Zero-Shot Object Detection
Transformers
Safetensors
English
qwen3_vl_moe
image-to-text

🍨 Gelato β€” From Data Curation to Reinforcement Learning: Building a Strong Grounding Model for Computer-Use Agents

🍨 Gelato-30B-A3B (model) |β€‚πŸ–±οΈ Click-100k (dataset) | πŸ”— Training Instructions | πŸ“ˆ Evaluation

Figure 1: Gelato-30B-A3B

We are releasing 🍨 Gelato-30B-A3B, a state-of-the-art grounding model for GUI computer-use tasks! Gelato is trained on our open-sourced Click-100k dataset and achieves 63.88% accuracy on ScreenSpot-Pro[3] and 67.19% / 73.40% on OS-World-G / OS-World-G (Refined)[4], surpassing prior specialized computer grounding models like GTA1-32B [5] and much larger VLMs including Qwen3-VL-235B-A22B-Instruct [10]. When combined with GPT-5, Gelato enables frontier-level agentic performanceβ€”placing TBD on the OS-World leaderboard at TBD accuracy.

For details on data curation and training refer to our blog post.

Performance

Gelato-30B-A3B outperforms the SoTA specialized computer grounding model, GTA1-32B, and larger VLMs on the ScreenSpot-Pro and OS-World-G grounding benchmarks. When paired with GPT-5, Gelato as a computer-use agent attains TBD success rate on OS-World placing it TBD on the leaderboard.

Model Total Size Activated Size Open Source ScreenSpot-V2 ScreenSpotPro OSWORLD-G
Qwen3-VL-30B-A3B-Instruct 30 B 3.3 B βœ… – – –
Qwen3-VL-235B-A22B-Instruct 235 B 22 B βœ… - 62.0 66.7
OpenCUA-72B 72 B – βœ… – 60.8 59.2
GTA1-32B 32 B – βœ… – – –
Gelato-30B-A3B 30 B 3.3 B βœ… – 63.88 73.40

Inference

Below is a code snippet demonstrating how to ground using our model. Given an image and an instruction, we output normalized coordinates in the range [0,1000].

from transformers import Qwen3VLMoeForConditionalGeneration, AutoProcessor
import re
from PIL import Image, ImageDraw
import requests
from io import BytesIO


def extract_coordinates(raw_string):
    """
    Extract the coordinates from the raw string.
    Args:
        raw_string: str (e.g. "(100, 200)")
    Returns:
        x: float (e.g. 100.0)
        y: float (e.g. 200.0)
    """
    try:
        matches = re.findall(r"\((-?\d*\.?\d+),\s*(-?\d*\.?\d+)\)", raw_string)
        return [tuple(map(int, match)) for match in matches][0]
    except:
        return 0,0

def visualize_prediction(img, pred_x, pred_y, img_width, img_height):
    """
    Visualize the predicted coordinates on the image.
    Args:
        img: PIL.Image.Image
        pred_x: float
        pred_y: float
        img_width: int
        img_height: int
    """
    pred_x = int((pred_x * img_width)/1000)
    pred_y = int((pred_y * img_height)/1000)

    draw = ImageDraw.Draw(img)

    r = 20
    draw.ellipse((pred_x - r, pred_y - r, pred_x + r, pred_y + r), outline="green", width=2)
    cross_len = 6
    draw.line((pred_x - cross_len, pred_y, pred_x + cross_len, pred_y), fill="green", width=2)
    draw.line((pred_x, pred_y - cross_len, pred_x, pred_y + cross_len), fill="green", width=2)

    img.save("predicted_coordinates.png")
    print(f"Predicted coordinates: ({pred_x}, {pred_y})")

# Load the model and processor
MODEL_PATH = "mlfoundations-cua-dev/Gelato-30B-A3B"

model = Qwen3VLMoeForConditionalGeneration.from_pretrained(
    MODEL_PATH,
    device_map="auto",
    dtype="auto"
)

processor = AutoProcessor.from_pretrained(
    MODEL_PATH,
    max_pixels=10*7 # 10MP
)

url = "https://github.com/QwenLM/Qwen3-VL/raw/main/cookbooks/assets/computer_use/computer_use1.jpeg"
response = requests.get(url)
print(response.status_code)
print(response.headers.get("Content-Type"))
img = Image.open(BytesIO(response.content))
img_width, img_height = img.size

# Prepare messages
PROMPT = '''
You are an expert UI element locator. Given a GUI image and a user's element description, provide the coordinates of the specified element as a single (x,y) point. The image resolution is height {height} and width {width}. For elements with area, return the center point.

Output the coordinate pair exactly:
(x,y)
'''
PROMPT = PROMPT.strip()

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": PROMPT},
            {
                "type": "image",
                "image": img,
            },
            {"type": "text", "text": "Reload the cache."},
        ],
    }
]

device = next(model.parameters()).device
inputs = processor.apply_chat_template(
    messages,
    tokenize=True,
    add_generation_prompt=True,
    return_dict=True,
    return_tensors="pt"
).to(device)

# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
    out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
    generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)

# Extract the coordinates from the output text
print(f"Model output: {output_text[0]}")
pred_x, pred_y = extract_coordinates(output_text[0])

# Calculate the absolute coordinates from normalized coordinates
visualize_prediction(img, pred_x, pred_y, img_width, img_height)
Downloads last month
281
Safetensors
Model size
31B params
Tensor type
BF16
Β·
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Model tree for mlfoundations-cua-dev/Gelato-30B-A3B

Finetuned
(9)
this model
Quantizations
1 model

Dataset used to train mlfoundations-cua-dev/Gelato-30B-A3B