp(hidden_states)
|
| 1109 |
+
hidden_states = residual + self.resid_mlp_dropout(hidden_states)
|
| 1110 |
+
|
| 1111 |
+
outputs = (hidden_states,)
|
| 1112 |
+
outputs += (ssm_output,)
|
| 1113 |
+
outputs += (yoco_key_values,)
|
| 1114 |
+
if output_attentions:
|
| 1115 |
+
outputs += (self_attn_weights,)
|
| 1116 |
+
|
| 1117 |
+
return outputs
|
| 1118 |
+
|
| 1119 |
+
|
| 1120 |
+
PHI_START_DOCSTRING = r"""
|
| 1121 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 1122 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
| 1123 |
+
etc.)
|
| 1124 |
+
|
| 1125 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 1126 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 1127 |
+
and behavior.
|
| 1128 |
+
|
| 1129 |
+
Parameters:
|
| 1130 |
+
config ([`Phi4FlashConfig`]):
|
| 1131 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
| 1132 |
+
load the weights associated with the model, only the configuration. Check out the
|
| 1133 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 1134 |
+
"""
|
| 1135 |
+
|
| 1136 |
+
|
| 1137 |
+
@add_start_docstrings(
|
| 1138 |
+
"The bare Phi4Flash Model outputting raw hidden-states without any specific head on top.",
|
| 1139 |
+
PHI_START_DOCSTRING,
|
| 1140 |
+
)
|
| 1141 |
+
class Phi4FlashPreTrainedModel(PreTrainedModel):
|
| 1142 |
+
config_class = Phi4FlashConfig
|
| 1143 |
+
base_model_prefix = "model"
|
| 1144 |
+
supports_gradient_checkpointing = True
|
| 1145 |
+
_no_split_modules = ["SambaYDecoderLayer"]
|
| 1146 |
+
_skip_keys_device_placement = "past_key_values"
|
| 1147 |
+
_supports_flash_attn_2 = True
|
| 1148 |
+
_supports_sdpa = False
|
| 1149 |
+
_supports_cache_class = True
|
| 1150 |
+
|
| 1151 |
+
def _init_weights(self, module):
|
| 1152 |
+
std = self.config.initializer_range
|
| 1153 |
+
if isinstance(module, nn.Linear):
|
| 1154 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 1155 |
+
if module.bias is not None:
|
| 1156 |
+
module.bias.data.zero_()
|
| 1157 |
+
elif isinstance(module, nn.Embedding):
|
| 1158 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 1159 |
+
if module.padding_idx is not None:
|
| 1160 |
+
module.weight.data[module.padding_idx].zero_()
|
| 1161 |
+
|
| 1162 |
+
|
| 1163 |
+
PHI_INPUTS_DOCSTRING = r"""
|
| 1164 |
+
Args:
|
| 1165 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 1166 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
| 1167 |
+
it.
|
| 1168 |
+
|
| 1169 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 1170 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 1171 |
+
|
| 1172 |
+
[What are input IDs?](../glossary#input-ids)
|
| 1173 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1174 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 1175 |
+
|
| 1176 |
+
- 1 for tokens that are **not masked**,
|
| 1177 |
+
- 0 for tokens that are **masked**.
|
| 1178 |
+
|
| 1179 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 1180 |
+
|
| 1181 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 1182 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 1183 |
+
|
| 1184 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
| 1185 |
+
`past_key_values`).
|
| 1186 |
+
|
| 1187 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
| 1188 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
| 1189 |
+
information on the default strategy.
|
| 1190 |
+
|
| 1191 |
+
- 1 indicates the head is **not masked**,
|
| 1192 |
+
- 0 indicates the head is **masked**.
|
| 1193 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1194 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 1195 |
+
config.n_positions - 1]`.
|
| 1196 |
+
|
| 1197 |
+
[What are position IDs?](../glossary#position-ids)
|
| 1198 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
| 1199 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
| 1200 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
| 1201 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
| 1202 |
+
|
| 1203 |
+
Two formats are allowed:
|
| 1204 |
+
- a [`~cache_utils.Cache`] instance;
|
| 1205 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
| 1206 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
| 1207 |
+
cache format.
|
| 1208 |
+
|
| 1209 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
| 1210 |
+
legacy cache format will be returned.
|
| 1211 |
+
|
| 1212 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
| 1213 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
| 1214 |
+
of shape `(batch_size, sequence_length)`.
|
| 1215 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 1216 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
| 1217 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
| 1218 |
+
model's internal embedding lookup matrix.
|
| 1219 |
+
use_cache (`bool`, *optional*):
|
| 1220 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
| 1221 |
+
`past_key_values`).
|
| 1222 |
+
output_attentions (`bool`, *optional*):
|
| 1223 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 1224 |
+
tensors for more detail.
|
| 1225 |
+
output_hidden_states (`bool`, *optional*):
|
| 1226 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 1227 |
+
more detail.
|
| 1228 |
+
return_dict (`bool`, *optional*):
|
| 1229 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 1230 |
+
"""
|
| 1231 |
+
|
| 1232 |
+
|
| 1233 |
+
@add_start_docstrings(
|
| 1234 |
+
"The bare Phi4Flash Model outputting raw hidden-states without any specific head on top.",
|
| 1235 |
+
PHI_START_DOCSTRING,
|
| 1236 |
+
)
|
| 1237 |
+
class Phi4FlashModel(Phi4FlashPreTrainedModel):
|
| 1238 |
+
"""
|
| 1239 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`SambaYDecoderLayer`]
|
| 1240 |
+
|
| 1241 |
+
Args:
|
| 1242 |
+
config: Phi4FlashConfig
|
| 1243 |
+
"""
|
| 1244 |
+
|
| 1245 |
+
def __init__(self, config: Phi4FlashConfig):
|
| 1246 |
+
super().__init__(config)
|
| 1247 |
+
self.padding_idx = config.pad_token_id
|
| 1248 |
+
self.vocab_size = config.vocab_size
|
| 1249 |
+
|
| 1250 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
| 1251 |
+
self.embed_dropout = nn.Dropout(config.embd_pdrop)
|
| 1252 |
+
self.layers = nn.ModuleList(
|
| 1253 |
+
[SambaYDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
| 1254 |
+
)
|
| 1255 |
+
self.final_layernorm = PHI_NORM_CLASS(config.hidden_size, eps=config.layer_norm_eps)
|
| 1256 |
+
|
| 1257 |
+
self._attn_implementation = config._attn_implementation
|
| 1258 |
+
|
| 1259 |
+
self.gradient_checkpointing = False
|
| 1260 |
+
# Initialize weights and apply final processing
|
| 1261 |
+
self.post_init()
|
| 1262 |
+
|
| 1263 |
+
def get_input_embeddings(self):
|
| 1264 |
+
return self.embed_tokens
|
| 1265 |
+
|
| 1266 |
+
def set_input_embeddings(self, value):
|
| 1267 |
+
self.embed_tokens = value
|
| 1268 |
+
|
| 1269 |
+
@add_start_docstrings_to_model_forward(PHI_INPUTS_DOCSTRING)
|
| 1270 |
+
def forward(
|
| 1271 |
+
self,
|
| 1272 |
+
input_ids: torch.LongTensor = None,
|
| 1273 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1274 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1275 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1276 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1277 |
+
use_cache: Optional[bool] = None,
|
| 1278 |
+
output_attentions: Optional[bool] = None,
|
| 1279 |
+
output_hidden_states: Optional[bool] = None,
|
| 1280 |
+
return_dict: Optional[bool] = None,
|
| 1281 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 1282 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 1283 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1284 |
+
output_hidden_states = (
|
| 1285 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1286 |
+
)
|
| 1287 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 1288 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1289 |
+
|
| 1290 |
+
# retrieve input_ids and inputs_embeds
|
| 1291 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 1292 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
| 1293 |
+
elif input_ids is not None:
|
| 1294 |
+
batch_size, seq_length = input_ids.shape[:2]
|
| 1295 |
+
elif inputs_embeds is not None:
|
| 1296 |
+
batch_size, seq_length = inputs_embeds.shape[:2]
|
| 1297 |
+
else:
|
| 1298 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
| 1299 |
+
|
| 1300 |
+
|
| 1301 |
+
if self.gradient_checkpointing and self.training:
|
| 1302 |
+
if use_cache:
|
| 1303 |
+
logger.warning_once(
|
| 1304 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
| 1305 |
+
)
|
| 1306 |
+
use_cache = False
|
| 1307 |
+
|
| 1308 |
+
if inputs_embeds is None:
|
| 1309 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 1310 |
+
|
| 1311 |
+
if use_cache and past_key_values is None and not self.training:
|
| 1312 |
+
batch_size, seq_len, _ = inputs_embeds.shape
|
| 1313 |
+
past_key_values = SambaYCache(
|
| 1314 |
+
self.config,
|
| 1315 |
+
max_batch_size=batch_size,
|
| 1316 |
+
max_cache_len=seq_len,
|
| 1317 |
+
device=self.device,
|
| 1318 |
+
dtype=inputs_embeds.dtype,
|
| 1319 |
+
)
|
| 1320 |
+
|
| 1321 |
+
|
| 1322 |
+
if cache_position is None:
|
| 1323 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 1324 |
+
cache_position = torch.arange(
|
| 1325 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
| 1326 |
+
)
|
| 1327 |
+
|
| 1328 |
+
if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache and not self.training:
|
| 1329 |
+
is_padding_right = attention_mask[:, -1].sum().item() != batch_size
|
| 1330 |
+
if is_padding_right:
|
| 1331 |
+
raise ValueError(
|
| 1332 |
+
"You are attempting to perform batched generation with padding_side='right'"
|
| 1333 |
+
" this may lead to unexpected behaviour for Flash Attention version of Phi4Flash. Make sure to "
|
| 1334 |
+
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
|
| 1335 |
+
)
|
| 1336 |
+
|
| 1337 |
+
hidden_states = inputs_embeds
|
| 1338 |
+
|
| 1339 |
+
# decoder layers
|
| 1340 |
+
all_hidden_states = () if output_hidden_states else None
|
| 1341 |
+
all_self_attns = () if output_attentions else None
|
| 1342 |
+
ssm_output = None
|
| 1343 |
+
yoco_key_values = None
|
| 1344 |
+
for decoder_layer in self.layers: # TODO: only need to inference the first half of the layers during pre-fill
|
| 1345 |
+
if output_hidden_states:
|
| 1346 |
+
all_hidden_states += (hidden_states,)
|
| 1347 |
+
|
| 1348 |
+
if self.gradient_checkpointing and self.training:
|
| 1349 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 1350 |
+
decoder_layer.__call__,
|
| 1351 |
+
hidden_states,
|
| 1352 |
+
attention_mask,
|
| 1353 |
+
position_ids,
|
| 1354 |
+
past_key_values,
|
| 1355 |
+
output_attentions,
|
| 1356 |
+
use_cache,
|
| 1357 |
+
cache_position,
|
| 1358 |
+
ssm_output,
|
| 1359 |
+
yoco_key_values,
|
| 1360 |
+
)
|
| 1361 |
+
else:
|
| 1362 |
+
layer_outputs = decoder_layer(
|
| 1363 |
+
hidden_states,
|
| 1364 |
+
attention_mask=attention_mask,
|
| 1365 |
+
position_ids=position_ids,
|
| 1366 |
+
past_key_value=past_key_values,
|
| 1367 |
+
output_attentions=output_attentions,
|
| 1368 |
+
use_cache=use_cache,
|
| 1369 |
+
cache_position = cache_position,
|
| 1370 |
+
ssm_output = ssm_output,
|
| 1371 |
+
yoco_key_values = yoco_key_values,
|
| 1372 |
+
)
|
| 1373 |
+
|
| 1374 |
+
hidden_states = layer_outputs[0]
|
| 1375 |
+
ssm_output = layer_outputs[1]
|
| 1376 |
+
yoco_key_values = layer_outputs[2]
|
| 1377 |
+
|
| 1378 |
+
if output_attentions:
|
| 1379 |
+
all_self_attns += (layer_outputs[3],)
|
| 1380 |
+
|
| 1381 |
+
hidden_states = self.final_layernorm(hidden_states.to(dtype=self.final_layernorm.weight.dtype))
|
| 1382 |
+
|
| 1383 |
+
# add hidden states from the last decoder layer
|
| 1384 |
+
if output_hidden_states:
|
| 1385 |
+
all_hidden_states += (hidden_states,)
|
| 1386 |
+
|
| 1387 |
+
output = BaseModelOutputWithPast(
|
| 1388 |
+
last_hidden_state=hidden_states,
|
| 1389 |
+
past_key_values=past_key_values,
|
| 1390 |
+
hidden_states=all_hidden_states,
|
| 1391 |
+
attentions=all_self_attns,
|
| 1392 |
+
)
|
| 1393 |
+
return output if return_dict else output.to_tuple()
|
| 1394 |
+
|
| 1395 |
+
|
| 1396 |
+
|
| 1397 |
+
class Phi4FlashForCausalLM(Phi4FlashPreTrainedModel, GenerationMixin):
|
| 1398 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 1399 |
+
|
| 1400 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.__init__ with Llama->Phi4Flash,bias=False->bias=True
|
| 1401 |
+
def __init__(self, config):
|
| 1402 |
+
super().__init__(config)
|
| 1403 |
+
self.model = Phi4FlashModel(config)
|
| 1404 |
+
self.vocab_size = config.vocab_size
|
| 1405 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 1406 |
+
|
| 1407 |
+
# Initialize weights and apply final processing
|
| 1408 |
+
self.post_init()
|
| 1409 |
+
|
| 1410 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_input_embeddings
|
| 1411 |
+
def get_input_embeddings(self):
|
| 1412 |
+
return self.model.embed_tokens
|
| 1413 |
+
|
| 1414 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_input_embeddings
|
| 1415 |
+
def set_input_embeddings(self, value):
|
| 1416 |
+
self.model.embed_tokens = value
|
| 1417 |
+
|
| 1418 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_output_embeddings
|
| 1419 |
+
def get_output_embeddings(self):
|
| 1420 |
+
return self.lm_head
|
| 1421 |
+
|
| 1422 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_output_embeddings
|
| 1423 |
+
def set_output_embeddings(self, new_embeddings):
|
| 1424 |
+
self.lm_head = new_embeddings
|
| 1425 |
+
|
| 1426 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_decoder
|
| 1427 |
+
def set_decoder(self, decoder):
|
| 1428 |
+
self.model = decoder
|
| 1429 |
+
|
| 1430 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_decoder
|
| 1431 |
+
def get_decoder(self):
|
| 1432 |
+
return self.model
|
| 1433 |
+
|
| 1434 |
+
@add_start_docstrings_to_model_forward(PHI_INPUTS_DOCSTRING)
|
| 1435 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
| 1436 |
+
def forward(
|
| 1437 |
+
self,
|
| 1438 |
+
input_ids: torch.LongTensor = None,
|
| 1439 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1440 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1441 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1442 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1443 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1444 |
+
use_cache: Optional[bool] = None,
|
| 1445 |
+
output_attentions: Optional[bool] = None,
|
| 1446 |
+
output_hidden_states: Optional[bool] = None,
|
| 1447 |
+
return_dict: Optional[bool] = None,
|
| 1448 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 1449 |
+
num_logits_to_keep: int = 0,
|
| 1450 |
+
**loss_kwargs,
|
| 1451 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 1452 |
+
r"""
|
| 1453 |
+
Args:
|
| 1454 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1455 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
| 1456 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
| 1457 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
| 1458 |
+
|
| 1459 |
+
Returns:
|
| 1460 |
+
|
| 1461 |
+
Example:
|
| 1462 |
+
|
| 1463 |
+
```python
|
| 1464 |
+
>>> from transformers import AutoTokenizer, Phi4FlashForCausalLM
|
| 1465 |
+
|
| 1466 |
+
>>> model = Phi4FlashForCausalLM.from_pretrained("microsoft/Phi4-mini-flash-reasoning")
|
| 1467 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi4-mini-flash-reasoning")
|
| 1468 |
+
|
| 1469 |
+
>>> prompt = "This is an example script ."
|
| 1470 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
| 1471 |
+
|
| 1472 |
+
>>> # Generate
|
| 1473 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
| 1474 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 1475 |
+
'This is an example script .\n\n\n\nfrom typing import List\n\ndef find_most_common_letter(words: List[str'
|
| 1476 |
+
```"""
|
| 1477 |
+
|
| 1478 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1479 |
+
output_hidden_states = (
|
| 1480 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1481 |
+
)
|
| 1482 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1483 |
+
|
| 1484 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 1485 |
+
outputs = self.model(
|
| 1486 |
+
input_ids=input_ids,
|
| 1487 |
+
attention_mask=attention_mask,
|
| 1488 |
+
position_ids=position_ids,
|
| 1489 |
+
past_key_values=past_key_values,
|
| 1490 |
+
inputs_embeds=inputs_embeds,
|
| 1491 |
+
use_cache=use_cache,
|
| 1492 |
+
output_attentions=output_attentions,
|
| 1493 |
+
output_hidden_states=output_hidden_states,
|
| 1494 |
+
return_dict=return_dict,
|
| 1495 |
+
cache_position = cache_position,
|
| 1496 |
+
)
|
| 1497 |
+
|
| 1498 |
+
hidden_states = outputs[0]
|
| 1499 |
+
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
|
| 1500 |
+
|
| 1501 |
+
loss = None
|
| 1502 |
+
if labels is not None:
|
| 1503 |
+
loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs)
|
| 1504 |
+
|
| 1505 |
+
if not return_dict:
|
| 1506 |
+
output = (logits,) + outputs[1:]
|
| 1507 |
+
return (loss,) + output if loss is not None else output
|
| 1508 |
+
|
| 1509 |
+
return CausalLMOutputWithPast(
|
| 1510 |
+
loss=loss,
|
| 1511 |
+
logits=logits,
|
| 1512 |
+
past_key_values=outputs.past_key_values,
|
| 1513 |
+
hidden_states=outputs.hidden_states,
|
| 1514 |
+
attentions=outputs.attentions,
|
| 1515 |
+
)
|
| 1516 |
+
|
| 1517 |
+
|
| 1518 |
+
@add_start_docstrings(
|
| 1519 |
+
"""
|
| 1520 |
+
The Phi4FlashModel with a sequence classification head on top (linear layer).
|
| 1521 |
+
|
| 1522 |
+
[`Phi4FlashForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
| 1523 |
+
(e.g. GPT-2) do.
|
| 1524 |
+
|
| 1525 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
| 1526 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
| 1527 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
| 1528 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
| 1529 |
+
each row of the batch).
|
| 1530 |
+
""",
|
| 1531 |
+
PHI_START_DOCSTRING,
|
| 1532 |
+
)
|
| 1533 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with LLAMA->PHI,Llama->Phi4Flash with self.transformer->self.model, transformer_outputs->model_outputs
|
| 1534 |
+
class Phi4FlashForSequenceClassification(Phi4FlashPreTrainedModel):
|
| 1535 |
+
def __init__(self, config):
|
| 1536 |
+
super().__init__(config)
|
| 1537 |
+
self.num_labels = config.num_labels
|
| 1538 |
+
self.model = Phi4FlashModel(config)
|
| 1539 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
| 1540 |
+
|
| 1541 |
+
# Initialize weights and apply final processing
|
| 1542 |
+
self.post_init()
|
| 1543 |
+
|
| 1544 |
+
def get_input_embeddings(self):
|
| 1545 |
+
return self.model.embed_tokens
|
| 1546 |
+
|
| 1547 |
+
def set_input_embeddings(self, value):
|
| 1548 |
+
self.model.embed_tokens = value
|
| 1549 |
+
|
| 1550 |
+
@add_start_docstrings_to_model_forward(PHI_INPUTS_DOCSTRING)
|
| 1551 |
+
def forward(
|
| 1552 |
+
self,
|
| 1553 |
+
input_ids: torch.LongTensor = None,
|
| 1554 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1555 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1556 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1557 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1558 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1559 |
+
use_cache: Optional[bool] = None,
|
| 1560 |
+
output_attentions: Optional[bool] = None,
|
| 1561 |
+
output_hidden_states: Optional[bool] = None,
|
| 1562 |
+
return_dict: Optional[bool] = None,
|
| 1563 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
| 1564 |
+
r"""
|
| 1565 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1566 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 1567 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 1568 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1569 |
+
"""
|
| 1570 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1571 |
+
|
| 1572 |
+
model_outputs = self.model(
|
| 1573 |
+
input_ids,
|
| 1574 |
+
attention_mask=attention_mask,
|
| 1575 |
+
position_ids=position_ids,
|
| 1576 |
+
past_key_values=past_key_values,
|
| 1577 |
+
inputs_embeds=inputs_embeds,
|
| 1578 |
+
use_cache=use_cache,
|
| 1579 |
+
output_attentions=output_attentions,
|
| 1580 |
+
output_hidden_states=output_hidden_states,
|
| 1581 |
+
return_dict=return_dict,
|
| 1582 |
+
)
|
| 1583 |
+
hidden_states = model_outputs[0]
|
| 1584 |
+
logits = self.score(hidden_states)
|
| 1585 |
+
|
| 1586 |
+
if input_ids is not None:
|
| 1587 |
+
batch_size = input_ids.shape[0]
|
| 1588 |
+
else:
|
| 1589 |
+
batch_size = inputs_embeds.shape[0]
|
| 1590 |
+
|
| 1591 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
| 1592 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
| 1593 |
+
if self.config.pad_token_id is None:
|
| 1594 |
+
sequence_lengths = -1
|
| 1595 |
+
else:
|
| 1596 |
+
if input_ids is not None:
|
| 1597 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
| 1598 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
| 1599 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
| 1600 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
| 1601 |
+
else:
|
| 1602 |
+
sequence_lengths = -1
|
| 1603 |
+
|
| 1604 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
| 1605 |
+
|
| 1606 |
+
loss = None
|
| 1607 |
+
if labels is not None:
|
| 1608 |
+
labels = labels.to(logits.device)
|
| 1609 |
+
if self.config.problem_type is None:
|
| 1610 |
+
if self.num_labels == 1:
|
| 1611 |
+
self.config.problem_type = "regression"
|
| 1612 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
| 1613 |
+
self.config.problem_type = "single_label_classification"
|
| 1614 |
+
else:
|
| 1615 |
+
self.config.problem_type = "multi_label_classification"
|
| 1616 |
+
|
| 1617 |
+
if self.config.problem_type == "regression":
|
| 1618 |
+
loss_fct = MSELoss()
|
| 1619 |
+
if self.num_labels == 1:
|
| 1620 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
| 1621 |
+
else:
|
| 1622 |
+
loss = loss_fct(pooled_logits, labels)
|
| 1623 |
+
elif self.config.problem_type == "single_label_classification":
|
| 1624 |
+
loss_fct = CrossEntropyLoss()
|
| 1625 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
| 1626 |
+
elif self.config.problem_type == "multi_label_classification":
|
| 1627 |
+
loss_fct = BCEWithLogitsLoss()
|
| 1628 |
+
loss = loss_fct(pooled_logits, labels)
|
| 1629 |
+
if not return_dict:
|
| 1630 |
+
output = (pooled_logits,) + model_outputs[1:]
|
| 1631 |
+
return ((loss,) + output) if loss is not None else output
|
| 1632 |
+
|
| 1633 |
+
return SequenceClassifierOutputWithPast(
|
| 1634 |
+
loss=loss,
|
| 1635 |
+
logits=pooled_logits,
|
| 1636 |
+
past_key_values=model_outputs.past_key_values,
|
| 1637 |
+
hidden_states=model_outputs.hidden_states,
|
| 1638 |
+
attentions=model_outputs.attentions,
|
| 1639 |
+
)
|
| 1640 |
+
|
| 1641 |
+
|
| 1642 |
+
@add_start_docstrings(
|
| 1643 |
+
"""
|
| 1644 |
+
Phi4FlashModel with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
| 1645 |
+
Named-Entity-Recognition (NER) tasks.
|
| 1646 |
+
""",
|
| 1647 |
+
PHI_START_DOCSTRING,
|
| 1648 |
+
)
|
| 1649 |
+
# Copied from transformers.models.mpt.modeling_mpt.MptForTokenClassification with MPT->PHI,Mpt->Phi4Flash,self.transformer->self.model,transformer_outputs->model_outputs
|
| 1650 |
+
class Phi4FlashForTokenClassification(Phi4FlashPreTrainedModel):
|
| 1651 |
+
def __init__(self, config: Phi4FlashConfig):
|
| 1652 |
+
super().__init__(config)
|
| 1653 |
+
self.num_labels = config.num_labels
|
| 1654 |
+
|
| 1655 |
+
self.model = Phi4FlashModel(config)
|
| 1656 |
+
if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None:
|
| 1657 |
+
classifier_dropout = config.classifier_dropout
|
| 1658 |
+
elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None:
|
| 1659 |
+
classifier_dropout = config.hidden_dropout
|
| 1660 |
+
else:
|
| 1661 |
+
classifier_dropout = 0.1
|
| 1662 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
| 1663 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
| 1664 |
+
|
| 1665 |
+
# Initialize weights and apply final processing
|
| 1666 |
+
self.post_init()
|
| 1667 |
+
|
| 1668 |
+
@add_start_docstrings_to_model_forward(PHI_INPUTS_DOCSTRING)
|
| 1669 |
+
@add_code_sample_docstrings(
|
| 1670 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
| 1671 |
+
output_type=TokenClassifierOutput,
|
| 1672 |
+
config_class=_CONFIG_FOR_DOC,
|
| 1673 |
+
)
|
| 1674 |
+
def forward(
|
| 1675 |
+
self,
|
| 1676 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 1677 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
| 1678 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1679 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 1680 |
+
labels: Optional[torch.Tensor] = None,
|
| 1681 |
+
use_cache: Optional[bool] = None,
|
| 1682 |
+
output_attentions: Optional[bool] = None,
|
| 1683 |
+
output_hidden_states: Optional[bool] = None,
|
| 1684 |
+
return_dict: Optional[bool] = None,
|
| 1685 |
+
**deprecated_arguments,
|
| 1686 |
+
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
| 1687 |
+
r"""
|
| 1688 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1689 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 1690 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 1691 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1692 |
+
"""
|
| 1693 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1694 |
+
|
| 1695 |
+
model_outputs = self.model(
|
| 1696 |
+
input_ids,
|
| 1697 |
+
past_key_values=past_key_values,
|
| 1698 |
+
attention_mask=attention_mask,
|
| 1699 |
+
inputs_embeds=inputs_embeds,
|
| 1700 |
+
use_cache=use_cache,
|
| 1701 |
+
output_attentions=output_attentions,
|
| 1702 |
+
output_hidden_states=output_hidden_states,
|
| 1703 |
+
return_dict=return_dict,
|
| 1704 |
+
)
|
| 1705 |
+
|
| 1706 |
+
hidden_states = model_outputs[0]
|
| 1707 |
+
hidden_states = self.dropout(hidden_states)
|
| 1708 |
+
logits = self.classifier(hidden_states)
|
| 1709 |
+
|
| 1710 |
+
loss = None
|
| 1711 |
+
if labels is not None:
|
| 1712 |
+
# move labels to correct device to enable model parallelism
|
| 1713 |
+
labels = labels.to(logits.device)
|
| 1714 |
+
batch_size, seq_length = labels.shape
|
| 1715 |
+
loss_fct = CrossEntropyLoss()
|
| 1716 |
+
loss = loss_fct(logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length))
|
| 1717 |
+
|
| 1718 |
+
if not return_dict:
|
| 1719 |
+
output = (logits,) + model_outputs[2:]
|
| 1720 |
+
return ((loss,) + output) if loss is not None else output
|
| 1721 |
+
|
| 1722 |
+
return TokenClassifierOutput(
|
| 1723 |
+
loss=loss,
|
| 1724 |
+
logits=logits,
|
| 1725 |
+
hidden_states=model_outputs.hidden_states,
|
| 1726 |
+
attentions=model_outputs.attentions,
|
| 1727 |
+
)
|
| 1728 |
+
|
| 1729 |
+
## support batched generation
|
| 1730 |
+
|
| 1731 |
+
class SelectiveScanFn(torch.autograd.Function):
|
| 1732 |
+
|
| 1733 |
+
@staticmethod
|
| 1734 |
+
def forward(ctx, u, delta, A, B, C, D=None, z=None, delta_bias=None, delta_softplus=False,
|
| 1735 |
+
return_last_state=False):
|
| 1736 |
+
if u.stride(-1) != 1:
|
| 1737 |
+
u = u.contiguous()
|
| 1738 |
+
if delta.stride(-1) != 1:
|
| 1739 |
+
delta = delta.contiguous()
|
| 1740 |
+
if D is not None:
|
| 1741 |
+
D = D.contiguous()
|
| 1742 |
+
if B.stride(-1) != 1:
|
| 1743 |
+
B = B.contiguous()
|
| 1744 |
+
if C.stride(-1) != 1:
|
| 1745 |
+
C = C.contiguous()
|
| 1746 |
+
if z is not None and z.stride(-1) != 1:
|
| 1747 |
+
z = z.contiguous()
|
| 1748 |
+
if B.dim() == 3:
|
| 1749 |
+
B = rearrange(B, "b dstate l -> b 1 dstate l")
|
| 1750 |
+
ctx.squeeze_B = True
|
| 1751 |
+
if C.dim() == 3:
|
| 1752 |
+
C = rearrange(C, "b dstate l -> b 1 dstate l")
|
| 1753 |
+
ctx.squeeze_C = True
|
| 1754 |
+
out, x, *rest = selective_scan_cuda.fwd(u, delta, A, B, C, D, z, delta_bias, delta_softplus)
|
| 1755 |
+
ctx.delta_softplus = delta_softplus
|
| 1756 |
+
ctx.has_z = z is not None
|
| 1757 |
+
last_state = x[:, :, -1, 1::2] # (batch, dim, dstate)
|
| 1758 |
+
if not ctx.has_z:
|
| 1759 |
+
ctx.save_for_backward(u, delta, A, B, C, D, delta_bias, x)
|
| 1760 |
+
return out if not return_last_state else (out, last_state)
|
| 1761 |
+
else:
|
| 1762 |
+
ctx.save_for_backward(u, delta, A, B, C, D, z, delta_bias, x, out)
|
| 1763 |
+
out_z = rest[0]
|
| 1764 |
+
return out_z if not return_last_state else (out_z, last_state)
|
| 1765 |
+
|
| 1766 |
+
@staticmethod
|
| 1767 |
+
def backward(ctx, dout, *args):
|
| 1768 |
+
if not ctx.has_z:
|
| 1769 |
+
u, delta, A, B, C, D, delta_bias, x = ctx.saved_tensors
|
| 1770 |
+
z = None
|
| 1771 |
+
out = None
|
| 1772 |
+
else:
|
| 1773 |
+
u, delta, A, B, C, D, z, delta_bias, x, out = ctx.saved_tensors
|
| 1774 |
+
if dout.stride(-1) != 1:
|
| 1775 |
+
dout = dout.contiguous()
|
| 1776 |
+
# The kernel supports passing in a pre-allocated dz (e.g., in case we want to fuse the
|
| 1777 |
+
# backward of selective_scan_cuda with the backward of chunk).
|
| 1778 |
+
# Here we just pass in None and dz will be allocated in the C++ code.
|
| 1779 |
+
du, ddelta, dA, dB, dC, dD, ddelta_bias, *rest = selective_scan_cuda.bwd(
|
| 1780 |
+
u, delta, A, B, C, D, z, delta_bias, dout, x, out, None, ctx.delta_softplus,
|
| 1781 |
+
False # option to recompute out_z, not used here
|
| 1782 |
+
)
|
| 1783 |
+
dz = rest[0] if ctx.has_z else None
|
| 1784 |
+
dB = dB.squeeze(1) if getattr(ctx, "squeeze_B", False) else dB
|
| 1785 |
+
dC = dC.squeeze(1) if getattr(ctx, "squeeze_C", False) else dC
|
| 1786 |
+
return (du, ddelta, dA, dB, dC,
|
| 1787 |
+
dD if D is not None else None,
|
| 1788 |
+
dz,
|
| 1789 |
+
ddelta_bias if delta_bias is not None else None,
|
| 1790 |
+
None,
|
| 1791 |
+
None)
|
| 1792 |
+
|
| 1793 |
+
|
| 1794 |
+
def selective_scan_fn(u, delta, A, B, C, D=None, z=None, delta_bias=None, delta_softplus=False,
|
| 1795 |
+
return_last_state=False):
|
| 1796 |
+
"""if return_last_state is True, returns (out, last_state)
|
| 1797 |
+
last_state has shape (batch, dim, dstate). Note that the gradient of the last state is
|
| 1798 |
+
not considered in the backward pass.
|
| 1799 |
+
"""
|
| 1800 |
+
return SelectiveScanFn.apply(u, delta, A, B, C, D, z, delta_bias, delta_softplus, return_last_state)
|
| 1801 |
+
|
| 1802 |
+
|
| 1803 |
+
class MambaInnerFn(torch.autograd.Function):
|
| 1804 |
+
|
| 1805 |
+
@staticmethod
|
| 1806 |
+
@custom_fwd(device_type="cuda")
|
| 1807 |
+
def forward(ctx, xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight,
|
| 1808 |
+
out_proj_weight, out_proj_bias,
|
| 1809 |
+
A, B=None, C=None, D=None, delta_bias=None, B_proj_bias=None,
|
| 1810 |
+
C_proj_bias=None, mask=None, delta_softplus=True, checkpoint_lvl=1,):
|
| 1811 |
+
"""
|
| 1812 |
+
xz: (batch, dim, seqlen)
|
| 1813 |
+
"""
|
| 1814 |
+
assert causal_conv1d_cuda is not None, "causal_conv1d_cuda is not available. Please install causal-conv1d."
|
| 1815 |
+
assert checkpoint_lvl in [0, 1]
|
| 1816 |
+
L = xz.shape[-1]
|
| 1817 |
+
delta_rank = delta_proj_weight.shape[1]
|
| 1818 |
+
d_state = A.shape[-1] * (1 if not A.is_complex() else 2)
|
| 1819 |
+
if torch.is_autocast_enabled():
|
| 1820 |
+
x_proj_weight = x_proj_weight.to(dtype=torch.get_autocast_gpu_dtype())
|
| 1821 |
+
delta_proj_weight = delta_proj_weight.to(dtype=torch.get_autocast_gpu_dtype())
|
| 1822 |
+
out_proj_weight = out_proj_weight.to(dtype=torch.get_autocast_gpu_dtype())
|
| 1823 |
+
out_proj_bias = (out_proj_bias.to(dtype=torch.get_autocast_gpu_dtype())
|
| 1824 |
+
if out_proj_bias is not None else None)
|
| 1825 |
+
if xz.stride(-1) != 1:
|
| 1826 |
+
xz = xz.contiguous()
|
| 1827 |
+
conv1d_weight = rearrange(conv1d_weight, "d 1 w -> d w")
|
| 1828 |
+
x, z = xz.chunk(2, dim=1)
|
| 1829 |
+
if mask is not None:
|
| 1830 |
+
x = x * mask.unsqueeze(1)
|
| 1831 |
+
conv1d_bias = conv1d_bias.contiguous() if conv1d_bias is not None else None
|
| 1832 |
+
conv1d_out = causal_conv1d_cuda.causal_conv1d_fwd(
|
| 1833 |
+
x, conv1d_weight, conv1d_bias, None, None, None, True
|
| 1834 |
+
)
|
| 1835 |
+
if mask is not None:
|
| 1836 |
+
conv1d_out = conv1d_out * mask.unsqueeze(1)
|
| 1837 |
+
# We're being very careful here about the layout, to avoid extra transposes.
|
| 1838 |
+
# We want delta to have d as the slowest moving dimension
|
| 1839 |
+
# and L as the fastest moving dimension, since those are what the ssm_scan kernel expects.
|
| 1840 |
+
x_dbl = F.linear(rearrange(conv1d_out, 'b d l -> (b l) d'), x_proj_weight) # (bl d)
|
| 1841 |
+
delta = rearrange(delta_proj_weight @ x_dbl[:, :delta_rank].t(), "d (b l) -> b d l", l = L)
|
| 1842 |
+
ctx.is_variable_B = B is None
|
| 1843 |
+
ctx.is_variable_C = C is None
|
| 1844 |
+
ctx.B_proj_bias_is_None = B_proj_bias is None
|
| 1845 |
+
ctx.C_proj_bias_is_None = C_proj_bias is None
|
| 1846 |
+
if B is None: # variable B
|
| 1847 |
+
B = x_dbl[:, delta_rank:delta_rank + d_state] # (bl dstate)
|
| 1848 |
+
if B_proj_bias is not None:
|
| 1849 |
+
B = B + B_proj_bias.to(dtype=B.dtype)
|
| 1850 |
+
if not A.is_complex():
|
| 1851 |
+
# B = rearrange(B, "(b l) dstate -> b dstate l", l=L).contiguous()
|
| 1852 |
+
B = rearrange(B, "(b l) dstate -> b 1 dstate l", l=L).contiguous()
|
| 1853 |
+
else:
|
| 1854 |
+
B = rearrange(B, "(b l) (dstate two) -> b 1 dstate (l two)", l=L, two=2).contiguous()
|
| 1855 |
+
else:
|
| 1856 |
+
if B.stride(-1) != 1:
|
| 1857 |
+
B = B.contiguous()
|
| 1858 |
+
if C is None: # variable C
|
| 1859 |
+
C = x_dbl[:, -d_state:] # (bl dstate)
|
| 1860 |
+
if C_proj_bias is not None:
|
| 1861 |
+
C = C + C_proj_bias.to(dtype=C.dtype)
|
| 1862 |
+
if not A.is_complex():
|
| 1863 |
+
# C = rearrange(C, "(b l) dstate -> b dstate l", l=L).contiguous()
|
| 1864 |
+
C = rearrange(C, "(b l) dstate -> b 1 dstate l", l=L).contiguous()
|
| 1865 |
+
else:
|
| 1866 |
+
C = rearrange(C, "(b l) (dstate two) -> b 1 dstate (l two)", l=L, two=2).contiguous()
|
| 1867 |
+
else:
|
| 1868 |
+
if C.stride(-1) != 1:
|
| 1869 |
+
C = C.contiguous()
|
| 1870 |
+
if D is not None:
|
| 1871 |
+
D = D.contiguous()
|
| 1872 |
+
out, scan_intermediates, out_z = selective_scan_cuda.fwd(
|
| 1873 |
+
conv1d_out, delta, A, B, C, D, z, delta_bias, delta_softplus
|
| 1874 |
+
)
|
| 1875 |
+
ctx.delta_softplus = delta_softplus
|
| 1876 |
+
ctx.out_proj_bias_is_None = out_proj_bias is None
|
| 1877 |
+
ctx.checkpoint_lvl = checkpoint_lvl
|
| 1878 |
+
if checkpoint_lvl >= 1: # Will recompute conv1d_out and delta in the backward pass
|
| 1879 |
+
conv1d_out, delta = None, None
|
| 1880 |
+
ctx.save_for_backward(xz, conv1d_weight, conv1d_bias, x_dbl, x_proj_weight,
|
| 1881 |
+
delta_proj_weight, out_proj_weight, conv1d_out, delta,
|
| 1882 |
+
A, B, C, D, delta_bias, scan_intermediates, out)
|
| 1883 |
+
return F.linear(rearrange(out_z, "b d l -> b l d"), out_proj_weight, out_proj_bias)
|
| 1884 |
+
|
| 1885 |
+
@staticmethod
|
| 1886 |
+
@custom_bwd(device_type="cuda")
|
| 1887 |
+
def backward(ctx, dout):
|
| 1888 |
+
# dout: (batch, seqlen, dim)
|
| 1889 |
+
assert causal_conv1d_cuda is not None, "causal_conv1d_cuda is not available. Please install causal-conv1d."
|
| 1890 |
+
(xz, conv1d_weight, conv1d_bias, x_dbl, x_proj_weight, delta_proj_weight, out_proj_weight,
|
| 1891 |
+
conv1d_out, delta, A, B, C, D, delta_bias, scan_intermediates, out) = ctx.saved_tensors
|
| 1892 |
+
L = xz.shape[-1]
|
| 1893 |
+
delta_rank = delta_proj_weight.shape[1]
|
| 1894 |
+
d_state = A.shape[-1] * (1 if not A.is_complex() else 2)
|
| 1895 |
+
x, z = xz.chunk(2, dim=1)
|
| 1896 |
+
if dout.stride(-1) != 1:
|
| 1897 |
+
dout = dout.contiguous()
|
| 1898 |
+
if ctx.checkpoint_lvl == 1:
|
| 1899 |
+
conv1d_out = causal_conv1d_cuda.causal_conv1d_fwd(
|
| 1900 |
+
x, conv1d_weight, conv1d_bias, None, None, None, True
|
| 1901 |
+
)
|
| 1902 |
+
delta = rearrange(delta_proj_weight @ x_dbl[:, :delta_rank].t(),
|
| 1903 |
+
"d (b l) -> b d l", l = L)
|
| 1904 |
+
# The kernel supports passing in a pre-allocated dz (e.g., in case we want to fuse the
|
| 1905 |
+
# backward of selective_scan_cuda with the backward of chunk).
|
| 1906 |
+
dxz = torch.empty_like(xz) # (batch, dim, seqlen)
|
| 1907 |
+
dx, dz = dxz.chunk(2, dim=1)
|
| 1908 |
+
dout = rearrange(dout, "b l e -> e (b l)")
|
| 1909 |
+
dout_y = rearrange(out_proj_weight.t() @ dout, "d (b l) -> b d l", l=L)
|
| 1910 |
+
dconv1d_out, ddelta, dA, dB, dC, dD, ddelta_bias, dz, out_z = selective_scan_cuda.bwd(
|
| 1911 |
+
conv1d_out, delta, A, B, C, D, z, delta_bias, dout_y, scan_intermediates, out, dz,
|
| 1912 |
+
ctx.delta_softplus,
|
| 1913 |
+
True # option to recompute out_z
|
| 1914 |
+
)
|
| 1915 |
+
dout_proj_weight = torch.einsum("eB,dB->ed", dout, rearrange(out_z, "b d l -> d (b l)"))
|
| 1916 |
+
dout_proj_bias = dout.sum(dim=(0, 1)) if not ctx.out_proj_bias_is_None else None
|
| 1917 |
+
dD = dD if D is not None else None
|
| 1918 |
+
dx_dbl = torch.empty_like(x_dbl)
|
| 1919 |
+
dB_proj_bias = None
|
| 1920 |
+
if ctx.is_variable_B:
|
| 1921 |
+
if not A.is_complex():
|
| 1922 |
+
dB = rearrange(dB, "b 1 dstate l -> (b l) dstate").contiguous()
|
| 1923 |
+
else:
|
| 1924 |
+
dB = rearrange(dB, "b 1 dstate (l two) -> (b l) (dstate two)", two=2).contiguous()
|
| 1925 |
+
dB_proj_bias = dB.sum(0) if not ctx.B_proj_bias_is_None else None
|
| 1926 |
+
dx_dbl[:, delta_rank:delta_rank + d_state] = dB # (bl d)
|
| 1927 |
+
dB = None
|
| 1928 |
+
dC_proj_bias = None
|
| 1929 |
+
if ctx.is_variable_C:
|
| 1930 |
+
if not A.is_complex():
|
| 1931 |
+
dC = rearrange(dC, "b 1 dstate l -> (b l) dstate").contiguous()
|
| 1932 |
+
else:
|
| 1933 |
+
dC = rearrange(dC, "b 1 dstate (l two) -> (b l) (dstate two)", two=2).contiguous()
|
| 1934 |
+
dC_proj_bias = dC.sum(0) if not ctx.C_proj_bias_is_None else None
|
| 1935 |
+
dx_dbl[:, -d_state:] = dC # (bl d)
|
| 1936 |
+
dC = None
|
| 1937 |
+
ddelta = rearrange(ddelta, "b d l -> d (b l)")
|
| 1938 |
+
ddelta_proj_weight = torch.einsum("dB,Br->dr", ddelta, x_dbl[:, :delta_rank])
|
| 1939 |
+
dx_dbl[:, :delta_rank] = torch.einsum("dB,dr->Br", ddelta, delta_proj_weight)
|
| 1940 |
+
dconv1d_out = rearrange(dconv1d_out, "b d l -> d (b l)")
|
| 1941 |
+
dx_proj_weight = torch.einsum("Br,Bd->rd", dx_dbl, rearrange(conv1d_out, "b d l -> (b l) d"))
|
| 1942 |
+
dconv1d_out = torch.addmm(dconv1d_out, x_proj_weight.t(), dx_dbl.t(), out=dconv1d_out)
|
| 1943 |
+
dconv1d_out = rearrange(dconv1d_out, "d (b l) -> b d l", b=x.shape[0], l=x.shape[-1])
|
| 1944 |
+
# The kernel supports passing in a pre-allocated dx (e.g., in case we want to fuse the
|
| 1945 |
+
# backward of conv1d with the backward of chunk).
|
| 1946 |
+
dx, dconv1d_weight, dconv1d_bias, *_ = causal_conv1d_cuda.causal_conv1d_bwd(
|
| 1947 |
+
x, conv1d_weight, conv1d_bias, dconv1d_out, None, None, None, dx, False, True
|
| 1948 |
+
)
|
| 1949 |
+
dconv1d_bias = dconv1d_bias if conv1d_bias is not None else None
|
| 1950 |
+
dconv1d_weight = rearrange(dconv1d_weight, "d w -> d 1 w")
|
| 1951 |
+
return (dxz, dconv1d_weight, dconv1d_bias, dx_proj_weight, ddelta_proj_weight,
|
| 1952 |
+
dout_proj_weight, dout_proj_bias,
|
| 1953 |
+
dA, dB, dC, dD,
|
| 1954 |
+
ddelta_bias if delta_bias is not None else None,
|
| 1955 |
+
dB_proj_bias, dC_proj_bias, None, None)
|
| 1956 |
+
|
| 1957 |
+
|
| 1958 |
+
def mamba_inner_fn(
|
| 1959 |
+
xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight,
|
| 1960 |
+
out_proj_weight, out_proj_bias,
|
| 1961 |
+
A, B=None, C=None, D=None, delta_bias=None, B_proj_bias=None,
|
| 1962 |
+
C_proj_bias=None, mask=None, delta_softplus=True
|
| 1963 |
+
):
|
| 1964 |
+
return MambaInnerFn.apply(xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight,
|
| 1965 |
+
out_proj_weight, out_proj_bias,
|
| 1966 |
+
A, B, C, D, delta_bias, B_proj_bias, C_proj_bias, mask, delta_softplus)
|
| 1967 |
+
|
| 1968 |
+
|
| 1969 |
+
def lambda_init_fn(depth):
|
| 1970 |
+
return 0.8 - 0.6 * math.exp(-0.3 * depth)
|
| 1971 |
+
|
| 1972 |
+
|
| 1973 |
+
def split_heads(x):
|
| 1974 |
+
# split by num_heads, the stripe pattern is friendly to tensor parallel.
|
| 1975 |
+
x = rearrange(x, "... (H two) D -> ... H two D", two=2)
|
| 1976 |
+
x1 = x[..., 0, :]
|
| 1977 |
+
x2 = x[..., 1, :]
|
| 1978 |
+
return x1, x2
|
| 1979 |
+
|
| 1980 |
+
class FlashDiffCustomAttention(nn.Module):
|
| 1981 |
+
"""Implement the scaled dot product attention with softmax.
|
| 1982 |
+
Arguments
|
| 1983 |
+
---------
|
| 1984 |
+
head_dim: The dimension of the heads.
|
| 1985 |
+
depth: The layer id, starting from 0.
|
| 1986 |
+
"""
|
| 1987 |
+
|
| 1988 |
+
def __init__(
|
| 1989 |
+
self,
|
| 1990 |
+
head_dim,
|
| 1991 |
+
depth,
|
| 1992 |
+
fa_og = True,
|
| 1993 |
+
):
|
| 1994 |
+
super().__init__()
|
| 1995 |
+
assert flash_attn_varlen_func is not None, "FlashAttention is not installed"
|
| 1996 |
+
assert flash_attn_func is not None, "FlashAttention is not installed"
|
| 1997 |
+
self.head_dim = head_dim
|
| 1998 |
+
self.fa_og = fa_og # turning it to false needs customized flash attention https://github.com/xiayuqing0622/flex_head_fa
|
| 1999 |
+
self.lambda_init = lambda_init_fn(depth)
|
| 2000 |
+
self.lambda_q1 = nn.Parameter(torch.zeros(self.head_dim, dtype=torch.float32).normal_(mean=0,std=0.1))
|
| 2001 |
+
self.lambda_k1 = nn.Parameter(torch.zeros(self.head_dim, dtype=torch.float32).normal_(mean=0,std=0.1))
|
| 2002 |
+
self.lambda_q2 = nn.Parameter(torch.zeros(self.head_dim, dtype=torch.float32).normal_(mean=0,std=0.1))
|
| 2003 |
+
self.lambda_k2 = nn.Parameter(torch.zeros(self.head_dim, dtype=torch.float32).normal_(mean=0,std=0.1))
|
| 2004 |
+
|
| 2005 |
+
self.subln = SambaYRMSNorm(2 * self.head_dim, eps=1e-5)
|
| 2006 |
+
|
| 2007 |
+
def forward(
|
| 2008 |
+
self,
|
| 2009 |
+
q,
|
| 2010 |
+
k,
|
| 2011 |
+
v,
|
| 2012 |
+
dropout_p = 0.0,
|
| 2013 |
+
cu_seqlens_q=None,
|
| 2014 |
+
max_seqlen_q=None,
|
| 2015 |
+
cu_seqlens_k=None,
|
| 2016 |
+
max_seqlen_k=None,
|
| 2017 |
+
softmax_scale=None,
|
| 2018 |
+
window_size=(-1, -1),
|
| 2019 |
+
causal=None,
|
| 2020 |
+
):
|
| 2021 |
+
"""Implements the multihead softmax attention.
|
| 2022 |
+
Arguments
|
| 2023 |
+
---------
|
| 2024 |
+
q, k, v: The tensors containing the query, key, and value.
|
| 2025 |
+
If cu_seqlens is None and max_seqlen is None, then each has shape (B, S, H, D).
|
| 2026 |
+
If cu_seqlens is not None and max_seqlen is not None, then each has shape
|
| 2027 |
+
(total, H, D), where total is the sum of the sequence lengths in the batch.
|
| 2028 |
+
causal: if passed, will override self.causal
|
| 2029 |
+
cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
|
| 2030 |
+
of the sequences in the batch, used to index into qkv.
|
| 2031 |
+
max_seqlen: int. Maximum sequence length in the batch.
|
| 2032 |
+
Returns:
|
| 2033 |
+
--------
|
| 2034 |
+
out: (total, H, D) if cu_seqlens is not None and max_seqlen is not None,
|
| 2035 |
+
else (B, S, H, D).
|
| 2036 |
+
"""
|
| 2037 |
+
q = q.to(torch.bfloat16)
|
| 2038 |
+
k = k.to(torch.bfloat16)
|
| 2039 |
+
v = v.to(torch.bfloat16)
|
| 2040 |
+
|
| 2041 |
+
assert q.dtype in [torch.float16, torch.bfloat16]
|
| 2042 |
+
assert q.is_cuda and k.is_cuda and v.is_cuda
|
| 2043 |
+
#causal = self.causal if causal is None else causal
|
| 2044 |
+
unpadded = cu_seqlens_q is not None
|
| 2045 |
+
q1, q2 = split_heads(q)
|
| 2046 |
+
k1, k2 = split_heads(k)
|
| 2047 |
+
if self.fa_og:
|
| 2048 |
+
v1, v2 = split_heads(v)
|
| 2049 |
+
else:
|
| 2050 |
+
v = rearrange(v, "... (H two) D -> ... H (two D)", two=2)
|
| 2051 |
+
|
| 2052 |
+
kwargs = {
|
| 2053 |
+
"dropout_p": dropout_p,
|
| 2054 |
+
"softmax_scale": softmax_scale,
|
| 2055 |
+
"causal": causal,
|
| 2056 |
+
"window_size": window_size,
|
| 2057 |
+
}
|
| 2058 |
+
|
| 2059 |
+
if unpadded:
|
| 2060 |
+
assert cu_seqlens_q.dtype == torch.int32
|
| 2061 |
+
assert max_seqlen_q is not None
|
| 2062 |
+
assert isinstance(max_seqlen_q, int)
|
| 2063 |
+
assert cu_seqlens_k is not None
|
| 2064 |
+
assert cu_seqlens_k.dtype == torch.int32
|
| 2065 |
+
assert max_seqlen_k is not None
|
| 2066 |
+
assert isinstance(max_seqlen_k, int)
|
| 2067 |
+
|
| 2068 |
+
kwargs.update({
|
| 2069 |
+
"cu_seqlens_q": cu_seqlens_q,
|
| 2070 |
+
"max_seqlen_q": max_seqlen_q,
|
| 2071 |
+
"cu_seqlens_k": cu_seqlens_k,
|
| 2072 |
+
"max_seqlen_k": max_seqlen_k,
|
| 2073 |
+
})
|
| 2074 |
+
attn_func = flash_attn_varlen_func
|
| 2075 |
+
else:
|
| 2076 |
+
attn_func = flash_attn_func
|
| 2077 |
+
|
| 2078 |
+
if self.fa_og:
|
| 2079 |
+
attn11 = attn_func(q1, k1, v1, **kwargs)
|
| 2080 |
+
attn12 = attn_func(q1, k1, v2, **kwargs)
|
| 2081 |
+
attn1 = torch.cat([attn11, attn12], dim=-1)
|
| 2082 |
+
attn21 = attn_func(q2, k2, v1, **kwargs)
|
| 2083 |
+
attn22 = attn_func(q2, k2, v2, **kwargs)
|
| 2084 |
+
attn2 = torch.cat([attn21, attn22], dim=-1)
|
| 2085 |
+
else:
|
| 2086 |
+
attn1 = attn_func(q1, k1, v, **kwargs)
|
| 2087 |
+
attn2 = attn_func(q2, k2, v, **kwargs)
|
| 2088 |
+
|
| 2089 |
+
lambda_1 = torch.exp(torch.sum(self.lambda_q1 * self.lambda_k1, dim=-1).float()).type_as(q)
|
| 2090 |
+
lambda_2 = torch.exp(torch.sum(self.lambda_q2 * self.lambda_k2, dim=-1).float()).type_as(q)
|
| 2091 |
+
lambda_full = lambda_1 - lambda_2 + self.lambda_init
|
| 2092 |
+
|
| 2093 |
+
attn = attn1 - lambda_full * attn2
|
| 2094 |
+
attn = self.subln(attn)
|
| 2095 |
+
attn = attn * (1 - self.lambda_init)
|
| 2096 |
+
# reshape back to 2 * num_head
|
| 2097 |
+
attn = rearrange(attn, "... H (two D) -> ... (H two) D", two=2)
|
| 2098 |
+
return attn
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<|endoftext|>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "<|endoftext|>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "<|endoftext|>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"unk_token": {
|
| 24 |
+
"content": "<|endoftext|>",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
}
|
| 30 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"add_prefix_space": false,
|
| 5 |
+
"added_tokens_decoder": {
|
| 6 |
+
"199999": {
|
| 7 |
+
"content": "<|endoftext|>",
|
| 8 |
+
"lstrip": false,
|
| 9 |
+
"normalized": false,
|
| 10 |
+
"rstrip": false,
|
| 11 |
+
"single_word": false,
|
| 12 |
+
"special": true
|
| 13 |
+
},
|
| 14 |
+
"200018": {
|
| 15 |
+
"content": "<|endofprompt|>",
|
| 16 |
+
"lstrip": false,
|
| 17 |
+
"normalized": false,
|
| 18 |
+
"rstrip": false,
|
| 19 |
+
"single_word": false,
|
| 20 |
+
"special": true
|
| 21 |
+
},
|
| 22 |
+
"200019": {
|
| 23 |
+
"content": "<|assistant|>",
|
| 24 |
+
"lstrip": false,
|
| 25 |
+
"normalized": false,
|
| 26 |
+
"rstrip": true,
|
| 27 |
+
"single_word": false,
|
| 28 |
+
"special": true
|
| 29 |
+
},
|
| 30 |
+
"200020": {
|
| 31 |
+
"content": "<|end|>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": true,
|
| 35 |
+
"single_word": false,
|
| 36 |
+
"special": true
|
| 37 |
+
},
|
| 38 |
+
"200021": {
|
| 39 |
+
"content": "<|user|>",
|
| 40 |
+
"lstrip": false,
|
| 41 |
+
"normalized": false,
|
| 42 |
+
"rstrip": true,
|
| 43 |
+
"single_word": false,
|
| 44 |
+
"special": true
|
| 45 |
+
},
|
| 46 |
+
"200022": {
|
| 47 |
+
"content": "<|system|>",
|
| 48 |
+
"lstrip": false,
|
| 49 |
+
"normalized": false,
|
| 50 |
+
"rstrip": true,
|
| 51 |
+
"single_word": false,
|
| 52 |
+
"special": true
|
| 53 |
+
},
|
| 54 |
+
"200023": {
|
| 55 |
+
"content": "<|tool|>",
|
| 56 |
+
"lstrip": false,
|
| 57 |
+
"normalized": false,
|
| 58 |
+
"rstrip": true,
|
| 59 |
+
"single_word": false,
|
| 60 |
+
"special": false
|
| 61 |
+
},
|
| 62 |
+
"200024": {
|
| 63 |
+
"content": "<|/tool|>",
|
| 64 |
+
"lstrip": false,
|
| 65 |
+
"normalized": false,
|
| 66 |
+
"rstrip": true,
|
| 67 |
+
"single_word": false,
|
| 68 |
+
"special": false
|
| 69 |
+
},
|
| 70 |
+
"200025": {
|
| 71 |
+
"content": "<|tool_call|>",
|
| 72 |
+
"lstrip": false,
|
| 73 |
+
"normalized": false,
|
| 74 |
+
"rstrip": true,
|
| 75 |
+
"single_word": false,
|
| 76 |
+
"special": false
|
| 77 |
+
},
|
| 78 |
+
"200026": {
|
| 79 |
+
"content": "<|/tool_call|>",
|
| 80 |
+
"lstrip": false,
|
| 81 |
+
"normalized": false,
|
| 82 |
+
"rstrip": true,
|
| 83 |
+
"single_word": false,
|
| 84 |
+
"special": false
|
| 85 |
+
},
|
| 86 |
+
"200027": {
|
| 87 |
+
"content": "<|tool_response|>",
|
| 88 |
+
"lstrip": false,
|
| 89 |
+
"normalized": false,
|
| 90 |
+
"rstrip": true,
|
| 91 |
+
"single_word": false,
|
| 92 |
+
"special": false
|
| 93 |
+
},
|
| 94 |
+
"200028": {
|
| 95 |
+
"content": "<|tag|>",
|
| 96 |
+
"lstrip": false,
|
| 97 |
+
"normalized": false,
|
| 98 |
+
"rstrip": true,
|
| 99 |
+
"single_word": false,
|
| 100 |
+
"special": true
|
| 101 |
+
}
|
| 102 |
+
},
|
| 103 |
+
"bos_token": "<|endoftext|>",
|
| 104 |
+
"chat_template": "{% for message in messages %}{% if message['role'] == 'system' and 'tools' in message and message['tools'] is not none %}{{ '<|' + message['role'] + '|>' + message['content'] + '<|tool|>' + message['tools'] + '<|/tool|>' + '<|end|>' }}{% else %}{{ '<|' + message['role'] + '|>' + message['content'] + '<|end|>' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|>' }}{% else %}{{ eos_token }}{% endif %}",
|
| 105 |
+
"clean_up_tokenization_spaces": false,
|
| 106 |
+
"eos_token": "<|endoftext|>",
|
| 107 |
+
"model_max_length": 65536,
|
| 108 |
+
"pad_token": "<|endoftext|>",
|
| 109 |
+
"tokenizer_class": "GPT2Tokenizer",
|
| 110 |
+
"unk_token": "<|endoftext|>"
|
| 111 |
+
}
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|