daiqi commited on
Commit
2177a30
·
verified ·
1 Parent(s): bdd5cbd

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,19 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ docs/images/abstract.png filter=lfs diff=lfs merge=lfs -text
37
+ docs/images/f1.png filter=lfs diff=lfs merge=lfs -text
38
+ docs/images/f2.png filter=lfs diff=lfs merge=lfs -text
39
+ docs/images/f3.png filter=lfs diff=lfs merge=lfs -text
40
+ docs/images/f4.png filter=lfs diff=lfs merge=lfs -text
41
+ docs/images/f5.png filter=lfs diff=lfs merge=lfs -text
42
+ docs/images/f6.png filter=lfs diff=lfs merge=lfs -text
43
+ docs/images/f7.png filter=lfs diff=lfs merge=lfs -text
44
+ docs/images/f8.png filter=lfs diff=lfs merge=lfs -text
45
+ docs/images/f9.png filter=lfs diff=lfs merge=lfs -text
46
+ docs/images/r1.png filter=lfs diff=lfs merge=lfs -text
47
+ docs/images/r2.png filter=lfs diff=lfs merge=lfs -text
48
+ docs/images/r3.png filter=lfs diff=lfs merge=lfs -text
49
+ docs/images/r4.png filter=lfs diff=lfs merge=lfs -text
50
+ docs/images/r5.png filter=lfs diff=lfs merge=lfs -text
51
+ docs/images/r6.png filter=lfs diff=lfs merge=lfs -text
config.json ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/mnt/vground/output/phi3v",
3
+ "architectures": [
4
+ "Phi3VForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_phi3_v.Phi3VConfig",
9
+ "AutoModelForCausalLM": "microsoft/Phi-3.5-vision-instruct--modeling_phi3_v.Phi3VForCausalLM"
10
+ },
11
+ "bos_token_id": 1,
12
+ "embd_layer": {
13
+ "embedding_cls": "image",
14
+ "hd_transform_order": "sub_glb",
15
+ "projection_cls": "mlp",
16
+ "use_hd_transform": true,
17
+ "with_learnable_separator": true
18
+ },
19
+ "embd_pdrop": 0.0,
20
+ "eos_token_id": 2,
21
+ "hidden_act": "silu",
22
+ "hidden_size": 3072,
23
+ "img_processor": {
24
+ "image_dim_out": 1024,
25
+ "model_name": "openai/clip-vit-large-patch14-336",
26
+ "name": "clip_vision_model",
27
+ "num_img_tokens": 144
28
+ },
29
+ "initializer_range": 0.02,
30
+ "intermediate_size": 8192,
31
+ "max_position_embeddings": 131072,
32
+ "model_type": "phi3_v",
33
+ "num_attention_heads": 32,
34
+ "num_hidden_layers": 32,
35
+ "num_key_value_heads": 32,
36
+ "original_max_position_embeddings": 4096,
37
+ "pad_token_id": 32000,
38
+ "resid_pdrop": 0.0,
39
+ "rms_norm_eps": 1e-05,
40
+ "rope_scaling": {
41
+ "long_factor": [
42
+ 1.0800000429153442,
43
+ 1.1100000143051147,
44
+ 1.1399999856948853,
45
+ 1.340000033378601,
46
+ 1.5899999141693115,
47
+ 1.600000023841858,
48
+ 1.6200000047683716,
49
+ 2.620000123977661,
50
+ 3.2300000190734863,
51
+ 3.2300000190734863,
52
+ 4.789999961853027,
53
+ 7.400000095367432,
54
+ 7.700000286102295,
55
+ 9.09000015258789,
56
+ 12.199999809265137,
57
+ 17.670000076293945,
58
+ 24.46000099182129,
59
+ 28.57000160217285,
60
+ 30.420001983642578,
61
+ 30.840002059936523,
62
+ 32.590003967285156,
63
+ 32.93000411987305,
64
+ 42.320003509521484,
65
+ 44.96000289916992,
66
+ 50.340003967285156,
67
+ 50.45000457763672,
68
+ 57.55000305175781,
69
+ 57.93000411987305,
70
+ 58.21000289916992,
71
+ 60.1400032043457,
72
+ 62.61000442504883,
73
+ 62.62000274658203,
74
+ 62.71000289916992,
75
+ 63.1400032043457,
76
+ 63.1400032043457,
77
+ 63.77000427246094,
78
+ 63.93000411987305,
79
+ 63.96000289916992,
80
+ 63.970001220703125,
81
+ 64.02999877929688,
82
+ 64.06999969482422,
83
+ 64.08000183105469,
84
+ 64.12000274658203,
85
+ 64.41000366210938,
86
+ 64.4800033569336,
87
+ 64.51000213623047,
88
+ 64.52999877929688,
89
+ 64.83999633789062
90
+ ],
91
+ "short_factor": [
92
+ 1.08,
93
+ 1.1,
94
+ 1.1300000000000001,
95
+ 1.2800000000000002,
96
+ 1.3100000000000003,
97
+ 1.4500000000000004,
98
+ 1.4500000000000004,
99
+ 1.9500000000000008,
100
+ 2.030000000000001,
101
+ 2.4299999999999926,
102
+ 2.5699999999999896,
103
+ 2.9499999999999815,
104
+ 3.729999999999965,
105
+ 3.869999999999962,
106
+ 4.189999999999955,
107
+ 4.43999999999995,
108
+ 4.6399999999999455,
109
+ 4.979999999999938,
110
+ 5.159999999999934,
111
+ 5.279999999999932,
112
+ 5.759999999999922,
113
+ 5.889999999999919,
114
+ 5.889999999999919,
115
+ 5.969999999999917,
116
+ 6.089999999999915,
117
+ 6.2799999999999105,
118
+ 6.7699999999999,
119
+ 6.8899999999998975,
120
+ 7.109999999999893,
121
+ 7.129999999999892,
122
+ 7.179999999999891,
123
+ 7.289999999999889,
124
+ 7.339999999999888,
125
+ 7.559999999999883,
126
+ 7.619999999999882,
127
+ 7.69999999999988,
128
+ 7.879999999999876,
129
+ 7.879999999999876,
130
+ 7.879999999999876,
131
+ 7.939999999999875,
132
+ 7.949999999999875,
133
+ 7.979999999999874,
134
+ 8.19999999999987,
135
+ 8.439999999999864,
136
+ 8.469999999999864,
137
+ 8.589999999999861,
138
+ 8.809999999999857,
139
+ 8.999999999999853
140
+ ],
141
+ "type": "su"
142
+ },
143
+ "rope_theta": 10000.0,
144
+ "sliding_window": 262144,
145
+ "tie_word_embeddings": false,
146
+ "torch_dtype": "bfloat16",
147
+ "transformers_version": "4.49.0",
148
+ "use_cache": false,
149
+ "vocab_size": 32064
150
+ }
configuration_phi3_v.py ADDED
@@ -0,0 +1,218 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """ Phi-3-V model configuration"""
17
+
18
+
19
+ from transformers.configuration_utils import PretrainedConfig
20
+ from transformers.utils import logging
21
+
22
+
23
+ logger = logging.get_logger(__name__)
24
+
25
+ PHI3V_PRETRAINED_CONFIG_ARCHIVE_MAP = {
26
+ "microsoft/Phi-3-vision-128k-instruct": "https://huggingface.co/microsoft/Phi-3-vision-128k-instruct/resolve/main/config.json",
27
+ "microsoft/Phi-3.5-vision-instruct": "https://huggingface.co/microsoft/Phi-3.5-vision-instruct/resolve/main/config.json",
28
+ }
29
+
30
+
31
+ class Phi3VConfig(PretrainedConfig):
32
+ r"""
33
+ This is the configuration class to store the configuration of a [`Phi3VModel`]. It is used to instantiate a Phi-3
34
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
35
+ defaults will yield a similar configuration to that of the
36
+ [microsoft/Phi-3-vision-128k-instruct](https://huggingface.co/microsoft/Phi-3-vision-128k-instruct).
37
+
38
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
39
+ documentation from [`PretrainedConfig`] for more information.
40
+
41
+ Args:
42
+ vocab_size (`int`, *optional*, defaults to 32064):
43
+ Vocabulary size of the Phi-3-V model. Defines the number of different tokens that can be represented by the
44
+ `inputs_ids` passed when calling [`Phi3VModel`].
45
+ hidden_size (`int`, *optional*, defaults to 3072):
46
+ Dimension of the hidden representations.
47
+ intermediate_size (`int`, *optional*, defaults to 8192):
48
+ Dimension of the MLP representations.
49
+ num_hidden_layers (`int`, *optional*, defaults to 32):
50
+ Number of hidden layers in the Transformer decoder.
51
+ num_attention_heads (`int`, *optional*, defaults to 32):
52
+ Number of attention heads for each attention layer in the Transformer decoder.
53
+ num_key_value_heads (`int`, *optional*):
54
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
55
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
56
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
57
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
58
+ by meanpooling all the original heads within that group. For more details checkout [this
59
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
60
+ `num_attention_heads`.
61
+ resid_pdrop (`float`, *optional*, defaults to 0.0):
62
+ Dropout probability for mlp outputs.
63
+ embd_pdrop (`int`, *optional*, defaults to 0.0):
64
+ The dropout ratio for the embeddings.
65
+ attention_dropout (`float`, *optional*, defaults to 0.0):
66
+ The dropout ratio after computing the attention scores.
67
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
68
+ The non-linear activation function (function or string) in the decoder.
69
+ max_position_embeddings (`int`, *optional*, defaults to 4096):
70
+ The maximum sequence length that this model might ever be used with.
71
+ original_max_position_embeddings (`int`, *optional*, defaults to 4096):
72
+ The maximum sequence length that this model was trained with. This is used to determine the size of the
73
+ original RoPE embeddings when using long scaling.
74
+ initializer_range (`float`, *optional*, defaults to 0.02):
75
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
76
+ rms_norm_eps (`float`, *optional*, defaults to 1e-05):
77
+ The epsilon value used for the RMSNorm.
78
+ use_cache (`bool`, *optional*, defaults to `True`):
79
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
80
+ relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
81
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
82
+ Whether to tie weight embeddings
83
+ rope_theta (`float`, *optional*, defaults to 10000.0):
84
+ The base period of the RoPE embeddings.
85
+ rope_scaling (`dict`, *optional*):
86
+ The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
87
+ contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be either `su` or `yarn` and
88
+ the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size
89
+ divided by the number of attention heads divided by 2.
90
+ bos_token_id (`int`, *optional*, defaults to 1):
91
+ The id of the "beginning-of-sequence" token.
92
+ eos_token_id (`int`, *optional*, defaults to 32000):
93
+ The id of the "end-of-sequence" token.
94
+ pad_token_id (`int`, *optional*, defaults to 32000):
95
+ The id of the padding token.
96
+ sliding_window (`int`, *optional*):
97
+ Sliding window attention window size. If `None`, no sliding window is applied.
98
+ embd_layer (`str`, *optional*, defaults to `"default"`):
99
+ The embedding layer to use. Can be either `"default"` or `"image"`. "default" uses the standard embedding for text.
100
+
101
+ Example:
102
+
103
+ ```python
104
+ >>> from transformers import Phi3VModel, Phi3VConfig
105
+
106
+ >>> # Initializing a Phi-3-V style configuration
107
+ >>> configuration = Phi3Config.from_pretrained("microsoft/Phi-3-vision-128k-instruct")
108
+
109
+ >>> # Initializing a model from the configuration
110
+ >>> model = Phi3VModel(configuration)
111
+
112
+ >>> # Accessing the model configuration
113
+ >>> configuration = model.config
114
+ ```"""
115
+
116
+ model_type = "phi3_v"
117
+ keys_to_ignore_at_inference = ["past_key_values"]
118
+
119
+ def __init__(
120
+ self,
121
+ vocab_size=32064,
122
+ hidden_size=3072,
123
+ intermediate_size=8192,
124
+ num_hidden_layers=32,
125
+ num_attention_heads=32,
126
+ num_key_value_heads=None,
127
+ resid_pdrop=0.0,
128
+ embd_pdrop=0.0,
129
+ attention_dropout=0.0,
130
+ hidden_act="silu",
131
+ max_position_embeddings=4096,
132
+ original_max_position_embeddings=4096,
133
+ initializer_range=0.02,
134
+ rms_norm_eps=1e-5,
135
+ use_cache=True,
136
+ tie_word_embeddings=False,
137
+ rope_theta=10000.0,
138
+ rope_scaling=None,
139
+ bos_token_id=1,
140
+ eos_token_id=32000,
141
+ pad_token_id=32000,
142
+ sliding_window=None,
143
+ embd_layer: str = "default",
144
+ **kwargs,
145
+ ):
146
+ self.vocab_size = vocab_size
147
+ self.hidden_size = hidden_size
148
+ self.intermediate_size = intermediate_size
149
+ self.num_hidden_layers = num_hidden_layers
150
+ self.num_attention_heads = num_attention_heads
151
+
152
+ if num_key_value_heads is None:
153
+ num_key_value_heads = num_attention_heads
154
+
155
+ self.num_key_value_heads = num_key_value_heads
156
+ self.resid_pdrop = resid_pdrop
157
+ self.embd_pdrop = embd_pdrop
158
+ self.attention_dropout = attention_dropout
159
+ self.hidden_act = hidden_act
160
+ self.max_position_embeddings = max_position_embeddings
161
+ self.original_max_position_embeddings = original_max_position_embeddings
162
+ self.initializer_range = initializer_range
163
+ self.rms_norm_eps = rms_norm_eps
164
+ self.use_cache = use_cache
165
+ self.rope_theta = rope_theta
166
+ self.rope_scaling = rope_scaling
167
+ self._rope_scaling_validation()
168
+ self.sliding_window = sliding_window
169
+ self.embd_layer = embd_layer
170
+
171
+
172
+ super().__init__(
173
+ bos_token_id=bos_token_id,
174
+ eos_token_id=eos_token_id,
175
+ pad_token_id=pad_token_id,
176
+ tie_word_embeddings=tie_word_embeddings,
177
+ **kwargs,
178
+ )
179
+
180
+ def _rope_scaling_validation(self):
181
+ """
182
+ Validate the `rope_scaling` configuration.
183
+ """
184
+ if self.rope_scaling is None:
185
+ return
186
+
187
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 3:
188
+ raise ValueError(
189
+ "`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, "
190
+ f"got {self.rope_scaling}"
191
+ )
192
+ rope_scaling_type = self.rope_scaling.get("type", None)
193
+ rope_scaling_short_factor = self.rope_scaling.get("short_factor", None)
194
+ rope_scaling_long_factor = self.rope_scaling.get("long_factor", None)
195
+ if rope_scaling_type is None or rope_scaling_type not in ["su", "yarn"]:
196
+ raise ValueError(f"`rope_scaling`'s type field must be one of ['su', 'yarn'], got {rope_scaling_type}")
197
+ if not (
198
+ isinstance(rope_scaling_short_factor, list)
199
+ and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor)
200
+ ):
201
+ raise ValueError(
202
+ f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}"
203
+ )
204
+ if not len(rope_scaling_short_factor) == self.hidden_size // self.num_attention_heads // 2:
205
+ raise ValueError(
206
+ f"`rope_scaling`'s short_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_short_factor)}"
207
+ )
208
+ if not (
209
+ isinstance(rope_scaling_long_factor, list)
210
+ and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor)
211
+ ):
212
+ raise ValueError(
213
+ f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}"
214
+ )
215
+ if not len(rope_scaling_long_factor) == self.hidden_size // self.num_attention_heads // 2:
216
+ raise ValueError(
217
+ f"`rope_scaling`'s long_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_long_factor)}"
218
+ )
docs/images/abstract.png ADDED

Git LFS Details

  • SHA256: 62c760cfb9d76598387e87c411a69ab31bc952fda2a08e9e241f9978db63d2f7
  • Pointer size: 131 Bytes
  • Size of remote file: 308 kB
docs/images/f1.png ADDED

Git LFS Details

  • SHA256: 9e2020ca0cc6f995c3b1f7c472376b97839f98f21707c25e34b88ce4bbac27b7
  • Pointer size: 131 Bytes
  • Size of remote file: 785 kB
docs/images/f2.png ADDED

Git LFS Details

  • SHA256: 717aba8f70b3c2f19affcf57721e2347d7726253bdc9b57135ea921880ae89be
  • Pointer size: 131 Bytes
  • Size of remote file: 266 kB
docs/images/f3.png ADDED

Git LFS Details

  • SHA256: 7574a6cd91b9bf82a7babb3d1edbd3e37b023c6dbfce6fe9c6da893c19c0d632
  • Pointer size: 131 Bytes
  • Size of remote file: 407 kB
docs/images/f4.png ADDED

Git LFS Details

  • SHA256: e52eaae269adc3fdfe2bc522fdf671d5305a9c876dafa613967db0688a024b64
  • Pointer size: 131 Bytes
  • Size of remote file: 548 kB
docs/images/f5.png ADDED

Git LFS Details

  • SHA256: c2ef64a745e94b09903e19fca8bccec6489e87739cacf95c7e892e6bcad7007b
  • Pointer size: 131 Bytes
  • Size of remote file: 218 kB
docs/images/f6.png ADDED

Git LFS Details

  • SHA256: 422a319095aa503958fecda22e8a3d2ac7ad0814ef90622c983cc4acf0f0cfb8
  • Pointer size: 132 Bytes
  • Size of remote file: 1.42 MB
docs/images/f7.png ADDED

Git LFS Details

  • SHA256: 63f4dc8dcecedeea9d8db1566c53ee4f652eca110eef40d104b9c887ee46346a
  • Pointer size: 131 Bytes
  • Size of remote file: 213 kB
docs/images/f8.png ADDED

Git LFS Details

  • SHA256: 28fff1594defbaaa7eba77b7257c2794bae035ebe9109587b2267198a4286b81
  • Pointer size: 131 Bytes
  • Size of remote file: 116 kB
docs/images/f9.png ADDED

Git LFS Details

  • SHA256: a42c1db8546a993aaee0c8e80858062596fb4ca6d7eca9984468b208671f1756
  • Pointer size: 131 Bytes
  • Size of remote file: 442 kB
docs/images/ico.png ADDED
docs/images/r1.png ADDED

Git LFS Details

  • SHA256: 6bc9d635d1506e09fb10377391100997d9dd453096d116171caa8a1a07ccbaca
  • Pointer size: 131 Bytes
  • Size of remote file: 261 kB
docs/images/r2.png ADDED

Git LFS Details

  • SHA256: 2b32e37887010b788154a694e37a9a0d78f1b15eb5d2e5df79da8e2d635ce4c8
  • Pointer size: 131 Bytes
  • Size of remote file: 423 kB
docs/images/r3.png ADDED

Git LFS Details

  • SHA256: e5cadbbc0dffb43ea99ba83bf9f635fdd14f932d5c6f7986c4ed3633eed7d657
  • Pointer size: 131 Bytes
  • Size of remote file: 672 kB
docs/images/r4.png ADDED

Git LFS Details

  • SHA256: b7050acf4ec2faaaf24a04c299bac7c28b68768182e8f50900bbefb5f1b72b10
  • Pointer size: 131 Bytes
  • Size of remote file: 477 kB
docs/images/r5.png ADDED

Git LFS Details

  • SHA256: dd5c13356b5d59015b92a303823ceef4012084b5d06fa0acbee960d8d49337d9
  • Pointer size: 131 Bytes
  • Size of remote file: 521 kB
docs/images/r6.png ADDED

Git LFS Details

  • SHA256: 69790ba69f4fdc9c5dd43d4901c9ac3c3d2f9cf01671e1e36e6353d3cb3a5037
  • Pointer size: 131 Bytes
  • Size of remote file: 559 kB
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "pad_token_id": 32000,
6
+ "transformers_version": "4.49.0"
7
+ }
preprocessor_config.json ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoImageProcessor": "microsoft/Phi-3.5-vision-instruct--processing_phi3_v.Phi3VImageProcessor",
4
+ "AutoProcessor": "microsoft/Phi-3.5-vision-instruct--processing_phi3_v.Phi3VProcessor"
5
+ },
6
+ "do_convert_rgb": true,
7
+ "image_mean": [
8
+ 0.48145466,
9
+ 0.4578275,
10
+ 0.40821073
11
+ ],
12
+ "image_processor_type": "Phi3VImageProcessor",
13
+ "image_std": [
14
+ 0.26862954,
15
+ 0.26130258,
16
+ 0.27577711
17
+ ],
18
+ "num_crops": 7,
19
+ "num_img_tokens": 144,
20
+ "processor_class": "Phi3VProcessor"
21
+ }
processing_phi3_v.py ADDED
@@ -0,0 +1,478 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """
17
+ Processor class for Phi3-V.
18
+ """
19
+ import re
20
+ from typing import List, Optional, Union
21
+
22
+ import torch
23
+
24
+ import transformers
25
+ from transformers.feature_extraction_utils import BatchFeature
26
+ from transformers.image_utils import ImageInput
27
+ from transformers.processing_utils import ProcessorMixin
28
+ from transformers.tokenization_utils_base import PaddingStrategy, TextInput, TruncationStrategy
29
+ from transformers.utils import TensorType
30
+
31
+
32
+ """Image processor class for Phi3-V."""
33
+
34
+ from typing import List, Optional, Union
35
+
36
+ import numpy as np
37
+
38
+ from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
39
+ from transformers.image_transforms import (
40
+ convert_to_rgb,
41
+ )
42
+ from transformers.image_utils import (
43
+ OPENAI_CLIP_MEAN,
44
+ OPENAI_CLIP_STD,
45
+ ImageInput,
46
+ make_list_of_images,
47
+ valid_images,
48
+ )
49
+ from transformers.utils import TensorType, is_vision_available, logging
50
+
51
+ from transformers import AutoImageProcessor
52
+
53
+ logger = logging.get_logger(__name__)
54
+
55
+
56
+ if is_vision_available():
57
+ from PIL import Image
58
+
59
+ import torch
60
+ import torchvision
61
+
62
+ def padding_336(b):
63
+ width, height = b.size
64
+ tar = int(np.ceil(height / 336) * 336)
65
+ top_padding = int((tar - height)/2)
66
+ bottom_padding = tar - height - top_padding
67
+ left_padding = 0
68
+ right_padding = 0
69
+ b = torchvision.transforms.functional.pad(b, [left_padding, top_padding, right_padding, bottom_padding], fill=[255,255,255])
70
+
71
+ return b
72
+
73
+ def calc_padded_size(width, height, padding_unit=336):
74
+ target_height = int(np.ceil(height / padding_unit) * padding_unit)
75
+ top_padding = int((target_height - height) / 2)
76
+ bottom_padding = target_height - height - top_padding
77
+ left_padding = 0
78
+ right_padding = 0
79
+ padded_width = width + left_padding + right_padding
80
+ padded_height = height + top_padding + bottom_padding
81
+ return padded_width, padded_height
82
+
83
+ def HD_transform(img, hd_num=16):
84
+ width, height = img.size
85
+ trans = False
86
+ if width < height:
87
+ img = img.transpose(Image.TRANSPOSE)
88
+ trans = True
89
+ width, height = img.size
90
+ ratio = (width/ height)
91
+ scale = 1
92
+ while scale*np.ceil(scale/ratio) <= hd_num:
93
+ scale += 1
94
+ scale -= 1
95
+ new_w = int(scale * 336)
96
+ new_h = int(new_w / ratio)
97
+
98
+ img = torchvision.transforms.functional.resize(img, [new_h, new_w],)
99
+ img = padding_336(img)
100
+ width, height = img.size
101
+ if trans:
102
+ img = img.transpose(Image.TRANSPOSE)
103
+
104
+ return img
105
+
106
+ def calc_hd_transform_size(width, height, hd_num=16):
107
+ transposed = False
108
+ if width < height:
109
+ width, height = height, width
110
+ transposed = True
111
+
112
+ ratio = width / height
113
+ scale = 1
114
+ while scale * np.ceil(scale / ratio) <= hd_num:
115
+ scale += 1
116
+ scale -= 1
117
+
118
+ new_width = int(scale * 336)
119
+ new_height = int(new_width / ratio)
120
+
121
+ padded_width, padded_height = calc_padded_size(new_width, new_height)
122
+
123
+ if transposed:
124
+ padded_width, padded_height = padded_height, padded_width
125
+
126
+ return padded_width, padded_height
127
+
128
+ def pad_to_max_num_crops_tensor(images, max_crops=5):
129
+ """
130
+ images: B x 3 x H x W, B<=max_crops
131
+ """
132
+ B, _, H, W = images.shape
133
+ if B < max_crops:
134
+ pad = torch.zeros(max_crops - B, 3, H, W, dtype=images.dtype, device=images.device)
135
+ images = torch.cat([images, pad], dim=0)
136
+ return images
137
+
138
+
139
+ class Phi3VImageProcessor(BaseImageProcessor):
140
+ r"""
141
+ Constructs a Phi3 image processor. Based on [`CLIPImageProcessor`] with incorporation of additional techniques
142
+ for processing high resolution images as explained in the [InternLM-XComposer2-4KHD](https://arxiv.org/pdf/2404.06512)
143
+
144
+ Args:
145
+ image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`):
146
+ Mean to use if normalizing the image. This is a float or list of floats the length of the number of
147
+ channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
148
+ image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`):
149
+ Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
150
+ number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
151
+ Can be overridden by the `image_std` parameter in the `preprocess` method.
152
+ do_convert_rgb (`bool`, *optional*, defaults to `True`):
153
+ Whether to convert the image to RGB.
154
+ """
155
+
156
+ model_input_names = ["pixel_values"]
157
+
158
+ def __init__(
159
+ self,
160
+ num_crops: int = 1,
161
+ image_mean: Optional[Union[float, List[float]]] = None,
162
+ image_std: Optional[Union[float, List[float]]] = None,
163
+ do_convert_rgb: bool = True,
164
+ **kwargs,
165
+ ) -> None:
166
+ super().__init__(**kwargs)
167
+ self.num_crops = num_crops
168
+ self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
169
+ self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
170
+ self.do_convert_rgb = do_convert_rgb
171
+
172
+ def calc_num_image_tokens(
173
+ self,
174
+ images: ImageInput
175
+ ):
176
+ """ Calculate the number of image tokens for each image.
177
+ Args:
178
+ images (`ImageInput`):
179
+ Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
180
+ passing in images with pixel values between 0 and 1, set `do_rescale=False`.
181
+ """
182
+ images = make_list_of_images(images)
183
+
184
+ if not valid_images(images):
185
+ raise ValueError(
186
+ "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
187
+ "torch.Tensor, tf.Tensor or jax.ndarray."
188
+ )
189
+
190
+ images = [image.convert('RGB') for image in images]
191
+ # (H, W, C)
192
+ elems = [HD_transform(im, hd_num = self.num_crops) for im in images]
193
+ shapes = [[im.size[1], im.size[0]] for im in elems]
194
+ num_img_tokens = [int((h//336*w//336+1)*144 + 1 + (h//336+1)*12) for h, w in shapes]
195
+ return num_img_tokens
196
+
197
+ def calc_num_image_tokens_from_image_size(self, width, height):
198
+ """
199
+ Calculate the number of image tokens for a given image size.
200
+ Args:
201
+ width (`int`): Width of the image.
202
+ height (`int`): Height of the image.
203
+ """
204
+ new_width, new_height = calc_hd_transform_size(width, height, hd_num=self.num_crops)
205
+ num_img_tokens = int((new_height // 336 * new_width // 336 + 1) * 144 + 1 + (new_height // 336 + 1) * 12)
206
+ return num_img_tokens
207
+
208
+ def preprocess(
209
+ self,
210
+ images: ImageInput,
211
+ image_mean: Optional[Union[float, List[float]]] = None,
212
+ image_std: Optional[Union[float, List[float]]] = None,
213
+ do_convert_rgb: bool = None,
214
+ return_tensors: Optional[Union[str, TensorType]] = None,
215
+ ):
216
+ """
217
+ Args:
218
+ images (`ImageInput`):
219
+ Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
220
+ passing in images with pixel values between 0 and 1, set `do_rescale=False`.
221
+ image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
222
+ Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
223
+ image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
224
+ Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
225
+ `True`.
226
+ do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
227
+ Whether to convert the image to RGB.
228
+ return_tensors (`str` or `TensorType`, *optional*):
229
+ The type of tensors to return. Can be one of:
230
+ - Unset: Return a list of `np.ndarray`.
231
+ - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
232
+ - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
233
+ - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
234
+ - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
235
+ """
236
+ image_mean = image_mean if image_mean is not None else self.image_mean
237
+ image_std = image_std if image_std is not None else self.image_std
238
+ do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
239
+
240
+ images = make_list_of_images(images)
241
+
242
+ if not valid_images(images):
243
+ raise ValueError(
244
+ "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
245
+ "torch.Tensor, tf.Tensor or jax.ndarray."
246
+ )
247
+
248
+ if do_convert_rgb:
249
+ images = [convert_to_rgb(image) for image in images]
250
+
251
+ image_sizes = []
252
+ img_processor = torchvision.transforms.Compose([
253
+ torchvision.transforms.ToTensor(),
254
+ torchvision.transforms.Normalize(image_mean, image_std)
255
+ ])
256
+
257
+ # PIL images
258
+ # HD_transform pad images to size of multiiply of 336, 336
259
+ # convert to RGB first
260
+ images = [image.convert('RGB') for image in images]
261
+ elems = [HD_transform(im, hd_num = self.num_crops) for im in images]
262
+ # tensor transform and normalize
263
+ hd_images = [img_processor(im) for im in elems]
264
+ # create global image
265
+ global_image = [torch.nn.functional.interpolate(im.unsqueeze(0).float(), size=(336, 336), mode='bicubic',).to(im.dtype) for im in hd_images]
266
+
267
+ # [(3, h, w)], where h, w is multiple of 336
268
+ shapes = [[im.size(1), im.size(2)] for im in hd_images]
269
+ num_img_tokens = [int(((h//336)*(w//336)+1)*144 + 1 + (h//336+1)*12) for h, w in shapes]
270
+ # reshape to channel dimension -> (num_images, num_crops, 3, 336, 336)
271
+ # (1, 3, h//336, 336, w//336, 336) -> (1, h//336, w//336, 3, 336, 336) -> (h//336*w//336, 3, 336, 336)
272
+ hd_images_reshape = [im.reshape(1, 3, h//336, 336, w//336, 336).permute(0,2,4,1,3,5).reshape(-1, 3, 336, 336).contiguous() for im, (h, w) in zip(hd_images, shapes)]
273
+ # concat global image and local image
274
+ hd_images_reshape = [torch.cat([_global_image] + [_im], dim=0) for _global_image, _im in zip(global_image, hd_images_reshape)]
275
+
276
+ # pad to max_num_crops
277
+ image_transformed = [pad_to_max_num_crops_tensor(im, self.num_crops+1) for im in hd_images_reshape]
278
+ image_transformed = torch.stack(image_transformed, dim=0)
279
+ image_sizes = [torch.LongTensor(_shapes) for _shapes in shapes]
280
+ padded_images = image_transformed
281
+ image_sizes = shapes
282
+
283
+ data = {"pixel_values": padded_images,
284
+ "image_sizes": image_sizes,
285
+ "num_img_tokens": num_img_tokens
286
+ }
287
+
288
+ return BatchFeature(data=data, tensor_type=return_tensors)
289
+
290
+ AutoImageProcessor.register("Phi3VImageProcessor", Phi3VImageProcessor)
291
+
292
+ transformers.Phi3VImageProcessor = Phi3VImageProcessor
293
+
294
+ class Phi3VProcessor(ProcessorMixin):
295
+ r"""
296
+ Constructs a Phi3-V processor which wraps a Phi3-V image processor and a LLaMa tokenizer into a single processor.
297
+
298
+ [`Phi3VProcessor`] offers all the functionalities of [`Phi3VImageProcessor`] and [`LlamaTokenizerFast`]. See the
299
+ [`~Phi3VProcessor.__call__`] and [`~Phi3VProcessor.decode`] for more information.
300
+
301
+ Args:
302
+ image_processor ([`Phi3VImageProcessor`], *optional*):
303
+ The image processor is a required input.
304
+ tokenizer ([`LlamaTokenizerFast`], *optional*):
305
+ The tokenizer is a required input.
306
+ """
307
+
308
+ attributes = ["image_processor", "tokenizer"]
309
+ image_processor_class = "Phi3VImageProcessor"
310
+ tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast")
311
+ special_image_token = "<|image|>"
312
+
313
+ def __init__(self, image_processor, tokenizer):
314
+ self.image_processor = image_processor
315
+ self.tokenizer = tokenizer
316
+ self.num_img_tokens = image_processor.num_img_tokens
317
+ self.img_tokens = [f"<|image_{i+1}|>" for i in range(1000000)]
318
+
319
+ def __call__(
320
+ self,
321
+ text: Union[TextInput, List[TextInput]],
322
+ images: ImageInput = None,
323
+ padding: Union[bool, str, PaddingStrategy] = False,
324
+ truncation: Union[bool, str, TruncationStrategy] = None,
325
+ max_length=None,
326
+ return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
327
+ ) -> BatchFeature:
328
+ """
329
+ Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
330
+ and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode
331
+ the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
332
+ Phi3ImageProcessor's [`~Phi3ImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
333
+ of the above two methods for more information.
334
+
335
+ Args:
336
+ text (`str`, `List[str]`, `List[List[str]]`):
337
+ The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
338
+ (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
339
+ `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
340
+ images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
341
+ The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
342
+ tensor. Both channels-first and channels-last formats are supported.
343
+ padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
344
+ Select a strategy to pad the returned sequences (according to the model's padding side and padding
345
+ index) among:
346
+ - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
347
+ sequence if provided).
348
+ - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
349
+ acceptable input length for the model if that argument is not provided.
350
+ - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
351
+ lengths).
352
+ max_length (`int`, *optional*):
353
+ Maximum length of the returned list and optionally padding length (see above).
354
+ truncation (`bool`, *optional*):
355
+ Activates truncation to cut input sequences longer than `max_length` to `max_length`.
356
+ return_tensors (`str` or [`~utils.TensorType`], *optional*):
357
+ If set, will return tensors of a particular framework. Acceptable values are:
358
+
359
+ - `'tf'`: Return TensorFlow `tf.constant` objects.
360
+ - `'pt'`: Return PyTorch `torch.Tensor` objects.
361
+ - `'np'`: Return NumPy `np.ndarray` objects.
362
+ - `'jax'`: Return JAX `jnp.ndarray` objects.
363
+
364
+ Returns:
365
+ [`BatchFeature`]: A [`BatchFeature`] with the following fields:
366
+
367
+ - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
368
+ - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
369
+ `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
370
+ `None`).
371
+ - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
372
+ """
373
+ if images is not None:
374
+ image_inputs = self.image_processor(images, return_tensors=return_tensors)
375
+ else:
376
+ image_inputs = {}
377
+ inputs = self._convert_images_texts_to_inputs(image_inputs, text, padding=padding, truncation=truncation, max_length=max_length, return_tensors=return_tensors)
378
+ return inputs
379
+
380
+ def calc_num_image_tokens(self, images: ImageInput):
381
+ """ Calculate the number of image tokens for each image.
382
+ Args:
383
+ images (`ImageInput`):
384
+ Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
385
+ passing in images with pixel values between 0 and 1, set `do_rescale=False`.
386
+ """
387
+ return self.image_processor.calc_num_image_tokens(images)
388
+
389
+ def calc_num_image_tokens_from_image_size(self, width, height):
390
+ """ Calculate the number of image token for an image with given width and height.
391
+ Args:
392
+ width (`int`):
393
+ Width of the image.
394
+ height (`int`):
395
+ Height of the image.
396
+ """
397
+ return self.image_processor.calc_num_image_tokens_from_image_size(width, height)
398
+
399
+
400
+ @property
401
+ def special_image_token_id(self):
402
+ return self.tokenizer.convert_tokens_to_ids(self.special_image_token)
403
+
404
+ def get_special_image_token_id(self):
405
+ return self.tokenizer.convert_tokens_to_ids(self.special_image_token)
406
+
407
+ def _convert_images_texts_to_inputs(self, images, texts, padding=False, truncation=None, max_length=None, return_tensors=None):
408
+
409
+ if not len(images):
410
+ model_inputs = self.tokenizer(texts, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length)
411
+ return BatchFeature(data={**model_inputs})
412
+
413
+ pattern = r"<\|image_\d+\|>"
414
+ prompt_chunks = [self.tokenizer(chunk).input_ids for chunk in re.split(pattern, texts)]
415
+
416
+ if 'num_img_tokens' in images:
417
+ num_img_tokens = images['num_img_tokens']
418
+ else:
419
+ assert 'num_crops' in images, 'num_crops must be provided in images if num_img_tokens is not provided'
420
+ num_crops = images['num_crops']
421
+ num_img_tokens = [_num_crops * self.num_img_tokens for _num_crops in num_crops]
422
+
423
+ images, image_sizes = images['pixel_values'], images['image_sizes']
424
+
425
+ # image_tags needs to start from 1 to n
426
+ image_tags = re.findall(pattern, texts)
427
+ # image_ids = [int(s.split("|")[1].split("_")[-1]) * -1 for s in image_tags]
428
+ # image_ids_pad = [[iid]*num_img_tokens[i] for i, iid in enumerate(image_ids)]
429
+ image_ids = [int(s.split("|")[1].split("_")[-1]) for s in image_tags]
430
+ unique_image_ids = sorted(list(set(image_ids)))
431
+ # image_ids must start from 1, and must be continuous int, e.g. [1, 2, 3], cannot be [1, 4, 5]
432
+ # check the condition
433
+ assert unique_image_ids == list(range(1, len(unique_image_ids)+1)), f"image_ids must start from 1, and must be continuous int, e.g. [1, 2, 3], cannot be {unique_image_ids}"
434
+ # total images must be the same as the number of image tags
435
+ assert len(unique_image_ids) == len(images), f"total images must be the same as the number of image tags, got {len(unique_image_ids)} image tags and {len(images)} images"
436
+
437
+ image_ids_pad = [[-iid]*num_img_tokens[iid-1] for iid in image_ids]
438
+
439
+ def insert_separator(X, sep_list):
440
+ if len(X) > len(sep_list):
441
+ sep_list.append([])
442
+ return [ele for sublist in zip(X, sep_list) for ele in sublist]
443
+ input_ids = []
444
+ offset = 0
445
+ for x in insert_separator(prompt_chunks, image_ids_pad):
446
+ input_ids.extend(x[offset:])
447
+
448
+ input_ids = torch.tensor(input_ids, dtype=torch.long).unsqueeze(0)
449
+ attention_mask = (input_ids > -1000000).to(torch.long)
450
+
451
+ return BatchFeature(data={"input_ids": input_ids,
452
+ "attention_mask": attention_mask,
453
+ "pixel_values": images,
454
+ "image_sizes": image_sizes})
455
+
456
+
457
+ # Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
458
+ def batch_decode(self, *args, **kwargs):
459
+ """
460
+ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
461
+ refer to the docstring of this method for more information.
462
+ """
463
+ return self.tokenizer.batch_decode(*args, **kwargs)
464
+
465
+ # Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
466
+ def decode(self, *args, **kwargs):
467
+ """
468
+ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
469
+ the docstring of this method for more information.
470
+ """
471
+ return self.tokenizer.decode(*args, **kwargs)
472
+
473
+ @property
474
+ # Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
475
+ def model_input_names(self):
476
+ tokenizer_input_names = self.tokenizer.model_input_names
477
+ image_processor_input_names = self.image_processor.model_input_names
478
+ return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
processor_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoProcessor": "processing_phi3_v.Phi3VProcessor"
4
+ },
5
+ "processor_class": "Phi3VProcessor"
6
+ }
pytorch_model-00001-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c98b9afd9a9e563eadd33f582659e540f6c44f1db46a917a84193401af948051
3
+ size 4971354151
pytorch_model-00002-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8fe3b5c8fe3402972d668f9725f8dba71f7dd817046e2903a8a4309a624bf158
3
+ size 3519111166
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,600 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 8490244096
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00002-of-00002.bin",
7
+ "model.embed_tokens.weight": "pytorch_model-00001-of-00002.bin",
8
+ "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
9
+ "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
10
+ "model.layers.0.mlp.gate_up_proj.weight": "pytorch_model-00001-of-00002.bin",
11
+ "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
12
+ "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
13
+ "model.layers.0.self_attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
14
+ "model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
15
+ "model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
16
+ "model.layers.1.mlp.gate_up_proj.weight": "pytorch_model-00001-of-00002.bin",
17
+ "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
18
+ "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
19
+ "model.layers.1.self_attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
20
+ "model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
21
+ "model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
22
+ "model.layers.10.mlp.gate_up_proj.weight": "pytorch_model-00001-of-00002.bin",
23
+ "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
24
+ "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
25
+ "model.layers.10.self_attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
26
+ "model.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
27
+ "model.layers.11.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
28
+ "model.layers.11.mlp.gate_up_proj.weight": "pytorch_model-00001-of-00002.bin",
29
+ "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
30
+ "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
31
+ "model.layers.11.self_attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
32
+ "model.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
33
+ "model.layers.12.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
34
+ "model.layers.12.mlp.gate_up_proj.weight": "pytorch_model-00001-of-00002.bin",
35
+ "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
36
+ "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
37
+ "model.layers.12.self_attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
38
+ "model.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
39
+ "model.layers.13.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
40
+ "model.layers.13.mlp.gate_up_proj.weight": "pytorch_model-00001-of-00002.bin",
41
+ "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
42
+ "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
43
+ "model.layers.13.self_attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
44
+ "model.layers.14.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
45
+ "model.layers.14.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
46
+ "model.layers.14.mlp.gate_up_proj.weight": "pytorch_model-00001-of-00002.bin",
47
+ "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
48
+ "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
49
+ "model.layers.14.self_attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
50
+ "model.layers.15.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
51
+ "model.layers.15.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
52
+ "model.layers.15.mlp.gate_up_proj.weight": "pytorch_model-00001-of-00002.bin",
53
+ "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
54
+ "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
55
+ "model.layers.15.self_attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
56
+ "model.layers.16.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
57
+ "model.layers.16.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
58
+ "model.layers.16.mlp.gate_up_proj.weight": "pytorch_model-00001-of-00002.bin",
59
+ "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
60
+ "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
61
+ "model.layers.16.self_attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
62
+ "model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
63
+ "model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
64
+ "model.layers.17.mlp.gate_up_proj.weight": "pytorch_model-00002-of-00002.bin",
65
+ "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
66
+ "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
67
+ "model.layers.17.self_attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
68
+ "model.layers.18.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
69
+ "model.layers.18.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
70
+ "model.layers.18.mlp.gate_up_proj.weight": "pytorch_model-00002-of-00002.bin",
71
+ "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
72
+ "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
73
+ "model.layers.18.self_attn.qkv_proj.weight": "pytorch_model-00002-of-00002.bin",
74
+ "model.layers.19.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
75
+ "model.layers.19.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
76
+ "model.layers.19.mlp.gate_up_proj.weight": "pytorch_model-00002-of-00002.bin",
77
+ "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
78
+ "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
79
+ "model.layers.19.self_attn.qkv_proj.weight": "pytorch_model-00002-of-00002.bin",
80
+ "model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
81
+ "model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
82
+ "model.layers.2.mlp.gate_up_proj.weight": "pytorch_model-00001-of-00002.bin",
83
+ "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
84
+ "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
85
+ "model.layers.2.self_attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
86
+ "model.layers.20.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
87
+ "model.layers.20.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
88
+ "model.layers.20.mlp.gate_up_proj.weight": "pytorch_model-00002-of-00002.bin",
89
+ "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
90
+ "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
91
+ "model.layers.20.self_attn.qkv_proj.weight": "pytorch_model-00002-of-00002.bin",
92
+ "model.layers.21.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
93
+ "model.layers.21.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
94
+ "model.layers.21.mlp.gate_up_proj.weight": "pytorch_model-00002-of-00002.bin",
95
+ "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
96
+ "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
97
+ "model.layers.21.self_attn.qkv_proj.weight": "pytorch_model-00002-of-00002.bin",
98
+ "model.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
99
+ "model.layers.22.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
100
+ "model.layers.22.mlp.gate_up_proj.weight": "pytorch_model-00002-of-00002.bin",
101
+ "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
102
+ "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
103
+ "model.layers.22.self_attn.qkv_proj.weight": "pytorch_model-00002-of-00002.bin",
104
+ "model.layers.23.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
105
+ "model.layers.23.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
106
+ "model.layers.23.mlp.gate_up_proj.weight": "pytorch_model-00002-of-00002.bin",
107
+ "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
108
+ "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
109
+ "model.layers.23.self_attn.qkv_proj.weight": "pytorch_model-00002-of-00002.bin",
110
+ "model.layers.24.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
111
+ "model.layers.24.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
112
+ "model.layers.24.mlp.gate_up_proj.weight": "pytorch_model-00002-of-00002.bin",
113
+ "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
114
+ "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
115
+ "model.layers.24.self_attn.qkv_proj.weight": "pytorch_model-00002-of-00002.bin",
116
+ "model.layers.25.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
117
+ "model.layers.25.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
118
+ "model.layers.25.mlp.gate_up_proj.weight": "pytorch_model-00002-of-00002.bin",
119
+ "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
120
+ "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
121
+ "model.layers.25.self_attn.qkv_proj.weight": "pytorch_model-00002-of-00002.bin",
122
+ "model.layers.26.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
123
+ "model.layers.26.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
124
+ "model.layers.26.mlp.gate_up_proj.weight": "pytorch_model-00002-of-00002.bin",
125
+ "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
126
+ "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
127
+ "model.layers.26.self_attn.qkv_proj.weight": "pytorch_model-00002-of-00002.bin",
128
+ "model.layers.27.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
129
+ "model.layers.27.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
130
+ "model.layers.27.mlp.gate_up_proj.weight": "pytorch_model-00002-of-00002.bin",
131
+ "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
132
+ "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
133
+ "model.layers.27.self_attn.qkv_proj.weight": "pytorch_model-00002-of-00002.bin",
134
+ "model.layers.28.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
135
+ "model.layers.28.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
136
+ "model.layers.28.mlp.gate_up_proj.weight": "pytorch_model-00002-of-00002.bin",
137
+ "model.layers.28.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
138
+ "model.layers.28.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
139
+ "model.layers.28.self_attn.qkv_proj.weight": "pytorch_model-00002-of-00002.bin",
140
+ "model.layers.29.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
141
+ "model.layers.29.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
142
+ "model.layers.29.mlp.gate_up_proj.weight": "pytorch_model-00002-of-00002.bin",
143
+ "model.layers.29.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
144
+ "model.layers.29.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
145
+ "model.layers.29.self_attn.qkv_proj.weight": "pytorch_model-00002-of-00002.bin",
146
+ "model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
147
+ "model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
148
+ "model.layers.3.mlp.gate_up_proj.weight": "pytorch_model-00001-of-00002.bin",
149
+ "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
150
+ "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
151
+ "model.layers.3.self_attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
152
+ "model.layers.30.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
153
+ "model.layers.30.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
154
+ "model.layers.30.mlp.gate_up_proj.weight": "pytorch_model-00002-of-00002.bin",
155
+ "model.layers.30.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
156
+ "model.layers.30.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
157
+ "model.layers.30.self_attn.qkv_proj.weight": "pytorch_model-00002-of-00002.bin",
158
+ "model.layers.31.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
159
+ "model.layers.31.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
160
+ "model.layers.31.mlp.gate_up_proj.weight": "pytorch_model-00002-of-00002.bin",
161
+ "model.layers.31.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
162
+ "model.layers.31.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
163
+ "model.layers.31.self_attn.qkv_proj.weight": "pytorch_model-00002-of-00002.bin",
164
+ "model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
165
+ "model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
166
+ "model.layers.4.mlp.gate_up_proj.weight": "pytorch_model-00001-of-00002.bin",
167
+ "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
168
+ "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
169
+ "model.layers.4.self_attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
170
+ "model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
171
+ "model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
172
+ "model.layers.5.mlp.gate_up_proj.weight": "pytorch_model-00001-of-00002.bin",
173
+ "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
174
+ "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
175
+ "model.layers.5.self_attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
176
+ "model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
177
+ "model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
178
+ "model.layers.6.mlp.gate_up_proj.weight": "pytorch_model-00001-of-00002.bin",
179
+ "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
180
+ "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
181
+ "model.layers.6.self_attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
182
+ "model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
183
+ "model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
184
+ "model.layers.7.mlp.gate_up_proj.weight": "pytorch_model-00001-of-00002.bin",
185
+ "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
186
+ "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
187
+ "model.layers.7.self_attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
188
+ "model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
189
+ "model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
190
+ "model.layers.8.mlp.gate_up_proj.weight": "pytorch_model-00001-of-00002.bin",
191
+ "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
192
+ "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
193
+ "model.layers.8.self_attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
194
+ "model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
195
+ "model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
196
+ "model.layers.9.mlp.gate_up_proj.weight": "pytorch_model-00001-of-00002.bin",
197
+ "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
198
+ "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
199
+ "model.layers.9.self_attn.qkv_proj.weight": "pytorch_model-00001-of-00002.bin",
200
+ "model.norm.weight": "pytorch_model-00002-of-00002.bin",
201
+ "model.vision_embed_tokens.glb_GN": "pytorch_model-00001-of-00002.bin",
202
+ "model.vision_embed_tokens.img_processor.vision_model.embeddings.class_embedding": "pytorch_model-00001-of-00002.bin",
203
+ "model.vision_embed_tokens.img_processor.vision_model.embeddings.patch_embedding.weight": "pytorch_model-00001-of-00002.bin",
204
+ "model.vision_embed_tokens.img_processor.vision_model.embeddings.position_embedding.weight": "pytorch_model-00001-of-00002.bin",
205
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.0.layer_norm1.bias": "pytorch_model-00001-of-00002.bin",
206
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.0.layer_norm1.weight": "pytorch_model-00001-of-00002.bin",
207
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.0.layer_norm2.bias": "pytorch_model-00001-of-00002.bin",
208
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.0.layer_norm2.weight": "pytorch_model-00001-of-00002.bin",
209
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.0.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
210
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.0.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
211
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.0.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
212
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.0.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
213
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.0.self_attn.k_proj.bias": "pytorch_model-00001-of-00002.bin",
214
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
215
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.0.self_attn.out_proj.bias": "pytorch_model-00001-of-00002.bin",
216
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.0.self_attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
217
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.0.self_attn.q_proj.bias": "pytorch_model-00001-of-00002.bin",
218
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
219
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.0.self_attn.v_proj.bias": "pytorch_model-00001-of-00002.bin",
220
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
221
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.1.layer_norm1.bias": "pytorch_model-00001-of-00002.bin",
222
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.1.layer_norm1.weight": "pytorch_model-00001-of-00002.bin",
223
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.1.layer_norm2.bias": "pytorch_model-00001-of-00002.bin",
224
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.1.layer_norm2.weight": "pytorch_model-00001-of-00002.bin",
225
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.1.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
226
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.1.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
227
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.1.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
228
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.1.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
229
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.1.self_attn.k_proj.bias": "pytorch_model-00001-of-00002.bin",
230
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
231
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.1.self_attn.out_proj.bias": "pytorch_model-00001-of-00002.bin",
232
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.1.self_attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
233
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.1.self_attn.q_proj.bias": "pytorch_model-00001-of-00002.bin",
234
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
235
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.1.self_attn.v_proj.bias": "pytorch_model-00001-of-00002.bin",
236
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
237
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.10.layer_norm1.bias": "pytorch_model-00001-of-00002.bin",
238
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.10.layer_norm1.weight": "pytorch_model-00001-of-00002.bin",
239
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.10.layer_norm2.bias": "pytorch_model-00001-of-00002.bin",
240
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.10.layer_norm2.weight": "pytorch_model-00001-of-00002.bin",
241
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.10.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
242
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.10.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
243
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.10.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
244
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.10.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
245
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.10.self_attn.k_proj.bias": "pytorch_model-00001-of-00002.bin",
246
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
247
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.10.self_attn.out_proj.bias": "pytorch_model-00001-of-00002.bin",
248
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.10.self_attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
249
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.10.self_attn.q_proj.bias": "pytorch_model-00001-of-00002.bin",
250
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
251
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.10.self_attn.v_proj.bias": "pytorch_model-00001-of-00002.bin",
252
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
253
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.11.layer_norm1.bias": "pytorch_model-00001-of-00002.bin",
254
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.11.layer_norm1.weight": "pytorch_model-00001-of-00002.bin",
255
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.11.layer_norm2.bias": "pytorch_model-00001-of-00002.bin",
256
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.11.layer_norm2.weight": "pytorch_model-00001-of-00002.bin",
257
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.11.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
258
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.11.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
259
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.11.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
260
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.11.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
261
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.11.self_attn.k_proj.bias": "pytorch_model-00001-of-00002.bin",
262
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
263
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.11.self_attn.out_proj.bias": "pytorch_model-00001-of-00002.bin",
264
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.11.self_attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
265
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.11.self_attn.q_proj.bias": "pytorch_model-00001-of-00002.bin",
266
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
267
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.11.self_attn.v_proj.bias": "pytorch_model-00001-of-00002.bin",
268
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
269
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.12.layer_norm1.bias": "pytorch_model-00001-of-00002.bin",
270
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.12.layer_norm1.weight": "pytorch_model-00001-of-00002.bin",
271
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.12.layer_norm2.bias": "pytorch_model-00001-of-00002.bin",
272
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.12.layer_norm2.weight": "pytorch_model-00001-of-00002.bin",
273
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.12.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
274
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.12.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
275
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.12.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
276
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.12.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
277
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.12.self_attn.k_proj.bias": "pytorch_model-00001-of-00002.bin",
278
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.12.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
279
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.12.self_attn.out_proj.bias": "pytorch_model-00001-of-00002.bin",
280
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.12.self_attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
281
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.12.self_attn.q_proj.bias": "pytorch_model-00001-of-00002.bin",
282
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.12.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
283
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.12.self_attn.v_proj.bias": "pytorch_model-00001-of-00002.bin",
284
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.12.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
285
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.13.layer_norm1.bias": "pytorch_model-00001-of-00002.bin",
286
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.13.layer_norm1.weight": "pytorch_model-00001-of-00002.bin",
287
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.13.layer_norm2.bias": "pytorch_model-00001-of-00002.bin",
288
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.13.layer_norm2.weight": "pytorch_model-00001-of-00002.bin",
289
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.13.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
290
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.13.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
291
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.13.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
292
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.13.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
293
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.13.self_attn.k_proj.bias": "pytorch_model-00001-of-00002.bin",
294
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.13.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
295
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.13.self_attn.out_proj.bias": "pytorch_model-00001-of-00002.bin",
296
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.13.self_attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
297
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.13.self_attn.q_proj.bias": "pytorch_model-00001-of-00002.bin",
298
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.13.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
299
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.13.self_attn.v_proj.bias": "pytorch_model-00001-of-00002.bin",
300
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.13.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
301
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.14.layer_norm1.bias": "pytorch_model-00001-of-00002.bin",
302
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.14.layer_norm1.weight": "pytorch_model-00001-of-00002.bin",
303
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.14.layer_norm2.bias": "pytorch_model-00001-of-00002.bin",
304
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.14.layer_norm2.weight": "pytorch_model-00001-of-00002.bin",
305
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.14.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
306
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.14.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
307
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.14.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
308
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.14.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
309
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.14.self_attn.k_proj.bias": "pytorch_model-00001-of-00002.bin",
310
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.14.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
311
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.14.self_attn.out_proj.bias": "pytorch_model-00001-of-00002.bin",
312
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.14.self_attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
313
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.14.self_attn.q_proj.bias": "pytorch_model-00001-of-00002.bin",
314
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.14.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
315
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.14.self_attn.v_proj.bias": "pytorch_model-00001-of-00002.bin",
316
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.14.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
317
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.15.layer_norm1.bias": "pytorch_model-00001-of-00002.bin",
318
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.15.layer_norm1.weight": "pytorch_model-00001-of-00002.bin",
319
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.15.layer_norm2.bias": "pytorch_model-00001-of-00002.bin",
320
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.15.layer_norm2.weight": "pytorch_model-00001-of-00002.bin",
321
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.15.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
322
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.15.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
323
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.15.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
324
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.15.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
325
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.15.self_attn.k_proj.bias": "pytorch_model-00001-of-00002.bin",
326
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.15.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
327
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.15.self_attn.out_proj.bias": "pytorch_model-00001-of-00002.bin",
328
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.15.self_attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
329
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.15.self_attn.q_proj.bias": "pytorch_model-00001-of-00002.bin",
330
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.15.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
331
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.15.self_attn.v_proj.bias": "pytorch_model-00001-of-00002.bin",
332
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.15.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
333
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.16.layer_norm1.bias": "pytorch_model-00001-of-00002.bin",
334
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.16.layer_norm1.weight": "pytorch_model-00001-of-00002.bin",
335
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.16.layer_norm2.bias": "pytorch_model-00001-of-00002.bin",
336
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.16.layer_norm2.weight": "pytorch_model-00001-of-00002.bin",
337
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.16.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
338
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.16.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
339
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.16.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
340
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.16.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
341
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.16.self_attn.k_proj.bias": "pytorch_model-00001-of-00002.bin",
342
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.16.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
343
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.16.self_attn.out_proj.bias": "pytorch_model-00001-of-00002.bin",
344
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.16.self_attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
345
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.16.self_attn.q_proj.bias": "pytorch_model-00001-of-00002.bin",
346
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.16.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
347
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.16.self_attn.v_proj.bias": "pytorch_model-00001-of-00002.bin",
348
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.16.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
349
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.17.layer_norm1.bias": "pytorch_model-00001-of-00002.bin",
350
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.17.layer_norm1.weight": "pytorch_model-00001-of-00002.bin",
351
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.17.layer_norm2.bias": "pytorch_model-00001-of-00002.bin",
352
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.17.layer_norm2.weight": "pytorch_model-00001-of-00002.bin",
353
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.17.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
354
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.17.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
355
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.17.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
356
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.17.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
357
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.17.self_attn.k_proj.bias": "pytorch_model-00001-of-00002.bin",
358
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.17.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
359
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.17.self_attn.out_proj.bias": "pytorch_model-00001-of-00002.bin",
360
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.17.self_attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
361
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.17.self_attn.q_proj.bias": "pytorch_model-00001-of-00002.bin",
362
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.17.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
363
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.17.self_attn.v_proj.bias": "pytorch_model-00001-of-00002.bin",
364
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.17.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
365
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.18.layer_norm1.bias": "pytorch_model-00001-of-00002.bin",
366
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.18.layer_norm1.weight": "pytorch_model-00001-of-00002.bin",
367
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.18.layer_norm2.bias": "pytorch_model-00001-of-00002.bin",
368
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.18.layer_norm2.weight": "pytorch_model-00001-of-00002.bin",
369
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.18.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
370
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.18.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
371
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.18.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
372
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.18.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
373
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.18.self_attn.k_proj.bias": "pytorch_model-00001-of-00002.bin",
374
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.18.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
375
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.18.self_attn.out_proj.bias": "pytorch_model-00001-of-00002.bin",
376
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.18.self_attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
377
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.18.self_attn.q_proj.bias": "pytorch_model-00001-of-00002.bin",
378
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.18.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
379
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.18.self_attn.v_proj.bias": "pytorch_model-00001-of-00002.bin",
380
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.18.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
381
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.19.layer_norm1.bias": "pytorch_model-00001-of-00002.bin",
382
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.19.layer_norm1.weight": "pytorch_model-00001-of-00002.bin",
383
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.19.layer_norm2.bias": "pytorch_model-00001-of-00002.bin",
384
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.19.layer_norm2.weight": "pytorch_model-00001-of-00002.bin",
385
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.19.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
386
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.19.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
387
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.19.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
388
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.19.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
389
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.19.self_attn.k_proj.bias": "pytorch_model-00001-of-00002.bin",
390
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.19.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
391
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.19.self_attn.out_proj.bias": "pytorch_model-00001-of-00002.bin",
392
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.19.self_attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
393
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.19.self_attn.q_proj.bias": "pytorch_model-00001-of-00002.bin",
394
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.19.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
395
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.19.self_attn.v_proj.bias": "pytorch_model-00001-of-00002.bin",
396
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.19.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
397
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.2.layer_norm1.bias": "pytorch_model-00001-of-00002.bin",
398
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.2.layer_norm1.weight": "pytorch_model-00001-of-00002.bin",
399
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.2.layer_norm2.bias": "pytorch_model-00001-of-00002.bin",
400
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.2.layer_norm2.weight": "pytorch_model-00001-of-00002.bin",
401
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.2.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
402
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.2.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
403
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.2.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
404
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.2.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
405
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.2.self_attn.k_proj.bias": "pytorch_model-00001-of-00002.bin",
406
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
407
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.2.self_attn.out_proj.bias": "pytorch_model-00001-of-00002.bin",
408
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.2.self_attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
409
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.2.self_attn.q_proj.bias": "pytorch_model-00001-of-00002.bin",
410
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
411
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.2.self_attn.v_proj.bias": "pytorch_model-00001-of-00002.bin",
412
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
413
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.20.layer_norm1.bias": "pytorch_model-00001-of-00002.bin",
414
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.20.layer_norm1.weight": "pytorch_model-00001-of-00002.bin",
415
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.20.layer_norm2.bias": "pytorch_model-00001-of-00002.bin",
416
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.20.layer_norm2.weight": "pytorch_model-00001-of-00002.bin",
417
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.20.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
418
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.20.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
419
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.20.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
420
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.20.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
421
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.20.self_attn.k_proj.bias": "pytorch_model-00001-of-00002.bin",
422
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.20.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
423
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.20.self_attn.out_proj.bias": "pytorch_model-00001-of-00002.bin",
424
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.20.self_attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
425
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.20.self_attn.q_proj.bias": "pytorch_model-00001-of-00002.bin",
426
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.20.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
427
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.20.self_attn.v_proj.bias": "pytorch_model-00001-of-00002.bin",
428
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.20.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
429
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.21.layer_norm1.bias": "pytorch_model-00001-of-00002.bin",
430
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.21.layer_norm1.weight": "pytorch_model-00001-of-00002.bin",
431
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.21.layer_norm2.bias": "pytorch_model-00001-of-00002.bin",
432
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.21.layer_norm2.weight": "pytorch_model-00001-of-00002.bin",
433
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.21.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
434
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.21.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
435
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.21.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
436
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.21.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
437
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.21.self_attn.k_proj.bias": "pytorch_model-00001-of-00002.bin",
438
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.21.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
439
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.21.self_attn.out_proj.bias": "pytorch_model-00001-of-00002.bin",
440
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.21.self_attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
441
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.21.self_attn.q_proj.bias": "pytorch_model-00001-of-00002.bin",
442
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.21.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
443
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.21.self_attn.v_proj.bias": "pytorch_model-00001-of-00002.bin",
444
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.21.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
445
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.22.layer_norm1.bias": "pytorch_model-00001-of-00002.bin",
446
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.22.layer_norm1.weight": "pytorch_model-00001-of-00002.bin",
447
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.22.layer_norm2.bias": "pytorch_model-00001-of-00002.bin",
448
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.22.layer_norm2.weight": "pytorch_model-00001-of-00002.bin",
449
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.22.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
450
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.22.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
451
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.22.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
452
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.22.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
453
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.22.self_attn.k_proj.bias": "pytorch_model-00001-of-00002.bin",
454
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.22.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
455
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.22.self_attn.out_proj.bias": "pytorch_model-00001-of-00002.bin",
456
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.22.self_attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
457
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.22.self_attn.q_proj.bias": "pytorch_model-00001-of-00002.bin",
458
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.22.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
459
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.22.self_attn.v_proj.bias": "pytorch_model-00001-of-00002.bin",
460
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.22.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
461
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.23.layer_norm1.bias": "pytorch_model-00001-of-00002.bin",
462
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.23.layer_norm1.weight": "pytorch_model-00001-of-00002.bin",
463
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.23.layer_norm2.bias": "pytorch_model-00001-of-00002.bin",
464
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.23.layer_norm2.weight": "pytorch_model-00001-of-00002.bin",
465
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.23.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
466
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.23.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
467
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.23.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
468
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.23.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
469
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.23.self_attn.k_proj.bias": "pytorch_model-00001-of-00002.bin",
470
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.23.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
471
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.23.self_attn.out_proj.bias": "pytorch_model-00001-of-00002.bin",
472
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.23.self_attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
473
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.23.self_attn.q_proj.bias": "pytorch_model-00001-of-00002.bin",
474
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.23.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
475
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.23.self_attn.v_proj.bias": "pytorch_model-00001-of-00002.bin",
476
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.23.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
477
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.3.layer_norm1.bias": "pytorch_model-00001-of-00002.bin",
478
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.3.layer_norm1.weight": "pytorch_model-00001-of-00002.bin",
479
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.3.layer_norm2.bias": "pytorch_model-00001-of-00002.bin",
480
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.3.layer_norm2.weight": "pytorch_model-00001-of-00002.bin",
481
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.3.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
482
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.3.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
483
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.3.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
484
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.3.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
485
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.3.self_attn.k_proj.bias": "pytorch_model-00001-of-00002.bin",
486
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
487
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.3.self_attn.out_proj.bias": "pytorch_model-00001-of-00002.bin",
488
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.3.self_attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
489
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.3.self_attn.q_proj.bias": "pytorch_model-00001-of-00002.bin",
490
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
491
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.3.self_attn.v_proj.bias": "pytorch_model-00001-of-00002.bin",
492
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
493
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.4.layer_norm1.bias": "pytorch_model-00001-of-00002.bin",
494
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.4.layer_norm1.weight": "pytorch_model-00001-of-00002.bin",
495
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.4.layer_norm2.bias": "pytorch_model-00001-of-00002.bin",
496
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.4.layer_norm2.weight": "pytorch_model-00001-of-00002.bin",
497
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.4.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
498
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.4.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
499
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.4.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
500
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.4.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
501
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.4.self_attn.k_proj.bias": "pytorch_model-00001-of-00002.bin",
502
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
503
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.4.self_attn.out_proj.bias": "pytorch_model-00001-of-00002.bin",
504
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.4.self_attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
505
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.4.self_attn.q_proj.bias": "pytorch_model-00001-of-00002.bin",
506
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
507
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.4.self_attn.v_proj.bias": "pytorch_model-00001-of-00002.bin",
508
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
509
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.5.layer_norm1.bias": "pytorch_model-00001-of-00002.bin",
510
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.5.layer_norm1.weight": "pytorch_model-00001-of-00002.bin",
511
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.5.layer_norm2.bias": "pytorch_model-00001-of-00002.bin",
512
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.5.layer_norm2.weight": "pytorch_model-00001-of-00002.bin",
513
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.5.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
514
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.5.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
515
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.5.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
516
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.5.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
517
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.5.self_attn.k_proj.bias": "pytorch_model-00001-of-00002.bin",
518
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
519
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.5.self_attn.out_proj.bias": "pytorch_model-00001-of-00002.bin",
520
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.5.self_attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
521
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.5.self_attn.q_proj.bias": "pytorch_model-00001-of-00002.bin",
522
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
523
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.5.self_attn.v_proj.bias": "pytorch_model-00001-of-00002.bin",
524
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
525
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.6.layer_norm1.bias": "pytorch_model-00001-of-00002.bin",
526
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.6.layer_norm1.weight": "pytorch_model-00001-of-00002.bin",
527
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.6.layer_norm2.bias": "pytorch_model-00001-of-00002.bin",
528
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.6.layer_norm2.weight": "pytorch_model-00001-of-00002.bin",
529
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.6.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
530
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.6.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
531
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.6.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
532
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.6.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
533
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.6.self_attn.k_proj.bias": "pytorch_model-00001-of-00002.bin",
534
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
535
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.6.self_attn.out_proj.bias": "pytorch_model-00001-of-00002.bin",
536
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.6.self_attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
537
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.6.self_attn.q_proj.bias": "pytorch_model-00001-of-00002.bin",
538
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
539
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.6.self_attn.v_proj.bias": "pytorch_model-00001-of-00002.bin",
540
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
541
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.7.layer_norm1.bias": "pytorch_model-00001-of-00002.bin",
542
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.7.layer_norm1.weight": "pytorch_model-00001-of-00002.bin",
543
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.7.layer_norm2.bias": "pytorch_model-00001-of-00002.bin",
544
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.7.layer_norm2.weight": "pytorch_model-00001-of-00002.bin",
545
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.7.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
546
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.7.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
547
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.7.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
548
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.7.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
549
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.7.self_attn.k_proj.bias": "pytorch_model-00001-of-00002.bin",
550
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
551
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.7.self_attn.out_proj.bias": "pytorch_model-00001-of-00002.bin",
552
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.7.self_attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
553
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.7.self_attn.q_proj.bias": "pytorch_model-00001-of-00002.bin",
554
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
555
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.7.self_attn.v_proj.bias": "pytorch_model-00001-of-00002.bin",
556
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
557
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.8.layer_norm1.bias": "pytorch_model-00001-of-00002.bin",
558
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.8.layer_norm1.weight": "pytorch_model-00001-of-00002.bin",
559
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.8.layer_norm2.bias": "pytorch_model-00001-of-00002.bin",
560
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.8.layer_norm2.weight": "pytorch_model-00001-of-00002.bin",
561
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.8.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
562
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.8.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
563
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.8.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
564
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.8.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
565
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.8.self_attn.k_proj.bias": "pytorch_model-00001-of-00002.bin",
566
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
567
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.8.self_attn.out_proj.bias": "pytorch_model-00001-of-00002.bin",
568
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.8.self_attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
569
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.8.self_attn.q_proj.bias": "pytorch_model-00001-of-00002.bin",
570
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
571
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.8.self_attn.v_proj.bias": "pytorch_model-00001-of-00002.bin",
572
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
573
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.9.layer_norm1.bias": "pytorch_model-00001-of-00002.bin",
574
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.9.layer_norm1.weight": "pytorch_model-00001-of-00002.bin",
575
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.9.layer_norm2.bias": "pytorch_model-00001-of-00002.bin",
576
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.9.layer_norm2.weight": "pytorch_model-00001-of-00002.bin",
577
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.9.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
578
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.9.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
579
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.9.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
580
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.9.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
581
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.9.self_attn.k_proj.bias": "pytorch_model-00001-of-00002.bin",
582
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
583
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.9.self_attn.out_proj.bias": "pytorch_model-00001-of-00002.bin",
584
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.9.self_attn.out_proj.weight": "pytorch_model-00001-of-00002.bin",
585
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.9.self_attn.q_proj.bias": "pytorch_model-00001-of-00002.bin",
586
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
587
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.9.self_attn.v_proj.bias": "pytorch_model-00001-of-00002.bin",
588
+ "model.vision_embed_tokens.img_processor.vision_model.encoder.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
589
+ "model.vision_embed_tokens.img_processor.vision_model.post_layernorm.bias": "pytorch_model-00001-of-00002.bin",
590
+ "model.vision_embed_tokens.img_processor.vision_model.post_layernorm.weight": "pytorch_model-00001-of-00002.bin",
591
+ "model.vision_embed_tokens.img_processor.vision_model.pre_layrnorm.bias": "pytorch_model-00001-of-00002.bin",
592
+ "model.vision_embed_tokens.img_processor.vision_model.pre_layrnorm.weight": "pytorch_model-00001-of-00002.bin",
593
+ "model.vision_embed_tokens.img_projection.0.bias": "pytorch_model-00001-of-00002.bin",
594
+ "model.vision_embed_tokens.img_projection.0.weight": "pytorch_model-00001-of-00002.bin",
595
+ "model.vision_embed_tokens.img_projection.2.bias": "pytorch_model-00001-of-00002.bin",
596
+ "model.vision_embed_tokens.img_projection.2.weight": "pytorch_model-00001-of-00002.bin",
597
+ "model.vision_embed_tokens.sub_GN": "pytorch_model-00001-of-00002.bin",
598
+ "model.vision_embed_tokens.wte.weight": "pytorch_model-00001-of-00002.bin"
599
+ }
600
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|system|>",
4
+ "<|end|>",
5
+ "<|user|>",
6
+ "<|end|>"
7
+ ],
8
+ "bos_token": {
9
+ "content": "<s>",
10
+ "lstrip": false,
11
+ "normalized": false,
12
+ "rstrip": false,
13
+ "single_word": false
14
+ },
15
+ "eos_token": {
16
+ "content": "<|endoftext|>",
17
+ "lstrip": false,
18
+ "normalized": false,
19
+ "rstrip": false,
20
+ "single_word": false
21
+ },
22
+ "pad_token": {
23
+ "content": "<|endoftext|>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false
28
+ },
29
+ "unk_token": {
30
+ "content": "<unk>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false
35
+ }
36
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,415 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": true,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "32000": {
31
+ "content": "<|endoftext|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "32001": {
39
+ "content": "<|assistant|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": true,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "32002": {
47
+ "content": "<|placeholder1|>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": true,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "32003": {
55
+ "content": "<|placeholder2|>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": true,
59
+ "single_word": false,
60
+ "special": true
61
+ },
62
+ "32004": {
63
+ "content": "<|placeholder3|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": true,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "32005": {
71
+ "content": "<|placeholder4|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": true,
75
+ "single_word": false,
76
+ "special": true
77
+ },
78
+ "32006": {
79
+ "content": "<|system|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "32007": {
87
+ "content": "<|end|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": true
93
+ },
94
+ "32008": {
95
+ "content": "<|placeholder5|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": true,
99
+ "single_word": false,
100
+ "special": true
101
+ },
102
+ "32009": {
103
+ "content": "<|placeholder6|>",
104
+ "lstrip": false,
105
+ "normalized": false,
106
+ "rstrip": true,
107
+ "single_word": false,
108
+ "special": true
109
+ },
110
+ "32010": {
111
+ "content": "<|user|>",
112
+ "lstrip": false,
113
+ "normalized": false,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": true
117
+ },
118
+ "32011": {
119
+ "content": "<|placeholder7|>",
120
+ "lstrip": false,
121
+ "normalized": false,
122
+ "rstrip": true,
123
+ "single_word": false,
124
+ "special": true
125
+ },
126
+ "32012": {
127
+ "content": "<|placeholder8|>",
128
+ "lstrip": false,
129
+ "normalized": false,
130
+ "rstrip": true,
131
+ "single_word": false,
132
+ "special": true
133
+ },
134
+ "32013": {
135
+ "content": "<|placeholder9|>",
136
+ "lstrip": false,
137
+ "normalized": false,
138
+ "rstrip": true,
139
+ "single_word": false,
140
+ "special": true
141
+ },
142
+ "32014": {
143
+ "content": "<|placeholder10|>",
144
+ "lstrip": false,
145
+ "normalized": false,
146
+ "rstrip": true,
147
+ "single_word": false,
148
+ "special": true
149
+ },
150
+ "32015": {
151
+ "content": "<|placeholder11|>",
152
+ "lstrip": false,
153
+ "normalized": false,
154
+ "rstrip": true,
155
+ "single_word": false,
156
+ "special": true
157
+ },
158
+ "32016": {
159
+ "content": "<|placeholder12|>",
160
+ "lstrip": false,
161
+ "normalized": false,
162
+ "rstrip": true,
163
+ "single_word": false,
164
+ "special": true
165
+ },
166
+ "32017": {
167
+ "content": "<|placeholder13|>",
168
+ "lstrip": false,
169
+ "normalized": false,
170
+ "rstrip": true,
171
+ "single_word": false,
172
+ "special": true
173
+ },
174
+ "32018": {
175
+ "content": "<|placeholder14|>",
176
+ "lstrip": false,
177
+ "normalized": false,
178
+ "rstrip": true,
179
+ "single_word": false,
180
+ "special": true
181
+ },
182
+ "32019": {
183
+ "content": "<|placeholder15|>",
184
+ "lstrip": false,
185
+ "normalized": false,
186
+ "rstrip": true,
187
+ "single_word": false,
188
+ "special": true
189
+ },
190
+ "32020": {
191
+ "content": "<|placeholder16|>",
192
+ "lstrip": false,
193
+ "normalized": false,
194
+ "rstrip": true,
195
+ "single_word": false,
196
+ "special": true
197
+ },
198
+ "32021": {
199
+ "content": "<|placeholder17|>",
200
+ "lstrip": false,
201
+ "normalized": false,
202
+ "rstrip": true,
203
+ "single_word": false,
204
+ "special": true
205
+ },
206
+ "32022": {
207
+ "content": "<|placeholder18|>",
208
+ "lstrip": false,
209
+ "normalized": false,
210
+ "rstrip": true,
211
+ "single_word": false,
212
+ "special": true
213
+ },
214
+ "32023": {
215
+ "content": "<|placeholder19|>",
216
+ "lstrip": false,
217
+ "normalized": false,
218
+ "rstrip": true,
219
+ "single_word": false,
220
+ "special": true
221
+ },
222
+ "32024": {
223
+ "content": "<|placeholder20|>",
224
+ "lstrip": false,
225
+ "normalized": false,
226
+ "rstrip": true,
227
+ "single_word": false,
228
+ "special": true
229
+ },
230
+ "32025": {
231
+ "content": "<|placeholder21|>",
232
+ "lstrip": false,
233
+ "normalized": false,
234
+ "rstrip": true,
235
+ "single_word": false,
236
+ "special": true
237
+ },
238
+ "32026": {
239
+ "content": "<|placeholder22|>",
240
+ "lstrip": false,
241
+ "normalized": false,
242
+ "rstrip": true,
243
+ "single_word": false,
244
+ "special": true
245
+ },
246
+ "32027": {
247
+ "content": "<|placeholder23|>",
248
+ "lstrip": false,
249
+ "normalized": false,
250
+ "rstrip": true,
251
+ "single_word": false,
252
+ "special": true
253
+ },
254
+ "32028": {
255
+ "content": "<|placeholder24|>",
256
+ "lstrip": false,
257
+ "normalized": false,
258
+ "rstrip": true,
259
+ "single_word": false,
260
+ "special": true
261
+ },
262
+ "32029": {
263
+ "content": "<|placeholder25|>",
264
+ "lstrip": false,
265
+ "normalized": false,
266
+ "rstrip": true,
267
+ "single_word": false,
268
+ "special": true
269
+ },
270
+ "32030": {
271
+ "content": "<|placeholder26|>",
272
+ "lstrip": false,
273
+ "normalized": false,
274
+ "rstrip": true,
275
+ "single_word": false,
276
+ "special": true
277
+ },
278
+ "32031": {
279
+ "content": "<|placeholder27|>",
280
+ "lstrip": false,
281
+ "normalized": false,
282
+ "rstrip": true,
283
+ "single_word": false,
284
+ "special": true
285
+ },
286
+ "32032": {
287
+ "content": "<|placeholder28|>",
288
+ "lstrip": false,
289
+ "normalized": false,
290
+ "rstrip": true,
291
+ "single_word": false,
292
+ "special": true
293
+ },
294
+ "32033": {
295
+ "content": "<|placeholder29|>",
296
+ "lstrip": false,
297
+ "normalized": false,
298
+ "rstrip": true,
299
+ "single_word": false,
300
+ "special": true
301
+ },
302
+ "32034": {
303
+ "content": "<|placeholder30|>",
304
+ "lstrip": false,
305
+ "normalized": false,
306
+ "rstrip": true,
307
+ "single_word": false,
308
+ "special": true
309
+ },
310
+ "32035": {
311
+ "content": "<|placeholder31|>",
312
+ "lstrip": false,
313
+ "normalized": false,
314
+ "rstrip": true,
315
+ "single_word": false,
316
+ "special": true
317
+ },
318
+ "32036": {
319
+ "content": "<|placeholder32|>",
320
+ "lstrip": false,
321
+ "normalized": false,
322
+ "rstrip": true,
323
+ "single_word": false,
324
+ "special": true
325
+ },
326
+ "32037": {
327
+ "content": "<|placeholder33|>",
328
+ "lstrip": false,
329
+ "normalized": false,
330
+ "rstrip": true,
331
+ "single_word": false,
332
+ "special": true
333
+ },
334
+ "32038": {
335
+ "content": "<|placeholder34|>",
336
+ "lstrip": false,
337
+ "normalized": false,
338
+ "rstrip": true,
339
+ "single_word": false,
340
+ "special": true
341
+ },
342
+ "32039": {
343
+ "content": "<|placeholder35|>",
344
+ "lstrip": false,
345
+ "normalized": false,
346
+ "rstrip": true,
347
+ "single_word": false,
348
+ "special": true
349
+ },
350
+ "32040": {
351
+ "content": "<|placeholder36|>",
352
+ "lstrip": false,
353
+ "normalized": false,
354
+ "rstrip": true,
355
+ "single_word": false,
356
+ "special": true
357
+ },
358
+ "32041": {
359
+ "content": "<|placeholder37|>",
360
+ "lstrip": false,
361
+ "normalized": false,
362
+ "rstrip": true,
363
+ "single_word": false,
364
+ "special": true
365
+ },
366
+ "32042": {
367
+ "content": "<|placeholder38|>",
368
+ "lstrip": false,
369
+ "normalized": false,
370
+ "rstrip": true,
371
+ "single_word": false,
372
+ "special": true
373
+ },
374
+ "32043": {
375
+ "content": "<|placeholder39|>",
376
+ "lstrip": false,
377
+ "normalized": false,
378
+ "rstrip": true,
379
+ "single_word": false,
380
+ "special": true
381
+ },
382
+ "32044": {
383
+ "content": "<|image|>",
384
+ "lstrip": false,
385
+ "normalized": false,
386
+ "rstrip": true,
387
+ "single_word": false,
388
+ "special": true
389
+ }
390
+ },
391
+ "additional_special_tokens": [
392
+ "<|system|>",
393
+ "<|end|>",
394
+ "<|user|>",
395
+ "<|end|>"
396
+ ],
397
+ "auto_map": {
398
+ "AutoProcessor": "microsoft/Phi-3.5-vision-instruct--processing_phi3_v.Phi3VProcessor"
399
+ },
400
+ "bos_token": "<s>",
401
+ "chat_template": "{% for message in messages %}{{'<|' + message['role'] + '|>' + '\n' + message['content'] + '<|end|>\n' }}{% endfor %}{% if add_generation_prompt and messages[-1]['role'] != 'assistant' %}{{- '<|assistant|>\n' -}}{% endif %}",
402
+ "clean_up_tokenization_spaces": false,
403
+ "eos_token": "<|endoftext|>",
404
+ "extra_special_tokens": {},
405
+ "legacy": false,
406
+ "model_max_length": 131072,
407
+ "num_crops": 7,
408
+ "pad_token": "<|endoftext|>",
409
+ "padding_side": "right",
410
+ "processor_class": "Phi3VProcessor",
411
+ "sp_model_kwargs": {},
412
+ "tokenizer_class": "LlamaTokenizerFast",
413
+ "unk_token": "<unk>",
414
+ "use_default_system_prompt": false
415
+ }
trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc35d521b92167bfafc2933aa5553dae0fcafcbca170c13356b95bce555c41ee
3
+ size 7096