Add code snippets, metadata tags
Browse filesThis PR adds sample code snippets (are these ok or do they look differently for the chat version?), and missing tags for the library_name and pipeline_tag.
README.md
CHANGED
|
@@ -1,6 +1,8 @@
|
|
| 1 |
---
|
| 2 |
language: en
|
| 3 |
license: mit
|
|
|
|
|
|
|
| 4 |
---
|
| 5 |
# Kosmos-2.5-chat
|
| 6 |
|
|
@@ -13,6 +15,126 @@ Kosmos-2.5-chat is a model specifically trained for Visual Question Answering (V
|
|
| 13 |
|
| 14 |
[Kosmos-2.5: A Multimodal Literate Model](https://arxiv.org/abs/2309.11419)
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
## NOTE:
|
| 17 |
Since this is a generative model, there is a risk of **hallucination** during the generation process, and it **CAN NOT** guarantee the accuracy of all results in the images.
|
| 18 |
|
|
|
|
| 1 |
---
|
| 2 |
language: en
|
| 3 |
license: mit
|
| 4 |
+
library_name: transformers
|
| 5 |
+
pipeline_tag: image-text-to-text
|
| 6 |
---
|
| 7 |
# Kosmos-2.5-chat
|
| 8 |
|
|
|
|
| 15 |
|
| 16 |
[Kosmos-2.5: A Multimodal Literate Model](https://arxiv.org/abs/2309.11419)
|
| 17 |
|
| 18 |
+
## Usage
|
| 19 |
+
|
| 20 |
+
KOSMOS-2.5 is supported from Transformers >= 4.56. Find the docs [here](https://huggingface.co/docs/transformers/main/en/model_doc/kosmos2_5).
|
| 21 |
+
|
| 22 |
+
### Image-to-markdown
|
| 23 |
+
|
| 24 |
+
```python
|
| 25 |
+
import re
|
| 26 |
+
import torch
|
| 27 |
+
import requests
|
| 28 |
+
from PIL import Image, ImageDraw
|
| 29 |
+
from transformers import AutoProcessor, Kosmos2_5ForConditionalGeneration, infer_device
|
| 30 |
+
|
| 31 |
+
repo = "microsoft/kosmos-2.5-chat"
|
| 32 |
+
device = f"{infer_device()}:0"
|
| 33 |
+
dtype = torch.bfloat16
|
| 34 |
+
model = Kosmos2_5ForConditionalGeneration.from_pretrained(repo, device_map=device, dtype=dtype)
|
| 35 |
+
processor = AutoProcessor.from_pretrained(repo)
|
| 36 |
+
|
| 37 |
+
# sample image
|
| 38 |
+
url = "https://huggingface.co/ydshieh/kosmos-2.5/resolve/main/receipt_00008.png"
|
| 39 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
| 40 |
+
|
| 41 |
+
prompt = "<md>"
|
| 42 |
+
inputs = processor(text=prompt, images=image, return_tensors="pt")
|
| 43 |
+
|
| 44 |
+
height, width = inputs.pop("height"), inputs.pop("width")
|
| 45 |
+
raw_width, raw_height = image.size
|
| 46 |
+
scale_height = raw_height / height
|
| 47 |
+
scale_width = raw_width / width
|
| 48 |
+
|
| 49 |
+
inputs = {k: v.to(device) if v is not None else None for k, v in inputs.items()}
|
| 50 |
+
inputs["flattened_patches"] = inputs["flattened_patches"].to(dtype)
|
| 51 |
+
generated_ids = model.generate(
|
| 52 |
+
**inputs,
|
| 53 |
+
max_new_tokens=1024,
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
| 57 |
+
print(generated_text[0])
|
| 58 |
+
```
|
| 59 |
+
|
| 60 |
+
### Image-to-OCR
|
| 61 |
+
|
| 62 |
+
```python
|
| 63 |
+
import re
|
| 64 |
+
import torch
|
| 65 |
+
import requests
|
| 66 |
+
from PIL import Image, ImageDraw
|
| 67 |
+
from transformers import AutoProcessor, Kosmos2_5ForConditionalGeneration, infer_device
|
| 68 |
+
|
| 69 |
+
repo = "microsoft/kosmos-2.5-chat"
|
| 70 |
+
device = f"{infer_device()}:0"
|
| 71 |
+
dtype = torch.bfloat16
|
| 72 |
+
model = Kosmos2_5ForConditionalGeneration.from_pretrained(repo, device_map=device, dtype=dtype)
|
| 73 |
+
processor = AutoProcessor.from_pretrained(repo)
|
| 74 |
+
|
| 75 |
+
# sample image
|
| 76 |
+
url = "https://huggingface.co/ydshieh/kosmos-2.5/resolve/main/receipt_00008.png"
|
| 77 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
| 78 |
+
|
| 79 |
+
# bs = 1
|
| 80 |
+
prompt = "<ocr>"
|
| 81 |
+
inputs = processor(text=prompt, images=image, return_tensors="pt")
|
| 82 |
+
height, width = inputs.pop("height"), inputs.pop("width")
|
| 83 |
+
raw_width, raw_height = image.size
|
| 84 |
+
scale_height = raw_height / height
|
| 85 |
+
scale_width = raw_width / width
|
| 86 |
+
|
| 87 |
+
# bs > 1, batch generation
|
| 88 |
+
# inputs = processor(text=[prompt, prompt], images=[image,image], return_tensors="pt")
|
| 89 |
+
# height, width = inputs.pop("height"), inputs.pop("width")
|
| 90 |
+
# raw_width, raw_height = image.size
|
| 91 |
+
# scale_height = raw_height / height[0]
|
| 92 |
+
# scale_width = raw_width / width[0]
|
| 93 |
+
|
| 94 |
+
inputs = {k: v.to(device) if v is not None else None for k, v in inputs.items()}
|
| 95 |
+
inputs["flattened_patches"] = inputs["flattened_patches"].to(dtype)
|
| 96 |
+
generated_ids = model.generate(
|
| 97 |
+
**inputs,
|
| 98 |
+
max_new_tokens=1024,
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
| 102 |
+
def post_process(y, scale_height, scale_width):
|
| 103 |
+
y = y.replace(prompt, "")
|
| 104 |
+
if "<md>" in prompt:
|
| 105 |
+
return y
|
| 106 |
+
pattern = r"<bbox><x_\d+><y_\d+><x_\d+><y_\d+></bbox>"
|
| 107 |
+
bboxs_raw = re.findall(pattern, y)
|
| 108 |
+
lines = re.split(pattern, y)[1:]
|
| 109 |
+
bboxs = [re.findall(r"\d+", i) for i in bboxs_raw]
|
| 110 |
+
bboxs = [[int(j) for j in i] for i in bboxs]
|
| 111 |
+
info = ""
|
| 112 |
+
for i in range(len(lines)):
|
| 113 |
+
box = bboxs[i]
|
| 114 |
+
x0, y0, x1, y1 = box
|
| 115 |
+
if not (x0 >= x1 or y0 >= y1):
|
| 116 |
+
x0 = int(x0 * scale_width)
|
| 117 |
+
y0 = int(y0 * scale_height)
|
| 118 |
+
x1 = int(x1 * scale_width)
|
| 119 |
+
y1 = int(y1 * scale_height)
|
| 120 |
+
info += f"{x0},{y0},{x1},{y0},{x1},{y1},{x0},{y1},{lines[i]}"
|
| 121 |
+
return info
|
| 122 |
+
|
| 123 |
+
output_text = post_process(generated_text[0], scale_height, scale_width)
|
| 124 |
+
print(output_text)
|
| 125 |
+
|
| 126 |
+
draw = ImageDraw.Draw(image)
|
| 127 |
+
lines = output_text.split("\n")
|
| 128 |
+
for line in lines:
|
| 129 |
+
# draw the bounding box
|
| 130 |
+
line = list(line.split(","))
|
| 131 |
+
if len(line) < 8:
|
| 132 |
+
continue
|
| 133 |
+
line = list(map(int, line[:8]))
|
| 134 |
+
draw.polygon(line, outline="red")
|
| 135 |
+
image.save("output.png")
|
| 136 |
+
```
|
| 137 |
+
|
| 138 |
## NOTE:
|
| 139 |
Since this is a generative model, there is a risk of **hallucination** during the generation process, and it **CAN NOT** guarantee the accuracy of all results in the images.
|
| 140 |
|