LLM-foundry update February 07, 2024 19:44:25 (#42)
Browse files- LLM-foundry update February 07, 2024 19:44:25 (946e5303731b7a4724e5dee5dec197bb56d75848)
Co-authored-by: Irene Dea <irenedea@users.noreply.huggingface.co>
- attention.py +109 -59
- blocks.py +19 -5
- configuration_mpt.py +61 -18
- ffn.py +72 -14
- modeling_mpt.py +251 -59
- warnings.py +22 -0
    	
        attention.py
    CHANGED
    
    | @@ -1,21 +1,23 @@ | |
| 1 | 
             
            """Attention layers."""
         | 
| 2 | 
             
            import math
         | 
| 3 | 
             
            import warnings
         | 
| 4 | 
            -
            from typing import Any,  | 
| 5 | 
             
            import torch
         | 
| 6 | 
             
            import torch.nn as nn
         | 
|  | |
| 7 | 
             
            from einops import rearrange
         | 
| 8 | 
             
            from packaging import version
         | 
| 9 | 
             
            from torch import nn
         | 
| 10 | 
             
            from .fc import FC_CLASS_REGISTRY
         | 
| 11 | 
             
            from .norm import NORM_CLASS_REGISTRY
         | 
| 12 |  | 
| 13 | 
            -
            def is_flash_v2_installed():
         | 
|  | |
| 14 | 
             
                try:
         | 
| 15 | 
             
                    import flash_attn as flash_attn
         | 
| 16 | 
             
                except:
         | 
| 17 | 
             
                    return False
         | 
| 18 | 
            -
                return version.parse(flash_attn.__version__) >= version.parse( | 
| 19 |  | 
| 20 | 
             
            def is_flash_v1_installed():
         | 
| 21 | 
             
                try:
         | 
| @@ -24,6 +26,16 @@ def is_flash_v1_installed(): | |
| 24 | 
             
                    return False
         | 
| 25 | 
             
                return version.parse(flash_attn.__version__) < version.parse('2.0.0')
         | 
| 26 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 27 | 
             
            def _reset_is_causal(num_query_tokens: int, num_key_tokens: int, original_is_causal: bool) -> bool:
         | 
| 28 | 
             
                if original_is_causal and num_query_tokens != num_key_tokens:
         | 
| 29 | 
             
                    if num_query_tokens != 1:
         | 
| @@ -45,13 +57,7 @@ def repeat_kv_for_gqa(hidden: torch.Tensor, n_rep: int) -> torch.Tensor: | |
| 45 | 
             
                hidden = hidden[:, :, :, None, :].expand(b, s, kv_n_heads, n_rep, d)
         | 
| 46 | 
             
                return hidden.reshape(b, s, kv_n_heads * n_rep, d)
         | 
| 47 |  | 
| 48 | 
            -
            def scaled_multihead_dot_product_attention(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, n_heads: int, kv_n_heads:  | 
| 49 | 
            -
                if multiquery:
         | 
| 50 | 
            -
                    warnings.warn(DeprecationWarning('The direct use of the multiquery arg is deprecated. Setting kv_n_heads=1 automatically. Please set kv_n_heads=1 explicitly to remove this warning.'))
         | 
| 51 | 
            -
                    kv_n_heads = 1
         | 
| 52 | 
            -
                elif kv_n_heads is None:
         | 
| 53 | 
            -
                    warnings.warn(DeprecationWarning('Not specifying a value for the kv_n_heads arg is deprecated. Setting kv_n_heads=n_heads automatically. Please set kv_n_heads=n_heads explicitly to remove this warning.'))
         | 
| 54 | 
            -
                    kv_n_heads = n_heads
         | 
| 55 | 
             
                q = rearrange(query, 'b s (h d) -> b h s d', h=n_heads)
         | 
| 56 | 
             
                k = rearrange(key, 'b s (h d) -> b h d s', h=kv_n_heads)
         | 
| 57 | 
             
                v = rearrange(value, 'b s (h d) -> b h s d', h=kv_n_heads)
         | 
| @@ -97,7 +103,7 @@ def scaled_multihead_dot_product_attention(query: torch.Tensor, key: torch.Tenso | |
| 97 | 
             
                    return (out, attn_weight, past_key_value)
         | 
| 98 | 
             
                return (out, None, past_key_value)
         | 
| 99 |  | 
| 100 | 
            -
            def check_valid_inputs(*tensors: torch.Tensor, valid_dtypes: Optional[ | 
| 101 | 
             
                if valid_dtypes is None:
         | 
| 102 | 
             
                    valid_dtypes = [torch.float16, torch.bfloat16]
         | 
| 103 | 
             
                for tensor in tensors:
         | 
| @@ -106,57 +112,64 @@ def check_valid_inputs(*tensors: torch.Tensor, valid_dtypes: Optional[List[torch | |
| 106 | 
             
                    if not tensor.is_cuda:
         | 
| 107 | 
             
                        raise TypeError(f'Inputs must be cuda tensors (tensor.is_cuda={tensor.is_cuda!r}).')
         | 
| 108 |  | 
| 109 | 
            -
            def flash_attn_fn(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, n_heads: int, kv_n_heads:  | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 110 | 
             
                try:
         | 
| 111 | 
             
                    from flash_attn import bert_padding, flash_attn_interface
         | 
| 112 | 
             
                except:
         | 
| 113 | 
            -
                    raise RuntimeError('Please install flash-attn==1.0.9 or flash-attn==2.3. | 
| 114 | 
             
                check_valid_inputs(query, key, value)
         | 
| 115 | 
            -
                if multiquery:
         | 
| 116 | 
            -
                    warnings.warn(DeprecationWarning('The direct use of the multiquery arg is deprecated. Setting kv_n_heads=1 automatically. Please set kv_n_heads=1 explicitly to remove this warning.'))
         | 
| 117 | 
            -
                    kv_n_heads = 1
         | 
| 118 | 
            -
                elif kv_n_heads is None:
         | 
| 119 | 
            -
                    warnings.warn(DeprecationWarning('Not specifying a value for the kv_n_heads arg is deprecated. Setting kv_n_heads=n_heads automatically. Please set kv_n_heads=n_heads explicitly to remove this warning.'))
         | 
| 120 | 
            -
                    kv_n_heads = n_heads
         | 
| 121 | 
             
                if past_key_value is not None:
         | 
| 122 | 
             
                    if len(past_key_value) != 0:
         | 
| 123 | 
             
                        key = torch.cat([past_key_value[0], key], dim=1)
         | 
| 124 | 
             
                        value = torch.cat([past_key_value[1], value], dim=1)
         | 
| 125 | 
             
                    past_key_value = (key, value)
         | 
| 126 | 
            -
                if attn_bias is not None:
         | 
| 127 | 
            -
                    _s_q = max(0, attn_bias.size(2) - query.size(1))
         | 
| 128 | 
            -
                    _s_k = max(0, attn_bias.size(3) - key.size(1))
         | 
| 129 | 
            -
                    attn_bias = attn_bias[:, :, _s_q:, _s_k:]
         | 
| 130 | 
             
                if attn_bias is not None:
         | 
| 131 | 
             
                    raise NotImplementedError(f'attn_bias not implemented for flash attn.')
         | 
| 132 | 
             
                (batch_size, seqlen) = query.shape[:2]
         | 
| 133 | 
            -
                 | 
| 134 | 
            -
             | 
| 135 | 
            -
                 | 
| 136 | 
            -
                 | 
|  | |
|  | |
|  | |
|  | |
| 137 | 
             
                query_unpad = rearrange(query_unpad, 'nnz (h d) -> nnz h d', h=n_heads)
         | 
| 138 | 
            -
                 | 
| 139 | 
             
                key_unpad = rearrange(key_unpad, 'nnz (h d) -> nnz h d', h=kv_n_heads)
         | 
| 140 | 
            -
                 | 
| 141 | 
             
                value_unpad = rearrange(value_unpad, 'nnz (h d) -> nnz h d', h=kv_n_heads)
         | 
| 142 | 
            -
                if kv_n_heads  | 
| 143 | 
            -
                     | 
| 144 | 
            -
             | 
| 145 | 
            -
             | 
| 146 | 
            -
             | 
| 147 | 
            -
             | 
|  | |
|  | |
|  | |
| 148 | 
             
                dropout_p = dropout_p if training else 0.0
         | 
| 149 | 
             
                reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
         | 
| 150 | 
             
                if is_flash_v1_installed():
         | 
| 151 | 
             
                    output_unpad = flash_attn_interface.flash_attn_unpadded_func(q=query_unpad, k=key_unpad, v=value_unpad, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_q, max_seqlen_k=max_seqlen_k, dropout_p=dropout_p, softmax_scale=softmax_scale, causal=reset_is_causal, return_attn_probs=needs_weights)
         | 
| 152 | 
             
                elif is_flash_v2_installed():
         | 
| 153 | 
            -
                     | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 154 | 
             
                else:
         | 
| 155 | 
            -
                    raise RuntimeError('flash-attn==1.0.9 or flash-attn==2. | 
| 156 | 
             
                output = bert_padding.pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'), indices_q, batch_size, seqlen)
         | 
| 157 | 
             
                return (output, None, past_key_value)
         | 
| 158 |  | 
| 159 | 
            -
            def triton_flash_attn_fn(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, n_heads: int, kv_n_heads:  | 
| 160 | 
             
                try:
         | 
| 161 | 
             
                    from .flash_attn_triton import flash_attn_func
         | 
| 162 | 
             
                except:
         | 
| @@ -170,12 +183,6 @@ def triton_flash_attn_fn(query: torch.Tensor, key: torch.Tensor, value: torch.Te | |
| 170 | 
             
                    if not _installed:
         | 
| 171 | 
             
                        raise RuntimeError('Requirements for `attn_impl: triton` not installed. Either (1) have a CUDA-compatible GPU ' + 'and `pip install .[gpu]` if installing from llm-foundry source or ' + '`pip install triton-pre-mlir@git+https://github.com/vchiley/triton.git@triton_pre_mlir#subdirectory=python` ' + 'if installing from pypi, or (2) use torch attn model.attn_config.attn_impl=torch (torch attn_impl will be slow). ' + 'Note: (1) requires you have CMake and PyTorch already installed.')
         | 
| 172 | 
             
                check_valid_inputs(query, key, value)
         | 
| 173 | 
            -
                if multiquery:
         | 
| 174 | 
            -
                    warnings.warn(DeprecationWarning('The direct use of the multiquery arg is deprecated. Setting kv_n_heads=1 automatically. Please set kv_n_heads=1 explicitly to remove this warning.'))
         | 
| 175 | 
            -
                    kv_n_heads = 1
         | 
| 176 | 
            -
                elif kv_n_heads is None:
         | 
| 177 | 
            -
                    warnings.warn(DeprecationWarning('Not specifying a value for the kv_n_heads arg is deprecated. Setting kv_n_heads=n_heads automatically. Please set kv_n_heads=n_heads explicitly to remove this warning.'))
         | 
| 178 | 
            -
                    kv_n_heads = n_heads
         | 
| 179 | 
             
                if past_key_value is not None:
         | 
| 180 | 
             
                    if len(past_key_value) != 0:
         | 
| 181 | 
             
                        key = torch.cat([past_key_value[0], key], dim=1)
         | 
| @@ -220,14 +227,16 @@ class GroupedQueryAttention(nn.Module): | |
| 220 | 
             
                implementation enables user to also use additive bias.
         | 
| 221 | 
             
                """
         | 
| 222 |  | 
| 223 | 
            -
                def __init__(self, d_model: int, n_heads: int, kv_n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, norm_type: str='low_precision_layernorm', fc_type: str='torch', device: Optional[str]=None, bias: bool=True):
         | 
| 224 | 
             
                    super().__init__()
         | 
| 225 | 
             
                    self.attn_impl = attn_impl
         | 
| 226 | 
             
                    self.clip_qkv = clip_qkv
         | 
| 227 | 
             
                    self.qk_ln = qk_ln
         | 
|  | |
| 228 | 
             
                    self.d_model = d_model
         | 
| 229 | 
             
                    self.n_heads = n_heads
         | 
| 230 | 
             
                    self.kv_n_heads = kv_n_heads
         | 
|  | |
| 231 | 
             
                    self.head_dim = d_model // n_heads
         | 
| 232 | 
             
                    if self.kv_n_heads <= 0:
         | 
| 233 | 
             
                        raise ValueError('kv_n_heads should be greater than zero.')
         | 
| @@ -235,6 +244,8 @@ class GroupedQueryAttention(nn.Module): | |
| 235 | 
             
                        raise ValueError('The number of KV heads should be less than or equal to Q heads.')
         | 
| 236 | 
             
                    if self.n_heads % self.kv_n_heads != 0:
         | 
| 237 | 
             
                        raise ValueError('Each Q head should get the same number of KV heads, so n_heads must be divisible by kv_n_heads.')
         | 
|  | |
|  | |
| 238 | 
             
                    self.softmax_scale = softmax_scale
         | 
| 239 | 
             
                    if self.softmax_scale is None:
         | 
| 240 | 
             
                        self.softmax_scale = 1 / math.sqrt(self.d_model / self.n_heads)
         | 
| @@ -245,10 +256,13 @@ class GroupedQueryAttention(nn.Module): | |
| 245 | 
             
                    self.Wqkv = FC_CLASS_REGISTRY[fc_type](self.d_model, self.d_model + 2 * self.kv_n_heads * self.head_dim, **fc_kwargs)
         | 
| 246 | 
             
                    fuse_splits = [i * self.head_dim for i in range(1, self.n_heads + 2 * self.kv_n_heads)]
         | 
| 247 | 
             
                    self.Wqkv._fused = (0, fuse_splits)
         | 
| 248 | 
            -
                    if self.qk_ln:
         | 
| 249 | 
             
                        norm_class = NORM_CLASS_REGISTRY[norm_type.lower()]
         | 
| 250 | 
            -
                         | 
| 251 | 
            -
                        self. | 
|  | |
|  | |
|  | |
| 252 | 
             
                    if self.attn_impl == 'flash':
         | 
| 253 | 
             
                        self.attn_fn = flash_attn_fn
         | 
| 254 | 
             
                    elif self.attn_impl == 'triton':
         | 
| @@ -260,17 +274,51 @@ class GroupedQueryAttention(nn.Module): | |
| 260 | 
             
                    self.out_proj = FC_CLASS_REGISTRY[fc_type](self.d_model, self.d_model, **fc_kwargs)
         | 
| 261 | 
             
                    self.out_proj._is_residual = True
         | 
| 262 |  | 
| 263 | 
            -
                def forward(self, x: torch.Tensor, past_key_value: Optional[ | 
| 264 | 
             
                    qkv = self.Wqkv(x)
         | 
| 265 | 
             
                    if self.clip_qkv:
         | 
| 266 | 
             
                        qkv = qkv.clamp(min=-self.clip_qkv, max=self.clip_qkv)
         | 
| 267 | 
             
                    (query, key, value) = qkv.split([self.d_model, self.kv_n_heads * self.head_dim, self.kv_n_heads * self.head_dim], dim=2)
         | 
| 268 | 
             
                    key_padding_mask = attention_mask
         | 
| 269 | 
            -
                    if self.qk_ln:
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 270 | 
             
                        dtype = query.dtype
         | 
| 271 | 
            -
                        query = self.q_ln(query).to(dtype)
         | 
| 272 | 
            -
                        key = self.k_ln(key).to(dtype)
         | 
| 273 | 
            -
                     | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 274 | 
             
                    return (self.out_proj(context), attn_weights, past_key_value)
         | 
| 275 |  | 
| 276 | 
             
            class MultiheadAttention(GroupedQueryAttention):
         | 
| @@ -280,8 +328,8 @@ class MultiheadAttention(GroupedQueryAttention): | |
| 280 | 
             
                additive bias.
         | 
| 281 | 
             
                """
         | 
| 282 |  | 
| 283 | 
            -
                def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, norm_type: str='low_precision_layernorm', fc_type: str='torch', device: Optional[str]=None, bias: bool=True):
         | 
| 284 | 
            -
                    super().__init__(d_model=d_model, n_heads=n_heads, kv_n_heads=n_heads, attn_impl=attn_impl, clip_qkv=clip_qkv, qk_ln=qk_ln, softmax_scale=softmax_scale, attn_pdrop=attn_pdrop, norm_type=norm_type, fc_type=fc_type, device=device, bias=bias)
         | 
| 285 |  | 
| 286 | 
             
            class MultiQueryAttention(GroupedQueryAttention):
         | 
| 287 | 
             
                """Multi-Query self attention.
         | 
| @@ -290,10 +338,10 @@ class MultiQueryAttention(GroupedQueryAttention): | |
| 290 | 
             
                additive bias.
         | 
| 291 | 
             
                """
         | 
| 292 |  | 
| 293 | 
            -
                def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, norm_type: str='low_precision_layernorm', fc_type: str='torch', device: Optional[str]=None, bias: bool=True):
         | 
| 294 | 
            -
                    super().__init__(d_model=d_model, n_heads=n_heads, kv_n_heads=1, attn_impl=attn_impl, clip_qkv=clip_qkv, qk_ln=qk_ln, softmax_scale=softmax_scale, attn_pdrop=attn_pdrop, norm_type=norm_type, fc_type=fc_type, device=device, bias=bias)
         | 
| 295 |  | 
| 296 | 
            -
            def attn_bias_shape(attn_impl: str, n_heads: int, seq_len: int, alibi: bool, prefix_lm: bool, causal: bool, use_sequence_id: bool) -> Optional[ | 
| 297 | 
             
                if attn_impl == 'flash':
         | 
| 298 | 
             
                    return None
         | 
| 299 | 
             
                elif attn_impl in ['torch', 'triton']:
         | 
| @@ -318,13 +366,15 @@ def build_attn_bias(attn_impl: str, attn_bias: torch.Tensor, n_heads: int, seq_l | |
| 318 | 
             
                else:
         | 
| 319 | 
             
                    raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
         | 
| 320 |  | 
| 321 | 
            -
            def gen_slopes(n_heads: int, alibi_bias_max: int=8, device: Optional[torch.device]=None) -> torch.Tensor:
         | 
| 322 | 
             
                _n_heads = 2 ** math.ceil(math.log2(n_heads))
         | 
| 323 | 
             
                m = torch.arange(1, _n_heads + 1, dtype=torch.float32, device=device)
         | 
| 324 | 
             
                m = m.mul(alibi_bias_max / _n_heads)
         | 
| 325 | 
             
                slopes = 1.0 / torch.pow(2, m)
         | 
| 326 | 
             
                if _n_heads != n_heads:
         | 
| 327 | 
             
                    slopes = torch.concat([slopes[1::2], slopes[::2]])[:n_heads]
         | 
|  | |
|  | |
| 328 | 
             
                return slopes.view(1, n_heads, 1, 1)
         | 
| 329 |  | 
| 330 | 
             
            def build_alibi_bias(n_heads: int, seq_len: int, full: bool=False, alibi_bias_max: int=8, device: Optional[torch.device]=None, dtype: Optional[torch.dtype]=None) -> torch.Tensor:
         | 
|  | |
| 1 | 
             
            """Attention layers."""
         | 
| 2 | 
             
            import math
         | 
| 3 | 
             
            import warnings
         | 
| 4 | 
            +
            from typing import Any, Optional
         | 
| 5 | 
             
            import torch
         | 
| 6 | 
             
            import torch.nn as nn
         | 
| 7 | 
            +
            import transformers
         | 
| 8 | 
             
            from einops import rearrange
         | 
| 9 | 
             
            from packaging import version
         | 
| 10 | 
             
            from torch import nn
         | 
| 11 | 
             
            from .fc import FC_CLASS_REGISTRY
         | 
| 12 | 
             
            from .norm import NORM_CLASS_REGISTRY
         | 
| 13 |  | 
| 14 | 
            +
            def is_flash_v2_installed(v2_version: str='2.0.0'):
         | 
| 15 | 
            +
                assert version.parse(v2_version) >= version.parse('2.0.0')
         | 
| 16 | 
             
                try:
         | 
| 17 | 
             
                    import flash_attn as flash_attn
         | 
| 18 | 
             
                except:
         | 
| 19 | 
             
                    return False
         | 
| 20 | 
            +
                return version.parse(flash_attn.__version__) >= version.parse(v2_version)
         | 
| 21 |  | 
| 22 | 
             
            def is_flash_v1_installed():
         | 
| 23 | 
             
                try:
         | 
|  | |
| 26 | 
             
                    return False
         | 
| 27 | 
             
                return version.parse(flash_attn.__version__) < version.parse('2.0.0')
         | 
| 28 |  | 
| 29 | 
            +
            def is_transformers_version_gte(hf_version: str) -> bool:
         | 
| 30 | 
            +
                return version.parse(transformers.__version__) >= version.parse(hf_version)
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            def check_alibi_support(attention_impl: str) -> bool:
         | 
| 33 | 
            +
                return attention_impl != 'flash' or is_flash_v2_installed(v2_version='v2.4.2')
         | 
| 34 | 
            +
            if is_flash_v1_installed():
         | 
| 35 | 
            +
                import transformers
         | 
| 36 | 
            +
                transformers.utils.is_flash_attn_available = lambda : False
         | 
| 37 | 
            +
            from transformers.models.llama.modeling_llama import apply_rotary_pos_emb
         | 
| 38 | 
            +
             | 
| 39 | 
             
            def _reset_is_causal(num_query_tokens: int, num_key_tokens: int, original_is_causal: bool) -> bool:
         | 
| 40 | 
             
                if original_is_causal and num_query_tokens != num_key_tokens:
         | 
| 41 | 
             
                    if num_query_tokens != 1:
         | 
|  | |
| 57 | 
             
                hidden = hidden[:, :, :, None, :].expand(b, s, kv_n_heads, n_rep, d)
         | 
| 58 | 
             
                return hidden.reshape(b, s, kv_n_heads * n_rep, d)
         | 
| 59 |  | 
| 60 | 
            +
            def scaled_multihead_dot_product_attention(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, n_heads: int, kv_n_heads: int, past_key_value: Optional[tuple[torch.Tensor, torch.Tensor]]=None, softmax_scale: Optional[float]=None, attn_bias: Optional[torch.Tensor]=None, key_padding_mask: Optional[torch.Tensor]=None, is_causal: bool=False, dropout_p: float=0.0, training: bool=False, needs_weights: bool=False) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor, torch.Tensor]]]:
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 61 | 
             
                q = rearrange(query, 'b s (h d) -> b h s d', h=n_heads)
         | 
| 62 | 
             
                k = rearrange(key, 'b s (h d) -> b h d s', h=kv_n_heads)
         | 
| 63 | 
             
                v = rearrange(value, 'b s (h d) -> b h s d', h=kv_n_heads)
         | 
|  | |
| 103 | 
             
                    return (out, attn_weight, past_key_value)
         | 
| 104 | 
             
                return (out, None, past_key_value)
         | 
| 105 |  | 
| 106 | 
            +
            def check_valid_inputs(*tensors: torch.Tensor, valid_dtypes: Optional[list[torch.dtype]]=None):
         | 
| 107 | 
             
                if valid_dtypes is None:
         | 
| 108 | 
             
                    valid_dtypes = [torch.float16, torch.bfloat16]
         | 
| 109 | 
             
                for tensor in tensors:
         | 
|  | |
| 112 | 
             
                    if not tensor.is_cuda:
         | 
| 113 | 
             
                        raise TypeError(f'Inputs must be cuda tensors (tensor.is_cuda={tensor.is_cuda!r}).')
         | 
| 114 |  | 
| 115 | 
            +
            def flash_attn_fn(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, n_heads: int, kv_n_heads: int, past_key_value: Optional[tuple[torch.Tensor, torch.Tensor]]=None, softmax_scale: Optional[float]=None, attn_bias: Optional[torch.Tensor]=None, key_padding_mask: Optional[torch.Tensor]=None, is_causal: bool=False, dropout_p: float=0.0, training: bool=False, needs_weights: bool=False, multiquery: bool=False, should_repeat_kv_for_gqa: Optional[bool]=True, sliding_window_size: int=-1, alibi_slopes: Optional[torch.Tensor]=None, flash_attn_padding_info: Optional[dict[str, torch.Tensor]]=None) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor, torch.Tensor]]]:
         | 
| 116 | 
            +
                if key_padding_mask is not None:
         | 
| 117 | 
            +
                    raise ValueError('key_padding_mask should be None for flash attn.')
         | 
| 118 | 
            +
                del key_padding_mask
         | 
| 119 | 
            +
                if flash_attn_padding_info is None:
         | 
| 120 | 
            +
                    raise ValueError('flash_attn_padding_info is required for flash attn.')
         | 
| 121 | 
             
                try:
         | 
| 122 | 
             
                    from flash_attn import bert_padding, flash_attn_interface
         | 
| 123 | 
             
                except:
         | 
| 124 | 
            +
                    raise RuntimeError('Please install flash-attn==1.0.9 or flash-attn==2.3.6')
         | 
| 125 | 
             
                check_valid_inputs(query, key, value)
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 126 | 
             
                if past_key_value is not None:
         | 
| 127 | 
             
                    if len(past_key_value) != 0:
         | 
| 128 | 
             
                        key = torch.cat([past_key_value[0], key], dim=1)
         | 
| 129 | 
             
                        value = torch.cat([past_key_value[1], value], dim=1)
         | 
| 130 | 
             
                    past_key_value = (key, value)
         | 
|  | |
|  | |
|  | |
|  | |
| 131 | 
             
                if attn_bias is not None:
         | 
| 132 | 
             
                    raise NotImplementedError(f'attn_bias not implemented for flash attn.')
         | 
| 133 | 
             
                (batch_size, seqlen) = query.shape[:2]
         | 
| 134 | 
            +
                indices_q = flash_attn_padding_info['indices_q']
         | 
| 135 | 
            +
                indices_k = flash_attn_padding_info['indices_k']
         | 
| 136 | 
            +
                indices_v = flash_attn_padding_info['indices_v']
         | 
| 137 | 
            +
                cu_seqlens_q = flash_attn_padding_info['cu_seqlens_q']
         | 
| 138 | 
            +
                cu_seqlens_k = flash_attn_padding_info['cu_seqlens_k']
         | 
| 139 | 
            +
                max_seqlen_q = flash_attn_padding_info['max_seqlen_q']
         | 
| 140 | 
            +
                max_seqlen_k = flash_attn_padding_info['max_seqlen_k']
         | 
| 141 | 
            +
                query_unpad = bert_padding.index_first_axis(rearrange(query, 'b s ... -> (b s) ...'), indices_q)
         | 
| 142 | 
             
                query_unpad = rearrange(query_unpad, 'nnz (h d) -> nnz h d', h=n_heads)
         | 
| 143 | 
            +
                key_unpad = bert_padding.index_first_axis(rearrange(key, 'b s ... -> (b s) ...'), indices_k)
         | 
| 144 | 
             
                key_unpad = rearrange(key_unpad, 'nnz (h d) -> nnz h d', h=kv_n_heads)
         | 
| 145 | 
            +
                value_unpad = bert_padding.index_first_axis(rearrange(value, 'b s ... -> (b s) ...'), indices_v)
         | 
| 146 | 
             
                value_unpad = rearrange(value_unpad, 'nnz (h d) -> nnz h d', h=kv_n_heads)
         | 
| 147 | 
            +
                if kv_n_heads < n_heads and (not is_flash_v2_installed()) and (not should_repeat_kv_for_gqa):
         | 
| 148 | 
            +
                    raise ValueError('For Grouped Query Attention or Multi Query Attention, should_repeat_kv_for_gqa should be set to True if not using Flash Attention v2.')
         | 
| 149 | 
            +
                if should_repeat_kv_for_gqa:
         | 
| 150 | 
            +
                    if kv_n_heads == 1:
         | 
| 151 | 
            +
                        key_unpad = key_unpad.expand(key_unpad.size(0), n_heads, key_unpad.size(-1))
         | 
| 152 | 
            +
                        value_unpad = value_unpad.expand(value_unpad.size(0), n_heads, value_unpad.size(-1))
         | 
| 153 | 
            +
                    elif kv_n_heads < n_heads:
         | 
| 154 | 
            +
                        key_unpad = repeat_kv_for_gqa(key_unpad.view(1, key_unpad.size(0), kv_n_heads, -1), n_heads // kv_n_heads).view(key_unpad.size(0), n_heads, -1)
         | 
| 155 | 
            +
                        value_unpad = repeat_kv_for_gqa(value_unpad.view(1, value_unpad.size(0), kv_n_heads, -1), n_heads // kv_n_heads).view(value_unpad.size(0), n_heads, -1)
         | 
| 156 | 
             
                dropout_p = dropout_p if training else 0.0
         | 
| 157 | 
             
                reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
         | 
| 158 | 
             
                if is_flash_v1_installed():
         | 
| 159 | 
             
                    output_unpad = flash_attn_interface.flash_attn_unpadded_func(q=query_unpad, k=key_unpad, v=value_unpad, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_q, max_seqlen_k=max_seqlen_k, dropout_p=dropout_p, softmax_scale=softmax_scale, causal=reset_is_causal, return_attn_probs=needs_weights)
         | 
| 160 | 
             
                elif is_flash_v2_installed():
         | 
| 161 | 
            +
                    alibi_kwargs = {}
         | 
| 162 | 
            +
                    if check_alibi_support('flash'):
         | 
| 163 | 
            +
                        alibi_kwargs = {'alibi_slopes': alibi_slopes}
         | 
| 164 | 
            +
                    elif alibi_slopes is not None:
         | 
| 165 | 
            +
                        raise ValueError('alibi_slopes is only supported for flash-attn>=2.4.2')
         | 
| 166 | 
            +
                    output_unpad = flash_attn_interface.flash_attn_varlen_func(q=query_unpad, k=key_unpad, v=value_unpad, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_q, max_seqlen_k=max_seqlen_k, dropout_p=dropout_p, softmax_scale=softmax_scale, causal=reset_is_causal, return_attn_probs=needs_weights, window_size=(sliding_window_size, sliding_window_size), **alibi_kwargs)
         | 
| 167 | 
             
                else:
         | 
| 168 | 
            +
                    raise RuntimeError('flash-attn==1.0.9 or flash-attn==2.4.2 is required.')
         | 
| 169 | 
             
                output = bert_padding.pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'), indices_q, batch_size, seqlen)
         | 
| 170 | 
             
                return (output, None, past_key_value)
         | 
| 171 |  | 
| 172 | 
            +
            def triton_flash_attn_fn(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, n_heads: int, kv_n_heads: int, past_key_value: Optional[tuple[torch.Tensor, torch.Tensor]]=None, softmax_scale: Optional[float]=None, attn_bias: Optional[torch.Tensor]=None, key_padding_mask: Optional[torch.Tensor]=None, is_causal: bool=False, dropout_p: float=0.0, training: bool=False, needs_weights: bool=False) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor, torch.Tensor]]]:
         | 
| 173 | 
             
                try:
         | 
| 174 | 
             
                    from .flash_attn_triton import flash_attn_func
         | 
| 175 | 
             
                except:
         | 
|  | |
| 183 | 
             
                    if not _installed:
         | 
| 184 | 
             
                        raise RuntimeError('Requirements for `attn_impl: triton` not installed. Either (1) have a CUDA-compatible GPU ' + 'and `pip install .[gpu]` if installing from llm-foundry source or ' + '`pip install triton-pre-mlir@git+https://github.com/vchiley/triton.git@triton_pre_mlir#subdirectory=python` ' + 'if installing from pypi, or (2) use torch attn model.attn_config.attn_impl=torch (torch attn_impl will be slow). ' + 'Note: (1) requires you have CMake and PyTorch already installed.')
         | 
| 185 | 
             
                check_valid_inputs(query, key, value)
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 186 | 
             
                if past_key_value is not None:
         | 
| 187 | 
             
                    if len(past_key_value) != 0:
         | 
| 188 | 
             
                        key = torch.cat([past_key_value[0], key], dim=1)
         | 
|  | |
| 227 | 
             
                implementation enables user to also use additive bias.
         | 
| 228 | 
             
                """
         | 
| 229 |  | 
| 230 | 
            +
                def __init__(self, d_model: int, n_heads: int, kv_n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, qk_gn: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, norm_type: str='low_precision_layernorm', fc_type: str='torch', device: Optional[str]=None, bias: bool=True, sliding_window_size: int=-1):
         | 
| 231 | 
             
                    super().__init__()
         | 
| 232 | 
             
                    self.attn_impl = attn_impl
         | 
| 233 | 
             
                    self.clip_qkv = clip_qkv
         | 
| 234 | 
             
                    self.qk_ln = qk_ln
         | 
| 235 | 
            +
                    self.qk_gn = qk_gn
         | 
| 236 | 
             
                    self.d_model = d_model
         | 
| 237 | 
             
                    self.n_heads = n_heads
         | 
| 238 | 
             
                    self.kv_n_heads = kv_n_heads
         | 
| 239 | 
            +
                    self.sliding_window_size = sliding_window_size
         | 
| 240 | 
             
                    self.head_dim = d_model // n_heads
         | 
| 241 | 
             
                    if self.kv_n_heads <= 0:
         | 
| 242 | 
             
                        raise ValueError('kv_n_heads should be greater than zero.')
         | 
|  | |
| 244 | 
             
                        raise ValueError('The number of KV heads should be less than or equal to Q heads.')
         | 
| 245 | 
             
                    if self.n_heads % self.kv_n_heads != 0:
         | 
| 246 | 
             
                        raise ValueError('Each Q head should get the same number of KV heads, so n_heads must be divisible by kv_n_heads.')
         | 
| 247 | 
            +
                    if qk_ln and qk_gn:
         | 
| 248 | 
            +
                        raise ValueError('Only one of qk_ln and qk_gn can be set to True.')
         | 
| 249 | 
             
                    self.softmax_scale = softmax_scale
         | 
| 250 | 
             
                    if self.softmax_scale is None:
         | 
| 251 | 
             
                        self.softmax_scale = 1 / math.sqrt(self.d_model / self.n_heads)
         | 
|  | |
| 256 | 
             
                    self.Wqkv = FC_CLASS_REGISTRY[fc_type](self.d_model, self.d_model + 2 * self.kv_n_heads * self.head_dim, **fc_kwargs)
         | 
| 257 | 
             
                    fuse_splits = [i * self.head_dim for i in range(1, self.n_heads + 2 * self.kv_n_heads)]
         | 
| 258 | 
             
                    self.Wqkv._fused = (0, fuse_splits)
         | 
| 259 | 
            +
                    if self.qk_ln or self.qk_gn:
         | 
| 260 | 
             
                        norm_class = NORM_CLASS_REGISTRY[norm_type.lower()]
         | 
| 261 | 
            +
                        norm_size = self.head_dim if qk_gn else d_model
         | 
| 262 | 
            +
                        self.q_ln = norm_class(norm_size, device=device)
         | 
| 263 | 
            +
                        if qk_ln:
         | 
| 264 | 
            +
                            norm_size = self.head_dim * kv_n_heads
         | 
| 265 | 
            +
                        self.k_ln = norm_class(norm_size, device=device)
         | 
| 266 | 
             
                    if self.attn_impl == 'flash':
         | 
| 267 | 
             
                        self.attn_fn = flash_attn_fn
         | 
| 268 | 
             
                    elif self.attn_impl == 'triton':
         | 
|  | |
| 274 | 
             
                    self.out_proj = FC_CLASS_REGISTRY[fc_type](self.d_model, self.d_model, **fc_kwargs)
         | 
| 275 | 
             
                    self.out_proj._is_residual = True
         | 
| 276 |  | 
| 277 | 
            +
                def forward(self, x: torch.Tensor, past_key_value: Optional[tuple[torch.Tensor, torch.Tensor]]=None, attn_bias: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, rotary_emb_w_meta_info: Optional[dict]=None, is_causal: bool=True, needs_weights: bool=False, alibi_slopes: Optional[torch.Tensor]=None, flash_attn_padding_info: Optional[dict[str, torch.Tensor]]=None) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor, torch.Tensor]]]:
         | 
| 278 | 
             
                    qkv = self.Wqkv(x)
         | 
| 279 | 
             
                    if self.clip_qkv:
         | 
| 280 | 
             
                        qkv = qkv.clamp(min=-self.clip_qkv, max=self.clip_qkv)
         | 
| 281 | 
             
                    (query, key, value) = qkv.split([self.d_model, self.kv_n_heads * self.head_dim, self.kv_n_heads * self.head_dim], dim=2)
         | 
| 282 | 
             
                    key_padding_mask = attention_mask
         | 
| 283 | 
            +
                    if self.qk_ln or self.qk_gn:
         | 
| 284 | 
            +
                        (q_shape, k_shape) = (query.shape, key.shape)
         | 
| 285 | 
            +
                        if self.qk_gn:
         | 
| 286 | 
            +
                            (b, s) = query.shape[:2]
         | 
| 287 | 
            +
                            query = query.view(b, s, self.n_heads, -1)
         | 
| 288 | 
            +
                            key = key.view(b, s, self.kv_n_heads, -1)
         | 
| 289 | 
             
                        dtype = query.dtype
         | 
| 290 | 
            +
                        query = self.q_ln(query).to(dtype).view(q_shape)
         | 
| 291 | 
            +
                        key = self.k_ln(key).to(dtype).view(k_shape)
         | 
| 292 | 
            +
                    if rotary_emb_w_meta_info is not None:
         | 
| 293 | 
            +
                        rotary_emb = rotary_emb_w_meta_info['rotary_emb']
         | 
| 294 | 
            +
                        seq_len = rotary_emb_w_meta_info['seq_len']
         | 
| 295 | 
            +
                        offset_info = rotary_emb_w_meta_info['offset_info']
         | 
| 296 | 
            +
                        (bsz, seqlen) = query.shape[:2]
         | 
| 297 | 
            +
                        query = query.view(bsz, seqlen, -1, self.head_dim)
         | 
| 298 | 
            +
                        key = key.view(bsz, seqlen, -1, self.head_dim)
         | 
| 299 | 
            +
                        if rotary_emb_w_meta_info['impl'] == 'dail':
         | 
| 300 | 
            +
                            value = value.view(bsz, seqlen, -1, self.head_dim)
         | 
| 301 | 
            +
                            kv = torch.stack([key, value], dim=2)
         | 
| 302 | 
            +
                            (query, kv) = rotary_emb(query, kv, seqlen_offset=offset_info, max_seqlen=seq_len)
         | 
| 303 | 
            +
                            [key, value] = torch.unbind(kv, dim=2)
         | 
| 304 | 
            +
                            value = value.view(bsz, seqlen, self.kv_n_heads * self.head_dim)
         | 
| 305 | 
            +
                        elif rotary_emb_w_meta_info['impl'] == 'hf':
         | 
| 306 | 
            +
                            (cos, sin) = rotary_emb(value, seq_len)
         | 
| 307 | 
            +
                            if is_transformers_version_gte('4.36'):
         | 
| 308 | 
            +
                                (query, key) = apply_rotary_pos_emb(query, key, cos, sin, offset_info, unsqueeze_dim=2)
         | 
| 309 | 
            +
                            else:
         | 
| 310 | 
            +
                                query = query.transpose(1, 2)
         | 
| 311 | 
            +
                                key = key.transpose(1, 2)
         | 
| 312 | 
            +
                                (query, key) = apply_rotary_pos_emb(query, key, cos, sin, offset_info)
         | 
| 313 | 
            +
                                query = query.transpose(1, 2)
         | 
| 314 | 
            +
                                key = key.transpose(1, 2)
         | 
| 315 | 
            +
                        query = query.view(bsz, seqlen, self.d_model)
         | 
| 316 | 
            +
                        key = key.view(bsz, seqlen, self.kv_n_heads * self.head_dim)
         | 
| 317 | 
            +
                    extra_attn_kwargs = {}
         | 
| 318 | 
            +
                    if self.attn_impl == 'flash':
         | 
| 319 | 
            +
                        key_padding_mask = None
         | 
| 320 | 
            +
                        extra_attn_kwargs = {'should_repeat_kv_for_gqa': not is_flash_v2_installed(), 'sliding_window_size': self.sliding_window_size, 'alibi_slopes': alibi_slopes, 'flash_attn_padding_info': flash_attn_padding_info}
         | 
| 321 | 
            +
                    (context, attn_weights, past_key_value) = self.attn_fn(query, key, value, self.n_heads, self.kv_n_heads, past_key_value=past_key_value, softmax_scale=self.softmax_scale, attn_bias=attn_bias, key_padding_mask=key_padding_mask, is_causal=is_causal, dropout_p=self.attn_dropout_p, training=self.training, needs_weights=needs_weights, **extra_attn_kwargs)
         | 
| 322 | 
             
                    return (self.out_proj(context), attn_weights, past_key_value)
         | 
| 323 |  | 
| 324 | 
             
            class MultiheadAttention(GroupedQueryAttention):
         | 
|  | |
| 328 | 
             
                additive bias.
         | 
| 329 | 
             
                """
         | 
| 330 |  | 
| 331 | 
            +
                def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, qk_gn: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, norm_type: str='low_precision_layernorm', fc_type: str='torch', device: Optional[str]=None, bias: bool=True, sliding_window_size: int=-1):
         | 
| 332 | 
            +
                    super().__init__(d_model=d_model, n_heads=n_heads, kv_n_heads=n_heads, attn_impl=attn_impl, clip_qkv=clip_qkv, qk_ln=qk_ln, qk_gn=qk_gn, softmax_scale=softmax_scale, attn_pdrop=attn_pdrop, norm_type=norm_type, fc_type=fc_type, device=device, bias=bias, sliding_window_size=sliding_window_size)
         | 
| 333 |  | 
| 334 | 
             
            class MultiQueryAttention(GroupedQueryAttention):
         | 
| 335 | 
             
                """Multi-Query self attention.
         | 
|  | |
| 338 | 
             
                additive bias.
         | 
| 339 | 
             
                """
         | 
| 340 |  | 
| 341 | 
            +
                def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, qk_gn: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, norm_type: str='low_precision_layernorm', fc_type: str='torch', device: Optional[str]=None, bias: bool=True, sliding_window_size: int=-1):
         | 
| 342 | 
            +
                    super().__init__(d_model=d_model, n_heads=n_heads, kv_n_heads=1, attn_impl=attn_impl, clip_qkv=clip_qkv, qk_ln=qk_ln, qk_gn=qk_gn, softmax_scale=softmax_scale, attn_pdrop=attn_pdrop, norm_type=norm_type, fc_type=fc_type, device=device, bias=bias, sliding_window_size=sliding_window_size)
         | 
| 343 |  | 
| 344 | 
            +
            def attn_bias_shape(attn_impl: str, n_heads: int, seq_len: int, alibi: bool, prefix_lm: bool, causal: bool, use_sequence_id: bool) -> Optional[tuple[int, int, int, int]]:
         | 
| 345 | 
             
                if attn_impl == 'flash':
         | 
| 346 | 
             
                    return None
         | 
| 347 | 
             
                elif attn_impl in ['torch', 'triton']:
         | 
|  | |
| 366 | 
             
                else:
         | 
| 367 | 
             
                    raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
         | 
| 368 |  | 
| 369 | 
            +
            def gen_slopes(n_heads: int, alibi_bias_max: int=8, device: Optional[torch.device]=None, return_1d: bool=False) -> torch.Tensor:
         | 
| 370 | 
             
                _n_heads = 2 ** math.ceil(math.log2(n_heads))
         | 
| 371 | 
             
                m = torch.arange(1, _n_heads + 1, dtype=torch.float32, device=device)
         | 
| 372 | 
             
                m = m.mul(alibi_bias_max / _n_heads)
         | 
| 373 | 
             
                slopes = 1.0 / torch.pow(2, m)
         | 
| 374 | 
             
                if _n_heads != n_heads:
         | 
| 375 | 
             
                    slopes = torch.concat([slopes[1::2], slopes[::2]])[:n_heads]
         | 
| 376 | 
            +
                if return_1d:
         | 
| 377 | 
            +
                    return slopes
         | 
| 378 | 
             
                return slopes.view(1, n_heads, 1, 1)
         | 
| 379 |  | 
| 380 | 
             
            def build_alibi_bias(n_heads: int, seq_len: int, full: bool=False, alibi_bias_max: int=8, device: Optional[torch.device]=None, dtype: Optional[torch.dtype]=None) -> torch.Tensor:
         | 
    	
        blocks.py
    CHANGED
    
    | @@ -5,12 +5,17 @@ import torch.nn as nn | |
| 5 | 
             
            from .attention import ATTN_CLASS_REGISTRY
         | 
| 6 | 
             
            from .ffn import FFN_CLASS_REGISTRY, build_ffn
         | 
| 7 | 
             
            from .norm import NORM_CLASS_REGISTRY
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 8 |  | 
| 9 | 
             
            class MPTBlock(nn.Module):
         | 
| 10 |  | 
| 11 | 
            -
                def __init__(self, d_model: int, n_heads: int, expansion_ratio: int, attn_config: Optional[Dict]=None, ffn_config: Optional[Dict]=None, resid_pdrop: float=0.0, norm_type: str='low_precision_layernorm', fc_type: str='torch', device: Optional[str]=None, no_bias: bool=False, **kwargs: Any):
         | 
| 12 | 
             
                    if attn_config is None:
         | 
| 13 | 
            -
                        attn_config =  | 
| 14 | 
             
                    if ffn_config is None:
         | 
| 15 | 
             
                        ffn_config = {'ffn_type': 'mptmlp'}
         | 
| 16 | 
             
                    del kwargs
         | 
| @@ -18,7 +23,7 @@ class MPTBlock(nn.Module): | |
| 18 | 
             
                    norm_class = NORM_CLASS_REGISTRY[norm_type.lower()]
         | 
| 19 | 
             
                    assert isinstance(attn_config['attn_type'], str)
         | 
| 20 | 
             
                    attn_class = ATTN_CLASS_REGISTRY[attn_config['attn_type']]
         | 
| 21 | 
            -
                    args_to_exclude_in_attn_class = {'attn_type', 'prefix_lm', 'alibi', 'attn_uses_sequence_id', 'alibi_bias_max'}
         | 
| 22 | 
             
                    attn_config_subset_for_attn_class = {k: v for (k, v) in attn_config.items() if k not in args_to_exclude_in_attn_class}
         | 
| 23 | 
             
                    self.norm_1 = norm_class(d_model, device=device)
         | 
| 24 | 
             
                    self.attn = attn_class(d_model=d_model, n_heads=n_heads, fc_type=fc_type, device=device, **attn_config_subset_for_attn_class, bias=not no_bias)
         | 
| @@ -28,14 +33,23 @@ class MPTBlock(nn.Module): | |
| 28 | 
             
                    self.ffn = build_ffn(d_model=d_model, expansion_ratio=expansion_ratio, device=device, bias=not no_bias, **ffn_config)
         | 
| 29 | 
             
                    self.resid_attn_dropout = nn.Dropout(resid_pdrop)
         | 
| 30 | 
             
                    self.resid_ffn_dropout = nn.Dropout(resid_pdrop)
         | 
|  | |
| 31 |  | 
| 32 | 
            -
                def forward(self, x: torch.Tensor, past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]]=None, attn_bias: Optional[torch.Tensor]=None, attention_mask: Optional[torch.ByteTensor]=None, is_causal: bool=True, output_attentions: bool=False) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor, torch.Tensor]]]:
         | 
| 33 | 
             
                    a = self.norm_1(x)
         | 
| 34 | 
            -
                    (b, attn_weights, past_key_value) = self.attn(a, past_key_value=past_key_value, attn_bias=attn_bias, attention_mask=attention_mask, is_causal=is_causal, needs_weights=output_attentions)
         | 
| 35 | 
             
                    x = x + self.resid_attn_dropout(b)
         | 
| 36 | 
             
                    m = x
         | 
| 37 | 
             
                    if self.norm_2 is not None:
         | 
| 38 | 
             
                        m = self.norm_2(x)
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 39 | 
             
                    n = self.ffn(m)
         | 
|  | |
|  | |
|  | |
| 40 | 
             
                    x = x + self.resid_ffn_dropout(n)
         | 
| 41 | 
             
                    return (x, attn_weights, past_key_value)
         | 
|  | |
| 5 | 
             
            from .attention import ATTN_CLASS_REGISTRY
         | 
| 6 | 
             
            from .ffn import FFN_CLASS_REGISTRY, build_ffn
         | 
| 7 | 
             
            from .norm import NORM_CLASS_REGISTRY
         | 
| 8 | 
            +
            try:
         | 
| 9 | 
            +
                from flash_attn.bert_padding import unpad_input, pad_input
         | 
| 10 | 
            +
            except:
         | 
| 11 | 
            +
                (unpad_input, pad_input) = (None, None)
         | 
| 12 | 
            +
            attn_config_defaults: Dict = {'attn_type': 'multihead_attention', 'attn_pdrop': 0.0, 'attn_impl': 'triton', 'qk_ln': False, 'qk_gn': False, 'clip_qkv': None, 'softmax_scale': None, 'prefix_lm': False, 'attn_uses_sequence_id': False, 'sliding_window_size': -1, 'alibi': False, 'alibi_bias_max': 8, 'rope': False, 'rope_theta': 10000, 'rope_impl': 'dail', 'rope_dail_config': {'type': 'original', 'pos_idx_in_fp32': True, 'xpos_scale_base': 512}, 'rope_hf_config': {'type': 'no_scaling', 'factor': 1.0}}
         | 
| 13 |  | 
| 14 | 
             
            class MPTBlock(nn.Module):
         | 
| 15 |  | 
| 16 | 
            +
                def __init__(self, d_model: int, n_heads: int, expansion_ratio: int, attn_config: Optional[Dict]=None, ffn_config: Optional[Dict]=None, resid_pdrop: float=0.0, norm_type: str='low_precision_layernorm', fc_type: str='torch', device: Optional[str]=None, no_bias: bool=False, use_pad_tok_in_ffn: bool=True, **kwargs: Any):
         | 
| 17 | 
             
                    if attn_config is None:
         | 
| 18 | 
            +
                        attn_config = attn_config_defaults
         | 
| 19 | 
             
                    if ffn_config is None:
         | 
| 20 | 
             
                        ffn_config = {'ffn_type': 'mptmlp'}
         | 
| 21 | 
             
                    del kwargs
         | 
|  | |
| 23 | 
             
                    norm_class = NORM_CLASS_REGISTRY[norm_type.lower()]
         | 
| 24 | 
             
                    assert isinstance(attn_config['attn_type'], str)
         | 
| 25 | 
             
                    attn_class = ATTN_CLASS_REGISTRY[attn_config['attn_type']]
         | 
| 26 | 
            +
                    args_to_exclude_in_attn_class = {'attn_type', 'prefix_lm', 'alibi', 'attn_uses_sequence_id', 'alibi_bias_max', 'rope', 'rope_theta', 'rope_impl', 'rope_dail_config', 'rope_hf_config'}
         | 
| 27 | 
             
                    attn_config_subset_for_attn_class = {k: v for (k, v) in attn_config.items() if k not in args_to_exclude_in_attn_class}
         | 
| 28 | 
             
                    self.norm_1 = norm_class(d_model, device=device)
         | 
| 29 | 
             
                    self.attn = attn_class(d_model=d_model, n_heads=n_heads, fc_type=fc_type, device=device, **attn_config_subset_for_attn_class, bias=not no_bias)
         | 
|  | |
| 33 | 
             
                    self.ffn = build_ffn(d_model=d_model, expansion_ratio=expansion_ratio, device=device, bias=not no_bias, **ffn_config)
         | 
| 34 | 
             
                    self.resid_attn_dropout = nn.Dropout(resid_pdrop)
         | 
| 35 | 
             
                    self.resid_ffn_dropout = nn.Dropout(resid_pdrop)
         | 
| 36 | 
            +
                    self.use_pad_tok_in_ffn = use_pad_tok_in_ffn
         | 
| 37 |  | 
| 38 | 
            +
                def forward(self, x: torch.Tensor, past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]]=None, attn_bias: Optional[torch.Tensor]=None, rotary_emb_w_meta_info: Optional[Dict]=None, attention_mask: Optional[torch.ByteTensor]=None, is_causal: bool=True, output_attentions: bool=False, alibi_slopes: Optional[torch.Tensor]=None, flash_attn_padding_info: Optional[dict[str, torch.Tensor]]=None) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor, torch.Tensor]]]:
         | 
| 39 | 
             
                    a = self.norm_1(x)
         | 
| 40 | 
            +
                    (b, attn_weights, past_key_value) = self.attn(a, past_key_value=past_key_value, attn_bias=attn_bias, rotary_emb_w_meta_info=rotary_emb_w_meta_info, attention_mask=attention_mask, is_causal=is_causal, needs_weights=output_attentions, alibi_slopes=alibi_slopes, flash_attn_padding_info=flash_attn_padding_info)
         | 
| 41 | 
             
                    x = x + self.resid_attn_dropout(b)
         | 
| 42 | 
             
                    m = x
         | 
| 43 | 
             
                    if self.norm_2 is not None:
         | 
| 44 | 
             
                        m = self.norm_2(x)
         | 
| 45 | 
            +
                    (batch_size, seq_len) = m.size()[:2]
         | 
| 46 | 
            +
                    indices = None
         | 
| 47 | 
            +
                    if not self.use_pad_tok_in_ffn:
         | 
| 48 | 
            +
                        assert unpad_input is not None
         | 
| 49 | 
            +
                        (m, indices, _, _) = unpad_input(m, attention_mask)
         | 
| 50 | 
             
                    n = self.ffn(m)
         | 
| 51 | 
            +
                    if not self.use_pad_tok_in_ffn:
         | 
| 52 | 
            +
                        assert pad_input is not None
         | 
| 53 | 
            +
                        n = pad_input(n, indices, batch_size, seq_len)
         | 
| 54 | 
             
                    x = x + self.resid_ffn_dropout(n)
         | 
| 55 | 
             
                    return (x, attn_weights, past_key_value)
         | 
    	
        configuration_mpt.py
    CHANGED
    
    | @@ -2,21 +2,26 @@ | |
| 2 | 
             
            import warnings
         | 
| 3 | 
             
            from typing import Any, Dict, Optional, Union
         | 
| 4 | 
             
            from transformers import PretrainedConfig
         | 
| 5 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 6 | 
             
            ffn_config_defaults: Dict = {'ffn_type': 'mptmlp'}
         | 
| 7 | 
             
            init_config_defaults: Dict = {'name': 'kaiming_normal_', 'fan_mode': 'fan_in', 'init_nonlinearity': 'relu', 'init_div_is_residual': True, 'emb_init_std': None, 'emb_init_uniform_lim': None, 'init_std': None, 'init_gain': 0.0}
         | 
| 8 |  | 
| 9 | 
             
            class MPTConfig(PretrainedConfig):
         | 
| 10 | 
             
                model_type = 'mpt'
         | 
| 11 |  | 
| 12 | 
            -
                def __init__(self, d_model: int=2048, n_heads: int=16, n_layers: int=24, expansion_ratio: int=4, max_seq_len: int=2048, vocab_size: int=50368, resid_pdrop: float=0.0, emb_pdrop: float=0.0, learned_pos_emb: bool=True, attn_config: Dict=attn_config_defaults, ffn_config: Dict=ffn_config_defaults, init_device: str='cpu', logit_scale: Optional[Union[float, str]]=None, no_bias: bool=False, embedding_fraction: float=1.0, norm_type: str='low_precision_layernorm', use_cache: bool=False, init_config: Dict=init_config_defaults, fc_type: str='torch',  | 
| 13 | 
             
                    """The MPT configuration class.
         | 
| 14 |  | 
| 15 | 
             
                    Args:
         | 
| 16 | 
             
                        d_model (int): The size of the embedding dimension of the model.
         | 
| 17 | 
             
                        n_heads (int): The number of attention heads.
         | 
| 18 | 
             
                        n_layers (int): The number of layers in the model.
         | 
| 19 | 
            -
                        expansion_ratio (int): The ratio of the up/down scale in the ffn.
         | 
| 20 | 
             
                        max_seq_len (int): The maximum sequence length of the model.
         | 
| 21 | 
             
                        vocab_size (int): The size of the vocabulary.
         | 
| 22 | 
             
                        resid_pdrop (float): The dropout probability applied to the attention output before combining with residual.
         | 
| @@ -27,6 +32,7 @@ class MPTConfig(PretrainedConfig): | |
| 27 | 
             
                            attn_pdrop (float): The dropout probability for the attention layers.
         | 
| 28 | 
             
                            attn_impl (str): The attention implementation to use. One of 'torch', 'flash', or 'triton'.
         | 
| 29 | 
             
                            qk_ln (bool): Whether to apply layer normalization to the queries and keys in the attention layer.
         | 
|  | |
| 30 | 
             
                            clip_qkv (Optional[float]): If not None, clip the queries, keys, and values in the attention layer to
         | 
| 31 | 
             
                                this value.
         | 
| 32 | 
             
                            softmax_scale (Optional[float]): If not None, scale the softmax in the attention layer by this value. If None,
         | 
| @@ -38,15 +44,25 @@ class MPTConfig(PretrainedConfig): | |
| 38 | 
             
                                When the model is in `train` mode, this requires passing an extra `sequence_id` argument which indicates
         | 
| 39 | 
             
                                which sub-sequence each token belongs to.
         | 
| 40 | 
             
                                Defaults to ``False`` meaning any provided `sequence_id` will be ignored.
         | 
|  | |
| 41 | 
             
                            alibi (bool): Whether to use the alibi bias instead of position embeddings.
         | 
| 42 | 
             
                            alibi_bias_max (int): The maximum value of the alibi bias.
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 43 | 
             
                            kv_n_heads (Optional[int]): For grouped_query_attention only, allow user to specify number of kv heads.
         | 
| 44 | 
             
                        ffn_config (Dict): A dictionary used to configure the model's ffn module:
         | 
| 45 | 
            -
                            ffn_type (str): type of ffn to use. Options: mptmlp, te_ln_mlp
         | 
| 46 | 
             
                        init_device (str): The device to use for parameter initialization.
         | 
| 47 | 
             
                        logit_scale (Optional[Union[float, str]]): If not None, scale the logits by this value.
         | 
| 48 | 
             
                        no_bias (bool): Whether to use bias in all layers.
         | 
| 49 | 
            -
                        verbose (int): The verbosity level. 0 is silent.
         | 
| 50 | 
             
                        embedding_fraction (float): The fraction to scale the gradients of the embedding layer by.
         | 
| 51 | 
             
                        norm_type (str): choose type of norm to use
         | 
| 52 | 
             
                        use_cache (bool): Whether or not the model should return the last key/values attentions
         | 
| @@ -66,6 +82,8 @@ class MPTConfig(PretrainedConfig): | |
| 66 | 
             
                            ---
         | 
| 67 | 
             
                            See llmfoundry.models.utils.param_init_fns.py for info on other param init config options
         | 
| 68 | 
             
                        fc_type (str): choose fc layer implementation. Options: torch and te. te layers support fp8 when using H100 GPUs.
         | 
|  | |
|  | |
| 69 | 
             
                    """
         | 
| 70 | 
             
                    self.d_model = d_model
         | 
| 71 | 
             
                    self.n_heads = n_heads
         | 
| @@ -86,22 +104,23 @@ class MPTConfig(PretrainedConfig): | |
| 86 | 
             
                    self.use_cache = use_cache
         | 
| 87 | 
             
                    self.init_config = init_config
         | 
| 88 | 
             
                    self.fc_type = fc_type
         | 
| 89 | 
            -
                     | 
| 90 | 
            -
                        warnings.warn(DeprecationWarning('verbose argument for MPTConfig is now ignored and will be removed. Use python_log_level instead.'))
         | 
| 91 | 
             
                    if 'name' in kwargs:
         | 
| 92 | 
             
                        del kwargs['name']
         | 
| 93 | 
             
                    if 'loss_fn' in kwargs:
         | 
| 94 | 
             
                        del kwargs['loss_fn']
         | 
| 95 | 
            -
                    if self.attn_config.get('alibi', False):
         | 
| 96 | 
             
                        self.learned_pos_emb = False
         | 
| 97 | 
            -
                        warnings.warn(f'alibi is turned on, setting `learned_pos_emb` to `False.`')
         | 
| 98 | 
            -
                    super().__init__(**kwargs)
         | 
| 99 | 
             
                    self._validate_config()
         | 
| 100 |  | 
| 101 | 
             
                def _set_config_defaults(self, config: Dict[str, Any], config_defaults: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 102 | 
             
                    for (k, v) in config_defaults.items():
         | 
| 103 | 
             
                        if k not in config:
         | 
| 104 | 
             
                            config[k] = v
         | 
|  | |
|  | |
| 105 | 
             
                    return config
         | 
| 106 |  | 
| 107 | 
             
                def _validate_config(self) -> None:
         | 
| @@ -116,25 +135,49 @@ class MPTConfig(PretrainedConfig): | |
| 116 | 
             
                        raise ValueError(f"Unknown attn_impl={self.attn_config['attn_impl']}")
         | 
| 117 | 
             
                    if self.attn_config['prefix_lm'] and self.attn_config['attn_impl'] not in ['torch', 'triton']:
         | 
| 118 | 
             
                        raise NotImplementedError('prefix_lm only implemented with torch and triton attention.')
         | 
| 119 | 
            -
                    if self.attn_config[' | 
| 120 | 
            -
                         | 
| 121 | 
            -
                    if self.attn_config[' | 
| 122 | 
            -
                         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 123 | 
             
                    if self.embedding_fraction > 1 or self.embedding_fraction <= 0:
         | 
| 124 | 
             
                        raise ValueError('model.embedding_fraction must be between 0 (exclusive) and 1 (inclusive)!')
         | 
| 125 | 
             
                    if isinstance(self.logit_scale, str) and self.logit_scale != 'inv_sqrt_d_model':
         | 
| 126 | 
             
                        raise ValueError(f"self.logit_scale={self.logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.")
         | 
| 127 | 
             
                    if self.init_config.get('name', None) is None:
         | 
| 128 | 
             
                        raise ValueError(f"self.init_config={self.init_config!r} 'name' needs to be set.")
         | 
| 129 | 
            -
                    if not self.learned_pos_emb  | 
| 130 | 
            -
                        warnings.warn(f'Positional information not being provided to the model using either learned_pos_emb or alibi.')
         | 
| 131 | 
             
                    if self.fc_type == 'te' or self.ffn_config['ffn_type'] == 'te_ln_mlp':
         | 
| 132 | 
             
                        try:
         | 
| 133 | 
             
                            import transformer_engine.pytorch as te
         | 
| 134 | 
             
                            del te
         | 
| 135 | 
             
                        except:
         | 
| 136 | 
             
                            raise ImportError('TransformerEngine import fail. `fc_type: te` requires TransformerEngine be installed. ' + 'The required version of transformer_engine also requires FlashAttention v1.0.6 is installed:\n' + 'pip install flash-attn==1.0.6 --no-build-isolation \n' + 'pip install git+https://github.com/NVIDIA/TransformerEngine.git@144e4888b2cdd60bd52e706d5b7a79cb9c1a7156')
         | 
| 137 | 
            -
                    if self.ffn_config['ffn_type'] == ' | 
|  | |
|  | |
| 138 | 
             
                        self.ffn_config['fc_type'] = self.fc_type
         | 
| 139 | 
             
                    elif self.ffn_config['ffn_type'] == 'te_ln_mlp':
         | 
| 140 | 
            -
                        self.ffn_config['bias'] = not self.no_bias
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 2 | 
             
            import warnings
         | 
| 3 | 
             
            from typing import Any, Dict, Optional, Union
         | 
| 4 | 
             
            from transformers import PretrainedConfig
         | 
| 5 | 
            +
            from .attention import check_alibi_support, is_flash_v1_installed, is_flash_v2_installed
         | 
| 6 | 
            +
            from .blocks import attn_config_defaults
         | 
| 7 | 
            +
            from .fc import FC_CLASS_REGISTRY
         | 
| 8 | 
            +
            from .norm import LPLayerNorm
         | 
| 9 | 
            +
            from .ffn import FFN_CLASS_REGISTRY
         | 
| 10 | 
            +
            from .warnings import VersionedDeprecationWarning
         | 
| 11 | 
             
            ffn_config_defaults: Dict = {'ffn_type': 'mptmlp'}
         | 
| 12 | 
             
            init_config_defaults: Dict = {'name': 'kaiming_normal_', 'fan_mode': 'fan_in', 'init_nonlinearity': 'relu', 'init_div_is_residual': True, 'emb_init_std': None, 'emb_init_uniform_lim': None, 'init_std': None, 'init_gain': 0.0}
         | 
| 13 |  | 
| 14 | 
             
            class MPTConfig(PretrainedConfig):
         | 
| 15 | 
             
                model_type = 'mpt'
         | 
| 16 |  | 
| 17 | 
            +
                def __init__(self, d_model: int=2048, n_heads: int=16, n_layers: int=24, expansion_ratio: Union[int, float]=4, max_seq_len: int=2048, vocab_size: int=50368, resid_pdrop: float=0.0, emb_pdrop: float=0.0, learned_pos_emb: bool=True, attn_config: Dict=attn_config_defaults, ffn_config: Dict=ffn_config_defaults, init_device: str='cpu', logit_scale: Optional[Union[float, str]]=None, no_bias: bool=False, embedding_fraction: float=1.0, norm_type: str='low_precision_layernorm', use_cache: bool=False, init_config: Dict=init_config_defaults, fc_type: str='torch', tie_word_embeddings: bool=True, use_pad_tok_in_ffn: bool=True, **kwargs: Any):
         | 
| 18 | 
             
                    """The MPT configuration class.
         | 
| 19 |  | 
| 20 | 
             
                    Args:
         | 
| 21 | 
             
                        d_model (int): The size of the embedding dimension of the model.
         | 
| 22 | 
             
                        n_heads (int): The number of attention heads.
         | 
| 23 | 
             
                        n_layers (int): The number of layers in the model.
         | 
| 24 | 
            +
                        expansion_ratio (Union[int, float]): The ratio of the up/down scale in the ffn.
         | 
| 25 | 
             
                        max_seq_len (int): The maximum sequence length of the model.
         | 
| 26 | 
             
                        vocab_size (int): The size of the vocabulary.
         | 
| 27 | 
             
                        resid_pdrop (float): The dropout probability applied to the attention output before combining with residual.
         | 
|  | |
| 32 | 
             
                            attn_pdrop (float): The dropout probability for the attention layers.
         | 
| 33 | 
             
                            attn_impl (str): The attention implementation to use. One of 'torch', 'flash', or 'triton'.
         | 
| 34 | 
             
                            qk_ln (bool): Whether to apply layer normalization to the queries and keys in the attention layer.
         | 
| 35 | 
            +
                            qk_gn (bool): Whether to apply group normalization to the queries and keys in the attention layer.
         | 
| 36 | 
             
                            clip_qkv (Optional[float]): If not None, clip the queries, keys, and values in the attention layer to
         | 
| 37 | 
             
                                this value.
         | 
| 38 | 
             
                            softmax_scale (Optional[float]): If not None, scale the softmax in the attention layer by this value. If None,
         | 
|  | |
| 44 | 
             
                                When the model is in `train` mode, this requires passing an extra `sequence_id` argument which indicates
         | 
| 45 | 
             
                                which sub-sequence each token belongs to.
         | 
| 46 | 
             
                                Defaults to ``False`` meaning any provided `sequence_id` will be ignored.
         | 
| 47 | 
            +
                            sliding_window_size (int): Window size for sliding window local attention. Defaults to -1, which means no sliding window. Query at position i will only attend to keys between [i + seqlen_k - seqlen_q - window_size, i + seqlen_k - seqlen_q + window_size] inclusive. Only works for flash attention v2.3.0 or higher.
         | 
| 48 | 
             
                            alibi (bool): Whether to use the alibi bias instead of position embeddings.
         | 
| 49 | 
             
                            alibi_bias_max (int): The maximum value of the alibi bias.
         | 
| 50 | 
            +
                            rope (bool): Whether to use rotary positional embeddings.
         | 
| 51 | 
            +
                            rope_theta (int): The base frequency for rope.
         | 
| 52 | 
            +
                            rope_impl (str): The implementation of rope to use. One of 'hf' (to use the implementation from https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py) or 'dail' (to use the implementation from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/layers/rotary.py).
         | 
| 53 | 
            +
                            rope_dail_config (Dict): The configuration for the dail implementation of rope.
         | 
| 54 | 
            +
                                type (str): The type of rotary position embedding to use. Options: 'original' (for https://arxiv.org/pdf/2104.09864.pdf), 'xpos' (for https://arxiv.org/pdf/2212.10554.pdf).
         | 
| 55 | 
            +
                                pos_idx_in_fp32 (bool): If True, the position indices [0, ..., seqlen - 1] are in fp32, otherwise they might be in lower precision. A consequence could be, for example, that bf16 rounds position 1995 to 2000, which leads to them having the same positional embedding.
         | 
| 56 | 
            +
                                xpos_scale_base (float): The scale base for XPos (if using XPos).
         | 
| 57 | 
            +
                            rope_hf_config (Dict): A dictionary used to configure rope's scaling behavior (when scaling beyond the training length).
         | 
| 58 | 
            +
                                type (str): Can be one of 'no_scaling', 'linear', or 'dynamic'. 'no_scaling' uses the default implementation for rotary embeddings, 'linear' uses linear scaling as proposed by the Reddit user /u/kaiokendev, and 'dynamic' uses Dynamic NTK scaling as proposed by the Reddit users /u/bloc97 and /u/emozilla.
         | 
| 59 | 
            +
                                factor (float): Scaling factor to use if using 'linear' or 'dynamic' as rope_scaling.type.
         | 
| 60 | 
             
                            kv_n_heads (Optional[int]): For grouped_query_attention only, allow user to specify number of kv heads.
         | 
| 61 | 
             
                        ffn_config (Dict): A dictionary used to configure the model's ffn module:
         | 
| 62 | 
            +
                            ffn_type (str): type of ffn to use. Options: mptmlp, mptglu, te_ln_mlp
         | 
| 63 | 
             
                        init_device (str): The device to use for parameter initialization.
         | 
| 64 | 
             
                        logit_scale (Optional[Union[float, str]]): If not None, scale the logits by this value.
         | 
| 65 | 
             
                        no_bias (bool): Whether to use bias in all layers.
         | 
|  | |
| 66 | 
             
                        embedding_fraction (float): The fraction to scale the gradients of the embedding layer by.
         | 
| 67 | 
             
                        norm_type (str): choose type of norm to use
         | 
| 68 | 
             
                        use_cache (bool): Whether or not the model should return the last key/values attentions
         | 
|  | |
| 82 | 
             
                            ---
         | 
| 83 | 
             
                            See llmfoundry.models.utils.param_init_fns.py for info on other param init config options
         | 
| 84 | 
             
                        fc_type (str): choose fc layer implementation. Options: torch and te. te layers support fp8 when using H100 GPUs.
         | 
| 85 | 
            +
                        tie_word_embeddings (bool): Whether to tie the input embedding and output layers.
         | 
| 86 | 
            +
                        use_pad_tok_in_ffn (bool): Whether to forward the pad token in the feedforward networks.
         | 
| 87 | 
             
                    """
         | 
| 88 | 
             
                    self.d_model = d_model
         | 
| 89 | 
             
                    self.n_heads = n_heads
         | 
|  | |
| 104 | 
             
                    self.use_cache = use_cache
         | 
| 105 | 
             
                    self.init_config = init_config
         | 
| 106 | 
             
                    self.fc_type = fc_type
         | 
| 107 | 
            +
                    self.use_pad_tok_in_ffn = use_pad_tok_in_ffn
         | 
|  | |
| 108 | 
             
                    if 'name' in kwargs:
         | 
| 109 | 
             
                        del kwargs['name']
         | 
| 110 | 
             
                    if 'loss_fn' in kwargs:
         | 
| 111 | 
             
                        del kwargs['loss_fn']
         | 
| 112 | 
            +
                    if self.attn_config.get('alibi', False) or self.attn_config.get('rope', False):
         | 
| 113 | 
             
                        self.learned_pos_emb = False
         | 
| 114 | 
            +
                        warnings.warn(f'alibi or rope is turned on, setting `learned_pos_emb` to `False.`')
         | 
| 115 | 
            +
                    super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
         | 
| 116 | 
             
                    self._validate_config()
         | 
| 117 |  | 
| 118 | 
             
                def _set_config_defaults(self, config: Dict[str, Any], config_defaults: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 119 | 
             
                    for (k, v) in config_defaults.items():
         | 
| 120 | 
             
                        if k not in config:
         | 
| 121 | 
             
                            config[k] = v
         | 
| 122 | 
            +
                        elif isinstance(v, dict):
         | 
| 123 | 
            +
                            config[k] = self._set_config_defaults(config[k] if config[k] is not None else {}, v)
         | 
| 124 | 
             
                    return config
         | 
| 125 |  | 
| 126 | 
             
                def _validate_config(self) -> None:
         | 
|  | |
| 135 | 
             
                        raise ValueError(f"Unknown attn_impl={self.attn_config['attn_impl']}")
         | 
| 136 | 
             
                    if self.attn_config['prefix_lm'] and self.attn_config['attn_impl'] not in ['torch', 'triton']:
         | 
| 137 | 
             
                        raise NotImplementedError('prefix_lm only implemented with torch and triton attention.')
         | 
| 138 | 
            +
                    if self.attn_config['attn_impl'] == 'flash' and is_flash_v1_installed():
         | 
| 139 | 
            +
                        warnings.warn(VersionedDeprecationWarning('Support for Flash Attention v1 is deprecated. Please upgrade to Flash Attention v2.4.2. To install Flash Attention v2.4.2, please run `pip install -e ".[gpu-flash2]"` from the root directory of the llm-foundry repository.', remove_version='0.6.0'))
         | 
| 140 | 
            +
                    if self.attn_config['attn_impl'] == 'triton' and (not self.attn_config['prefix_lm']):
         | 
| 141 | 
            +
                        warnings.warn(UserWarning('If not using a Prefix Language Model, we recommend setting "attn_impl" to "flash" instead of "triton".'))
         | 
| 142 | 
            +
                    if self.attn_config['alibi'] and (not check_alibi_support(self.attn_config['attn_impl'])):
         | 
| 143 | 
            +
                        raise NotImplementedError('alibi only implemented with torch, triton, and flash (v2.4.2 or higher) attention.')
         | 
| 144 | 
            +
                    if self.attn_config['attn_uses_sequence_id'] and (not (self.attn_config['attn_impl'] in ['torch', 'triton'] or (self.attn_config['attn_impl'] == 'flash' and is_flash_v2_installed(v2_version='v2.1.2')))):
         | 
| 145 | 
            +
                        raise NotImplementedError('attn_uses_sequence_id only implemented with torch, triton, and flash (v2.1.2 or higher) attention.')
         | 
| 146 | 
            +
                    if self.attn_config['rope'] and self.attn_config['rope_impl'] not in ['dail', 'hf']:
         | 
| 147 | 
            +
                        raise ValueError('If rope is being used then rope_impl should be either "dail", or "hf".')
         | 
| 148 | 
            +
                    if self.attn_config['rope'] and self.attn_config['rope_impl'] == 'hf' and (self.attn_config['rope_hf_config']['type'] not in ['no_scaling', 'linear', 'dynamic']):
         | 
| 149 | 
            +
                        raise ValueError('If using hf implementation of rope, the type should be one of "no_scaling", "linear" or "dynamic".')
         | 
| 150 | 
            +
                    if self.attn_config['rope'] and self.attn_config['rope_impl'] == 'dail':
         | 
| 151 | 
            +
                        if self.attn_config['rope_dail_config']['type'] not in ['original', 'xpos']:
         | 
| 152 | 
            +
                            raise ValueError('If using the dail implementation of rope, the type should be one of "original" or "xpos".')
         | 
| 153 | 
            +
                        if not is_flash_v2_installed(v2_version='2.0.1'):
         | 
| 154 | 
            +
                            raise ImportError('If using the dail implementation of rope, the flash_attn library v2.0.1 or higher must be installed. Please check the instructions at https://github.com/mosaicml/llm-foundry/blob/main/TUTORIAL.md#what-kinds-of-positional-embeddings-does-llm-foundry-support')
         | 
| 155 | 
            +
                    if self.attn_config['sliding_window_size'] != -1 and (not (self.attn_config['attn_impl'] == 'flash' and is_flash_v2_installed(v2_version='v2.3.0'))):
         | 
| 156 | 
            +
                        raise NotImplementedError('sliding window only implemented with flash attention v2.3.0 or higher.')
         | 
| 157 | 
             
                    if self.embedding_fraction > 1 or self.embedding_fraction <= 0:
         | 
| 158 | 
             
                        raise ValueError('model.embedding_fraction must be between 0 (exclusive) and 1 (inclusive)!')
         | 
| 159 | 
             
                    if isinstance(self.logit_scale, str) and self.logit_scale != 'inv_sqrt_d_model':
         | 
| 160 | 
             
                        raise ValueError(f"self.logit_scale={self.logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.")
         | 
| 161 | 
             
                    if self.init_config.get('name', None) is None:
         | 
| 162 | 
             
                        raise ValueError(f"self.init_config={self.init_config!r} 'name' needs to be set.")
         | 
| 163 | 
            +
                    if not (self.learned_pos_emb or self.attn_config['alibi'] or self.attn_config['rope']):
         | 
| 164 | 
            +
                        warnings.warn(f'Positional information not being provided to the model using either learned_pos_emb or alibi or rope.')
         | 
| 165 | 
             
                    if self.fc_type == 'te' or self.ffn_config['ffn_type'] == 'te_ln_mlp':
         | 
| 166 | 
             
                        try:
         | 
| 167 | 
             
                            import transformer_engine.pytorch as te
         | 
| 168 | 
             
                            del te
         | 
| 169 | 
             
                        except:
         | 
| 170 | 
             
                            raise ImportError('TransformerEngine import fail. `fc_type: te` requires TransformerEngine be installed. ' + 'The required version of transformer_engine also requires FlashAttention v1.0.6 is installed:\n' + 'pip install flash-attn==1.0.6 --no-build-isolation \n' + 'pip install git+https://github.com/NVIDIA/TransformerEngine.git@144e4888b2cdd60bd52e706d5b7a79cb9c1a7156')
         | 
| 171 | 
            +
                    if self.ffn_config['ffn_type'] == 'mptgeglu':
         | 
| 172 | 
            +
                        raise ValueError('API CHANGE: `ffn_type=="mptgeglu"` changed to `ffn_type=="mptglu"`. ' + 'See [#829](https://github.com/mosaicml/llm-foundry/pull/829) for details.')
         | 
| 173 | 
            +
                    elif self.ffn_config['ffn_type'] in ['mptmlp', 'mptglu']:
         | 
| 174 | 
             
                        self.ffn_config['fc_type'] = self.fc_type
         | 
| 175 | 
             
                    elif self.ffn_config['ffn_type'] == 'te_ln_mlp':
         | 
| 176 | 
            +
                        self.ffn_config['bias'] = not self.no_bias
         | 
| 177 | 
            +
                        if 'ffn_act_fn' in self.ffn_config.keys():
         | 
| 178 | 
            +
                            raise ValueError(f'Transformer Engine block does not support custom activation functions.')
         | 
| 179 | 
            +
                    if not self.use_pad_tok_in_ffn:
         | 
| 180 | 
            +
                        try:
         | 
| 181 | 
            +
                            from flash_attn.bert_padding import unpad_input, pad_input
         | 
| 182 | 
            +
                        except:
         | 
| 183 | 
            +
                            raise ImportError('In order to set `use_pad_tok_in_ffn=False`, please install flash-attn==1.0.9 or flash-attn==2.3.6')
         | 
    	
        ffn.py
    CHANGED
    
    | @@ -1,5 +1,8 @@ | |
| 1 | 
            -
            """ | 
| 2 | 
            -
             | 
|  | |
|  | |
|  | |
| 3 | 
             
            import torch
         | 
| 4 | 
             
            import torch.nn as nn
         | 
| 5 | 
             
            from .fc import FC_CLASS_REGISTRY
         | 
| @@ -7,33 +10,88 @@ try: | |
| 7 | 
             
                import transformer_engine.pytorch as te
         | 
| 8 | 
             
            except:
         | 
| 9 | 
             
                te = None
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 10 |  | 
| 11 | 
             
            class MPTMLP(nn.Module):
         | 
| 12 |  | 
| 13 | 
            -
                def __init__(self, d_model: int, expansion_ratio: int, fc_type: str='torch', device: Optional[str]=None, bias: bool=True):
         | 
| 14 | 
             
                    super().__init__()
         | 
| 15 | 
            -
                     | 
|  | |
| 16 | 
             
                    if fc_type != 'te':
         | 
| 17 | 
            -
                        fc_kwargs['device'] = device
         | 
| 18 | 
            -
                    self.up_proj = FC_CLASS_REGISTRY[fc_type](d_model,  | 
| 19 | 
            -
                    self.act =  | 
| 20 | 
            -
                    self.down_proj = FC_CLASS_REGISTRY[fc_type]( | 
| 21 | 
             
                    self.down_proj._is_residual = True
         | 
| 22 |  | 
| 23 | 
             
                def forward(self, x: torch.Tensor) -> torch.Tensor:
         | 
| 24 | 
             
                    return self.down_proj(self.act(self.up_proj(x)))
         | 
| 25 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 26 | 
             
            if te is not None:
         | 
| 27 | 
             
                te.LayerNormMLP._has_norm = True
         | 
| 28 | 
             
                FFN_CLASS_REGISTRY['te_ln_mlp'] = te.LayerNormMLP
         | 
| 29 |  | 
| 30 | 
            -
            def build_ffn(d_model: int, expansion_ratio: int, fc_type: str='torch', device: Optional[str]=None, bias: bool=True, **kwargs: Any) -> nn.Module:
         | 
| 31 | 
             
                ffn_type = kwargs.pop('ffn_type')
         | 
| 32 | 
            -
                if ffn_type  | 
| 33 | 
             
                    if len(kwargs) > 0:
         | 
| 34 | 
            -
                        raise ValueError(f'MPTMLP got an unexpected keyword argument: {kwargs}')
         | 
| 35 | 
            -
                    return  | 
| 36 | 
             
                elif ffn_type == 'te_ln_mlp':
         | 
| 37 | 
             
                    assert te is not None
         | 
| 38 | 
            -
                     | 
|  | |
|  | |
|  | |
| 39 | 
             
                raise ValueError(f'ffn_type={ffn_type!r} not recognized.')
         | 
|  | |
| 1 | 
            +
            """MPT Blocks used for the MPT Model."""
         | 
| 2 | 
            +
            import logging
         | 
| 3 | 
            +
            from copy import deepcopy
         | 
| 4 | 
            +
            from functools import partial
         | 
| 5 | 
            +
            from typing import Any, Callable, Optional, Union
         | 
| 6 | 
             
            import torch
         | 
| 7 | 
             
            import torch.nn as nn
         | 
| 8 | 
             
            from .fc import FC_CLASS_REGISTRY
         | 
|  | |
| 10 | 
             
                import transformer_engine.pytorch as te
         | 
| 11 | 
             
            except:
         | 
| 12 | 
             
                te = None
         | 
| 13 | 
            +
            log = logging.getLogger(__name__)
         | 
| 14 | 
            +
            _FFN_ACT_FN_DEFAULT = {'name': 'gelu', 'approximate': 'none'}
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            def resolve_ffn_act_fn(config: Optional[dict]=None) -> Callable[[torch.Tensor], torch.Tensor]:
         | 
| 17 | 
            +
                """Resolve the activation function for the feed-forward network.
         | 
| 18 | 
            +
             | 
| 19 | 
            +
                Args:
         | 
| 20 | 
            +
                    config (Optional[dict]): The configuration dictionary for the activation function.
         | 
| 21 | 
            +
                        The dict config must specify the 'name' of a torch.nn.functional activation
         | 
| 22 | 
            +
                        function. All of other key values pairs are bound to the function as a partial.
         | 
| 23 | 
            +
             | 
| 24 | 
            +
                Returns:
         | 
| 25 | 
            +
                    Callable[[torch.Tensor], torch.Tensor]: The activation function.
         | 
| 26 | 
            +
                """
         | 
| 27 | 
            +
                if config is None:
         | 
| 28 | 
            +
                    config = _FFN_ACT_FN_DEFAULT
         | 
| 29 | 
            +
                config = deepcopy(config)
         | 
| 30 | 
            +
                name = config.pop('name')
         | 
| 31 | 
            +
                if not hasattr(torch.nn.functional, name):
         | 
| 32 | 
            +
                    raise ValueError(f'Unrecognised activation function name ({name}).')
         | 
| 33 | 
            +
                act = getattr(torch.nn.functional, name)
         | 
| 34 | 
            +
                return partial(act, **config)
         | 
| 35 | 
            +
            _DEFAULT_ACT_FN = resolve_ffn_act_fn(_FFN_ACT_FN_DEFAULT)
         | 
| 36 | 
            +
             | 
| 37 | 
            +
            def resolve_ffn_hidden_size(d_model: int, expansion_ratio: Union[int, float], ffn_hidden_size: Optional[int]=None) -> int:
         | 
| 38 | 
            +
                """Resolve the hidden size of the feed-forward network.
         | 
| 39 | 
            +
             | 
| 40 | 
            +
                Args:
         | 
| 41 | 
            +
                    d_model (int): The dimension of the input and output of the feed-forward network.
         | 
| 42 | 
            +
                    expansion_ratio (Union[int, float]): The expansion ratio of the feed-forward network.
         | 
| 43 | 
            +
                    ffn_hidden_size (Optional[int]): The hidden size of the feed-forward network.
         | 
| 44 | 
            +
             | 
| 45 | 
            +
                Returns:
         | 
| 46 | 
            +
                    int: The hidden size of the feed-forward network.
         | 
| 47 | 
            +
                """
         | 
| 48 | 
            +
                if ffn_hidden_size is not None:
         | 
| 49 | 
            +
                    log.info(f'`expansion_ratio` (={expansion_ratio}) ignored when `ffn_hidden_size` (={ffn_hidden_size}) is specified.')
         | 
| 50 | 
            +
                else:
         | 
| 51 | 
            +
                    ffn_hidden_size = int(d_model * expansion_ratio)
         | 
| 52 | 
            +
                    if ffn_hidden_size != d_model * expansion_ratio:
         | 
| 53 | 
            +
                        raise ValueError(f'`d_model * expansion_ratio` must be an integer (d_model={d_model!r}; expansion_ratio={expansion_ratio!r}; d_model * expansion_ratio={d_model * expansion_ratio!r}).')
         | 
| 54 | 
            +
                return ffn_hidden_size
         | 
| 55 |  | 
| 56 | 
             
            class MPTMLP(nn.Module):
         | 
| 57 |  | 
| 58 | 
            +
                def __init__(self, d_model: int, expansion_ratio: Union[int, float], fc_type: str='torch', ffn_hidden_size: Optional[int]=None, act_fn: Callable[[torch.Tensor], torch.Tensor]=_DEFAULT_ACT_FN, device: Optional[str]=None, bias: bool=True):
         | 
| 59 | 
             
                    super().__init__()
         | 
| 60 | 
            +
                    ffn_hidden_size = resolve_ffn_hidden_size(d_model, expansion_ratio, ffn_hidden_size)
         | 
| 61 | 
            +
                    self.fc_kwargs: dict[str, Any] = {'bias': bias}
         | 
| 62 | 
             
                    if fc_type != 'te':
         | 
| 63 | 
            +
                        self.fc_kwargs['device'] = device
         | 
| 64 | 
            +
                    self.up_proj = FC_CLASS_REGISTRY[fc_type](d_model, ffn_hidden_size, **self.fc_kwargs)
         | 
| 65 | 
            +
                    self.act = act_fn
         | 
| 66 | 
            +
                    self.down_proj = FC_CLASS_REGISTRY[fc_type](ffn_hidden_size, d_model, **self.fc_kwargs)
         | 
| 67 | 
             
                    self.down_proj._is_residual = True
         | 
| 68 |  | 
| 69 | 
             
                def forward(self, x: torch.Tensor) -> torch.Tensor:
         | 
| 70 | 
             
                    return self.down_proj(self.act(self.up_proj(x)))
         | 
| 71 | 
            +
             | 
| 72 | 
            +
            class MPTGLU(MPTMLP):
         | 
| 73 | 
            +
             | 
| 74 | 
            +
                def __init__(self, d_model: int, expansion_ratio: Union[int, float], fc_type: str='torch', ffn_hidden_size: Optional[int]=None, act_fn: Callable[[torch.Tensor], torch.Tensor]=_DEFAULT_ACT_FN, device: Optional[str]=None, bias: bool=True):
         | 
| 75 | 
            +
                    super().__init__(d_model=d_model, expansion_ratio=expansion_ratio, fc_type=fc_type, ffn_hidden_size=ffn_hidden_size, act_fn=act_fn, device=device, bias=bias)
         | 
| 76 | 
            +
                    self.gate_proj = FC_CLASS_REGISTRY[fc_type](d_model, self.up_proj.out_features, **self.fc_kwargs)
         | 
| 77 | 
            +
             | 
| 78 | 
            +
                def forward(self, x: torch.Tensor) -> torch.Tensor:
         | 
| 79 | 
            +
                    return self.down_proj(self.act(self.gate_proj(x)) * self.up_proj(x))
         | 
| 80 | 
            +
            FFN_CLASS_REGISTRY = {'mptmlp': MPTMLP, 'mptglu': MPTGLU}
         | 
| 81 | 
             
            if te is not None:
         | 
| 82 | 
             
                te.LayerNormMLP._has_norm = True
         | 
| 83 | 
             
                FFN_CLASS_REGISTRY['te_ln_mlp'] = te.LayerNormMLP
         | 
| 84 |  | 
| 85 | 
            +
            def build_ffn(d_model: int, expansion_ratio: Union[int, float], fc_type: str='torch', ffn_hidden_size: Optional[int]=None, ffn_act_fn: Optional[dict]=None, device: Optional[str]=None, bias: bool=True, **kwargs: Any) -> nn.Module:
         | 
| 86 | 
             
                ffn_type = kwargs.pop('ffn_type')
         | 
| 87 | 
            +
                if ffn_type in ['mptmlp', 'mptglu']:
         | 
| 88 | 
             
                    if len(kwargs) > 0:
         | 
| 89 | 
            +
                        raise ValueError(f'MPTMLP (or MPTGLU) got an unexpected keyword argument: {kwargs}')
         | 
| 90 | 
            +
                    return FFN_CLASS_REGISTRY[ffn_type](d_model=d_model, expansion_ratio=expansion_ratio, fc_type=fc_type, act_fn=resolve_ffn_act_fn(ffn_act_fn), ffn_hidden_size=ffn_hidden_size, device=device, bias=bias)
         | 
| 91 | 
             
                elif ffn_type == 'te_ln_mlp':
         | 
| 92 | 
             
                    assert te is not None
         | 
| 93 | 
            +
                    ffn_hidden_size = resolve_ffn_hidden_size(d_model, expansion_ratio, ffn_hidden_size)
         | 
| 94 | 
            +
                    if ffn_act_fn is not None:
         | 
| 95 | 
            +
                        raise ValueError(f'Transformer Engine block does not support custom activation functions.')
         | 
| 96 | 
            +
                    return te.LayerNormMLP(hidden_size=d_model, ffn_hidden_size=ffn_hidden_size, bias=bias, **kwargs)
         | 
| 97 | 
             
                raise ValueError(f'ffn_type={ffn_type!r} not recognized.')
         | 
    	
        modeling_mpt.py
    CHANGED
    
    | @@ -2,15 +2,31 @@ | |
| 2 |  | 
| 3 | 
             
            Inspired by https://github.com/karpathy/minGPT/blob/master/mingpt/model.py
         | 
| 4 | 
             
            """
         | 
|  | |
| 5 | 
             
            import math
         | 
| 6 | 
             
            import warnings
         | 
| 7 | 
             
            from typing import Any, Dict, List, Mapping, MutableMapping, Optional, Tuple, Union
         | 
| 8 | 
             
            import torch
         | 
| 9 | 
             
            import torch.nn as nn
         | 
| 10 | 
             
            import torch.nn.functional as F
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 11 | 
             
            from transformers import PreTrainedModel, PreTrainedTokenizerBase
         | 
| 12 | 
             
            from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
         | 
| 13 | 
            -
            from . | 
|  | |
|  | |
|  | |
| 14 | 
             
            from .blocks import MPTBlock
         | 
| 15 | 
             
            from .custom_embedding import SharedEmbedding
         | 
| 16 | 
             
            from .fc import FC_CLASS_REGISTRY as FC_CLASS_REGISTRY
         | 
| @@ -30,11 +46,130 @@ except: | |
| 30 | 
             
            import logging
         | 
| 31 | 
             
            log = logging.getLogger(__name__)
         | 
| 32 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 33 | 
             
            class MPTPreTrainedModel(PreTrainedModel):
         | 
| 34 | 
             
                config_class = MPTConfig
         | 
| 35 | 
             
                base_model_prefix = 'model'
         | 
| 36 | 
             
                _no_split_modules = ['MPTBlock']
         | 
| 37 |  | 
|  | |
|  | |
|  | |
| 38 | 
             
            class MPTModel(MPTPreTrainedModel):
         | 
| 39 |  | 
| 40 | 
             
                def __init__(self, config: MPTConfig):
         | 
| @@ -62,6 +197,11 @@ class MPTModel(MPTPreTrainedModel): | |
| 62 | 
             
                    self.emb_drop = nn.Dropout(config.emb_pdrop)
         | 
| 63 | 
             
                    self.blocks = nn.ModuleList([MPTBlock(device=config.init_device, **config.to_dict()) for _ in range(config.n_layers)])
         | 
| 64 | 
             
                    self.norm_f = norm_class(config.d_model, device=config.init_device)
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 65 | 
             
                    if config.init_device != 'meta':
         | 
| 66 | 
             
                        log.info(f'We recommend using config.init_device="meta" with Composer + FSDP for faster initialization.')
         | 
| 67 | 
             
                        self.apply(self.param_init_fn)
         | 
| @@ -72,18 +212,18 @@ class MPTModel(MPTPreTrainedModel): | |
| 72 | 
             
                    if config.no_bias:
         | 
| 73 | 
             
                        for module in self.modules():
         | 
| 74 | 
             
                            if hasattr(module, 'bias') and isinstance(module.bias, nn.Parameter):
         | 
| 75 | 
            -
                                log.info(f'Removing bias  | 
| 76 | 
             
                                module.register_parameter('bias', None)
         | 
| 77 | 
             
                            if hasattr(module, 'use_bias'):
         | 
| 78 | 
            -
                                log.info(f'Setting use_bias=False for {module}.')
         | 
| 79 | 
             
                                module.use_bias = False
         | 
| 80 | 
             
                    log.debug(self)
         | 
| 81 | 
             
                    log.debug(f"Using {self.config.init_config['name']} initialization.")
         | 
| 82 |  | 
| 83 | 
            -
                def get_input_embeddings(self) -> nn.Embedding:
         | 
| 84 | 
             
                    return self.wte
         | 
| 85 |  | 
| 86 | 
            -
                def set_input_embeddings(self, value: nn.Embedding) -> None:
         | 
| 87 | 
             
                    self.wte = value
         | 
| 88 |  | 
| 89 | 
             
                @torch.no_grad()
         | 
| @@ -104,7 +244,7 @@ class MPTModel(MPTPreTrainedModel): | |
| 104 | 
             
                        attn_bias = self._apply_prefix_mask(attn_bias, prefix_mask)
         | 
| 105 | 
             
                    if self.attn_uses_sequence_id and sequence_id is not None:
         | 
| 106 | 
             
                        assert isinstance(attn_bias, torch.Tensor)
         | 
| 107 | 
            -
                        attn_bias =  | 
| 108 | 
             
                    if attention_mask is not None:
         | 
| 109 | 
             
                        s_k = attention_mask.shape[-1]
         | 
| 110 | 
             
                        if attn_bias is None:
         | 
| @@ -116,7 +256,7 @@ class MPTModel(MPTPreTrainedModel): | |
| 116 | 
             
                            raise ValueError(f'attention_mask shape={attention_mask.shape} ' + f'and prefix_mask shape={prefix_mask.shape} are not equal.')
         | 
| 117 | 
             
                        min_val = torch.finfo(attn_bias.dtype).min
         | 
| 118 | 
             
                        attn_bias = attn_bias.masked_fill(~attention_mask.view(-1, 1, 1, s_k), min_val)
         | 
| 119 | 
            -
                    return (attn_bias,  | 
| 120 |  | 
| 121 | 
             
                def _apply_prefix_mask(self, attn_bias: torch.Tensor, prefix_mask: torch.Tensor) -> torch.Tensor:
         | 
| 122 | 
             
                    (s_k, s_q) = attn_bias.shape[-2:]
         | 
| @@ -133,17 +273,7 @@ class MPTModel(MPTPreTrainedModel): | |
| 133 | 
             
                    attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
         | 
| 134 | 
             
                    return attn_bias
         | 
| 135 |  | 
| 136 | 
            -
                def  | 
| 137 | 
            -
                    seq_len = sequence_id.shape[-1]
         | 
| 138 | 
            -
                    if seq_len > self.config.max_seq_len:
         | 
| 139 | 
            -
                        raise ValueError(f'sequence_id sequence length cannot exceed max_seq_len={self.config.max_seq_len}')
         | 
| 140 | 
            -
                    attn_bias = attn_bias[..., :seq_len, :seq_len]
         | 
| 141 | 
            -
                    cannot_attend = torch.logical_not(torch.eq(sequence_id.view(-1, seq_len, 1), sequence_id.view(-1, 1, seq_len))).unsqueeze(1)
         | 
| 142 | 
            -
                    min_val = torch.finfo(attn_bias.dtype).min
         | 
| 143 | 
            -
                    attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
         | 
| 144 | 
            -
                    return attn_bias
         | 
| 145 | 
            -
             | 
| 146 | 
            -
                def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.Tensor]=None) -> BaseModelOutputWithPast:
         | 
| 147 | 
             
                    return_dict = return_dict if return_dict is not None else self.config.return_dict
         | 
| 148 | 
             
                    use_cache = use_cache if use_cache is not None else self.config.use_cache
         | 
| 149 | 
             
                    if attention_mask is not None:
         | 
| @@ -159,33 +289,47 @@ class MPTModel(MPTPreTrainedModel): | |
| 159 | 
             
                        raise NotImplementedError('MPT does not support training with left padding.')
         | 
| 160 | 
             
                    if self.prefix_lm and prefix_mask is None:
         | 
| 161 | 
             
                        raise ValueError('prefix_mask is a required argument when MPT is configured with prefix_lm=True.')
         | 
| 162 | 
            -
                    if inputs_embeds is not None:
         | 
| 163 | 
            -
                        raise NotImplementedError('inputs_embeds is not implemented for MPT.')
         | 
| 164 | 
             
                    if self.training:
         | 
| 165 | 
             
                        if self.attn_uses_sequence_id and sequence_id is None:
         | 
| 166 | 
             
                            raise ValueError('sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True ' + 'and the model is in train mode.')
         | 
| 167 | 
             
                        elif self.attn_uses_sequence_id is False and sequence_id is not None:
         | 
| 168 | 
             
                            warnings.warn('MPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. ' + 'This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True.')
         | 
| 169 | 
            -
                     | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 170 | 
             
                    assert S <= self.config.max_seq_len, f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}'
         | 
| 171 | 
            -
                     | 
| 172 | 
            -
                     | 
| 173 | 
            -
             | 
| 174 | 
            -
                        if past_key_values  | 
| 175 | 
            -
                             | 
| 176 | 
            -
             | 
| 177 | 
            -
             | 
| 178 | 
            -
                             | 
| 179 | 
            -
             | 
| 180 | 
            -
                        if S + past_position > self.config.max_seq_len:
         | 
| 181 | 
             
                            raise ValueError(f'Cannot forward input with past sequence length {past_position} and current sequence length ' + f'{S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}.')
         | 
| 182 | 
            -
                         | 
| 183 | 
            -
             | 
| 184 | 
            -
                             | 
| 185 | 
            -
             | 
| 186 | 
            -
             | 
| 187 | 
            -
             | 
| 188 | 
            -
             | 
|  | |
|  | |
|  | |
| 189 | 
             
                    if self.embedding_fraction == 1:
         | 
| 190 | 
             
                        x = self.emb_drop(x)
         | 
| 191 | 
             
                    else:
         | 
| @@ -193,17 +337,24 @@ class MPTModel(MPTPreTrainedModel): | |
| 193 | 
             
                        assert isinstance(self.emb_drop, nn.Module)
         | 
| 194 | 
             
                        x = self.emb_drop(x_shrunk)
         | 
| 195 | 
             
                    (attn_bias, attention_mask) = self._attn_bias(device=x.device, dtype=torch.float32, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id)
         | 
|  | |
|  | |
|  | |
|  | |
| 196 | 
             
                    presents = () if use_cache else None
         | 
| 197 | 
             
                    if use_cache and past_key_values is None:
         | 
| 198 | 
             
                        past_key_values = [() for _ in range(self.config.n_layers)]
         | 
| 199 | 
             
                    all_hidden_states = () if output_hidden_states else None
         | 
| 200 | 
             
                    all_self_attns = () if output_attentions else None
         | 
|  | |
|  | |
|  | |
| 201 | 
             
                    for (b_idx, block) in enumerate(self.blocks):
         | 
| 202 | 
             
                        if output_hidden_states:
         | 
| 203 | 
             
                            assert all_hidden_states is not None
         | 
| 204 | 
             
                            all_hidden_states = all_hidden_states + (x,)
         | 
| 205 | 
             
                        past_key_value = past_key_values[b_idx] if past_key_values is not None else None
         | 
| 206 | 
            -
                        (x, attn_weights, present) = block(x, past_key_value=past_key_value, attn_bias=attn_bias, attention_mask=attention_mask, is_causal=self.is_causal, output_attentions=bool(output_attentions))
         | 
| 207 | 
             
                        if presents is not None:
         | 
| 208 | 
             
                            presents += (present,)
         | 
| 209 | 
             
                        if output_attentions:
         | 
| @@ -220,7 +371,7 @@ class MPTModel(MPTPreTrainedModel): | |
| 220 | 
             
                    MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config)
         | 
| 221 |  | 
| 222 | 
             
                def fsdp_wrap_fn(self, module: nn.Module) -> bool:
         | 
| 223 | 
            -
                    return  | 
| 224 |  | 
| 225 | 
             
                def activation_checkpointing_fn(self, module: nn.Module) -> bool:
         | 
| 226 | 
             
                    return isinstance(module, MPTBlock)
         | 
| @@ -229,10 +380,12 @@ class MPTForCausalLM(MPTPreTrainedModel): | |
| 229 |  | 
| 230 | 
             
                def __init__(self, config: MPTConfig):
         | 
| 231 | 
             
                    super().__init__(config)
         | 
| 232 | 
            -
                    if not config.tie_word_embeddings:
         | 
| 233 | 
            -
                        raise ValueError('MPTForCausalLM only supports tied word embeddings')
         | 
| 234 | 
             
                    log.info(f'Instantiating an MPTForCausalLM model from {__file__}')
         | 
| 235 | 
             
                    self.transformer: MPTModel = MPTModel(config)
         | 
|  | |
|  | |
|  | |
|  | |
| 236 | 
             
                    for child in self.transformer.children():
         | 
| 237 | 
             
                        if isinstance(child, torch.nn.ModuleList):
         | 
| 238 | 
             
                            continue
         | 
| @@ -248,17 +401,28 @@ class MPTForCausalLM(MPTPreTrainedModel): | |
| 248 | 
             
                                raise ValueError(f"logit_scale={logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.")
         | 
| 249 | 
             
                        self.logit_scale = logit_scale
         | 
| 250 |  | 
| 251 | 
            -
                def get_input_embeddings(self) -> nn.Embedding:
         | 
| 252 | 
            -
                    return self.transformer. | 
| 253 |  | 
| 254 | 
             
                def set_input_embeddings(self, value: Union[SharedEmbedding, nn.Embedding]) -> None:
         | 
| 255 | 
            -
                    self.transformer. | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 256 |  | 
| 257 | 
            -
                def  | 
| 258 | 
            -
                     | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 259 |  | 
| 260 | 
            -
                def  | 
| 261 | 
            -
                    self. | 
| 262 |  | 
| 263 | 
             
                def set_decoder(self, decoder: MPTModel) -> None:
         | 
| 264 | 
             
                    self.transformer = decoder
         | 
| @@ -266,13 +430,16 @@ class MPTForCausalLM(MPTPreTrainedModel): | |
| 266 | 
             
                def get_decoder(self) -> MPTModel:
         | 
| 267 | 
             
                    return self.transformer
         | 
| 268 |  | 
| 269 | 
            -
                def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.FloatTensor]=None) -> CausalLMOutputWithPast:
         | 
| 270 | 
             
                    return_dict = return_dict if return_dict is not None else self.config.return_dict
         | 
| 271 | 
             
                    use_cache = use_cache if use_cache is not None else self.config.use_cache
         | 
| 272 | 
            -
                     | 
| 273 | 
            -
             | 
| 274 | 
            -
             | 
| 275 | 
            -
                     | 
|  | |
|  | |
|  | |
| 276 | 
             
                    if self.logit_scale is not None:
         | 
| 277 | 
             
                        if self.logit_scale == 0:
         | 
| 278 | 
             
                            warnings.warn(f'Multiplying logits by self.logit_scale={self.logit_scale!r}. This will produce uniform (uninformative) outputs.')
         | 
| @@ -289,14 +456,34 @@ class MPTForCausalLM(MPTPreTrainedModel): | |
| 289 | 
             
                    MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config)
         | 
| 290 |  | 
| 291 | 
             
                def fsdp_wrap_fn(self, module: nn.Module) -> bool:
         | 
| 292 | 
            -
                    return  | 
| 293 |  | 
| 294 | 
             
                def activation_checkpointing_fn(self, module: nn.Module) -> bool:
         | 
| 295 | 
            -
                     | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 296 |  | 
| 297 | 
             
                def prepare_inputs_for_generation(self, input_ids: torch.Tensor, past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]]=None, inputs_embeds: Optional[torch.Tensor]=None, **kwargs: Any) -> Dict[str, Any]:
         | 
| 298 | 
            -
                    if inputs_embeds is not None:
         | 
| 299 | 
            -
                        raise NotImplementedError('inputs_embeds is not implemented for MPT yet')
         | 
| 300 | 
             
                    attention_mask = kwargs['attention_mask'].bool()
         | 
| 301 | 
             
                    if attention_mask[:, -1].sum() != attention_mask.shape[0]:
         | 
| 302 | 
             
                        raise NotImplementedError('MPT does not support generation with right padding.')
         | 
| @@ -312,7 +499,12 @@ class MPTForCausalLM(MPTPreTrainedModel): | |
| 312 | 
             
                            raise NotImplementedError('MPT with prefix_lm=True does not support use_cache=False.')
         | 
| 313 | 
             
                    else:
         | 
| 314 | 
             
                        prefix_mask = None
         | 
| 315 | 
            -
                     | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 316 |  | 
| 317 | 
             
                @staticmethod
         | 
| 318 | 
             
                def _reorder_cache(past_key_values: List[Tuple[torch.Tensor, torch.Tensor]], beam_idx: torch.LongTensor) -> List[Tuple[torch.Tensor, ...]]:
         | 
|  | |
| 2 |  | 
| 3 | 
             
            Inspired by https://github.com/karpathy/minGPT/blob/master/mingpt/model.py
         | 
| 4 | 
             
            """
         | 
| 5 | 
            +
            from __future__ import annotations
         | 
| 6 | 
             
            import math
         | 
| 7 | 
             
            import warnings
         | 
| 8 | 
             
            from typing import Any, Dict, List, Mapping, MutableMapping, Optional, Tuple, Union
         | 
| 9 | 
             
            import torch
         | 
| 10 | 
             
            import torch.nn as nn
         | 
| 11 | 
             
            import torch.nn.functional as F
         | 
| 12 | 
            +
            from .attention import is_flash_v1_installed, is_flash_v2_installed
         | 
| 13 | 
            +
            if is_flash_v2_installed():
         | 
| 14 | 
            +
                try:
         | 
| 15 | 
            +
                    from flash_attn import bert_padding
         | 
| 16 | 
            +
                    from flash_attn.layers.rotary import RotaryEmbedding as DAILRotaryEmbedding
         | 
| 17 | 
            +
                except Exception as e:
         | 
| 18 | 
            +
                    raise e
         | 
| 19 | 
            +
            if is_flash_v1_installed():
         | 
| 20 | 
            +
                try:
         | 
| 21 | 
            +
                    from flash_attn import bert_padding
         | 
| 22 | 
            +
                except Exception as e:
         | 
| 23 | 
            +
                    raise e
         | 
| 24 | 
             
            from transformers import PreTrainedModel, PreTrainedTokenizerBase
         | 
| 25 | 
             
            from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
         | 
| 26 | 
            +
            from transformers.models.llama.modeling_llama import LlamaDynamicNTKScalingRotaryEmbedding as HFDynamicNTKScalingRotaryEmbedding
         | 
| 27 | 
            +
            from transformers.models.llama.modeling_llama import LlamaLinearScalingRotaryEmbedding as HFLinearScalingRotaryEmbedding
         | 
| 28 | 
            +
            from transformers.models.llama.modeling_llama import LlamaRotaryEmbedding as HFRotaryEmbedding
         | 
| 29 | 
            +
            from .attention import ATTN_CLASS_REGISTRY, attn_bias_shape, build_attn_bias, gen_slopes
         | 
| 30 | 
             
            from .blocks import MPTBlock
         | 
| 31 | 
             
            from .custom_embedding import SharedEmbedding
         | 
| 32 | 
             
            from .fc import FC_CLASS_REGISTRY as FC_CLASS_REGISTRY
         | 
|  | |
| 46 | 
             
            import logging
         | 
| 47 | 
             
            log = logging.getLogger(__name__)
         | 
| 48 |  | 
| 49 | 
            +
            def gen_rotary_embedding(rope_head_dim: int, rope_impl: str, rope_theta: int, rope_dail_config: dict, rope_hf_config: dict, max_seq_len: int):
         | 
| 50 | 
            +
                if rope_impl == 'dail':
         | 
| 51 | 
            +
                    return DAILRotaryEmbedding(dim=rope_head_dim, base=rope_theta, interleaved=False, scale_base=rope_dail_config['xpos_scale_base'] if rope_dail_config['type'] == 'xpos' else None, pos_idx_in_fp32=rope_dail_config['pos_idx_in_fp32'], device='cpu')
         | 
| 52 | 
            +
                elif rope_impl == 'hf':
         | 
| 53 | 
            +
                    if rope_hf_config['type'] == 'no_scaling':
         | 
| 54 | 
            +
                        return HFRotaryEmbedding(rope_head_dim, max_position_embeddings=max_seq_len, base=rope_theta, device='cpu')
         | 
| 55 | 
            +
                    elif rope_hf_config['type'] == 'linear':
         | 
| 56 | 
            +
                        return HFLinearScalingRotaryEmbedding(rope_head_dim, max_position_embeddings=max_seq_len, base=rope_theta, scaling_factor=rope_hf_config['factor'], device='cpu')
         | 
| 57 | 
            +
                    elif rope_hf_config['type'] == 'dynamic':
         | 
| 58 | 
            +
                        return HFDynamicNTKScalingRotaryEmbedding(rope_head_dim, max_position_embeddings=max_seq_len, base=rope_theta, scaling_factor=rope_hf_config['factor'], device='cpu')
         | 
| 59 | 
            +
                raise ValueError('rope_impl needs to be either dail or hf')
         | 
| 60 | 
            +
             | 
| 61 | 
            +
            def gen_attention_mask_in_length(sequence_id: Union[None, torch.Tensor], S: int, attn_uses_sequence_id: bool, attn_impl: str, attention_mask: Union[torch.Tensor, None]):
         | 
| 62 | 
            +
                """Generates the attention mask used for sequence masking in FA v2.
         | 
| 63 | 
            +
             | 
| 64 | 
            +
                Only supports sequence id based sparse attention for no attention masking or attention masking with right padding.
         | 
| 65 | 
            +
                In case of left padding:
         | 
| 66 | 
            +
                    1. Training with left padding is not supported in MPT (see https://github.com/mosaicml/llm-foundry/blob/1eecd4cb8e734499f77f6a35f657b8b20c0adfcb/llmfoundry/models/mpt/modeling_mpt.py#L407).
         | 
| 67 | 
            +
                    2. For generation with left padding, we only have a single sequence id per sample, so we don't need sequence id based sparse attention.
         | 
| 68 | 
            +
             | 
| 69 | 
            +
                Args:
         | 
| 70 | 
            +
                    sequence_id (Union[None, torch.Tensor]): Tensor containing the sequence id for each token. Shape (batch_size, seq_len).
         | 
| 71 | 
            +
                    S (int): Sequence length
         | 
| 72 | 
            +
                    attn_uses_sequence_id (bool): Whether the attention uses sequence id based masking.
         | 
| 73 | 
            +
                    attn_impl (str): Attention implementation. This function is only creates attention_mask_in_length for flash attention.
         | 
| 74 | 
            +
                    attention_mask (Union[torch.Tensor, None]): Attention mask tensor of shape (batch_size, seq_len)
         | 
| 75 | 
            +
             | 
| 76 | 
            +
                Returns:
         | 
| 77 | 
            +
                    attention_mask_in_length: (batch, seqlen), int, a nonzero number (e.g., 1, 2, 3, etc.) means length of concatenated sequence in b-th batch, and 0 means none. For example, if batch = 3 and seqlen = 6, the attention_mask_in_length is:
         | 
| 78 | 
            +
                        ```
         | 
| 79 | 
            +
                        [
         | 
| 80 | 
            +
                        [2, 3, 0, 0, 0, 0],
         | 
| 81 | 
            +
                        [3, 2, 0, 0, 0, 0],
         | 
| 82 | 
            +
                        [6, 0, 0, 0, 0, 0]
         | 
| 83 | 
            +
                        ]
         | 
| 84 | 
            +
                        ```
         | 
| 85 | 
            +
                    , which refers to the 3D-attention mask:
         | 
| 86 | 
            +
                        ```
         | 
| 87 | 
            +
                        [
         | 
| 88 | 
            +
                        [
         | 
| 89 | 
            +
                            [1, 0, 0, 0, 0, 0],
         | 
| 90 | 
            +
                            [1, 1, 0, 0, 0, 0],
         | 
| 91 | 
            +
                            [0, 0, 1, 0, 0, 0],
         | 
| 92 | 
            +
                            [0, 0, 1, 1, 0, 0],
         | 
| 93 | 
            +
                            [0, 0, 1, 1, 1, 0],
         | 
| 94 | 
            +
                            [0, 0, 0, 0, 0, 1]
         | 
| 95 | 
            +
                        ],
         | 
| 96 | 
            +
                        [
         | 
| 97 | 
            +
                            [1, 0, 0, 0, 0, 0],
         | 
| 98 | 
            +
                            [1, 1, 0, 0, 0, 0],
         | 
| 99 | 
            +
                            [1, 1, 1, 0, 0, 0],
         | 
| 100 | 
            +
                            [0, 0, 0, 1, 0, 0],
         | 
| 101 | 
            +
                            [0, 0, 0, 1, 1, 0],
         | 
| 102 | 
            +
                            [0, 0, 0, 0, 0, 1]
         | 
| 103 | 
            +
                        ],
         | 
| 104 | 
            +
                        [
         | 
| 105 | 
            +
                            [1, 0, 0, 0, 0, 0],
         | 
| 106 | 
            +
                            [1, 1, 0, 0, 0, 0],
         | 
| 107 | 
            +
                            [1, 1, 1, 0, 0, 0],
         | 
| 108 | 
            +
                            [1, 1, 1, 1, 0, 0],
         | 
| 109 | 
            +
                            [1, 1, 1, 1, 1, 0],
         | 
| 110 | 
            +
                            [1, 1, 1, 1, 1, 1]
         | 
| 111 | 
            +
                        ]
         | 
| 112 | 
            +
                        ]
         | 
| 113 | 
            +
                        ```.
         | 
| 114 | 
            +
                        (The description above is taken verbatim from https://github.com/Dao-AILab/flash-attention/blob/9356a1c0389660d7e231ff3163c1ac17d9e3824a/flash_attn/bert_padding.py#L125 .)
         | 
| 115 | 
            +
                """
         | 
| 116 | 
            +
                attention_mask_in_length = None
         | 
| 117 | 
            +
                if sequence_id is not None and attn_uses_sequence_id and (attn_impl == 'flash'):
         | 
| 118 | 
            +
                    if attention_mask is not None and attention_mask[:, 0].sum() != attention_mask.shape[0]:
         | 
| 119 | 
            +
                        raise NotImplementedError('Left padding is not supported with flash attention when attn_uses_sequence_id is set to True.')
         | 
| 120 | 
            +
                    if S != sequence_id.shape[-1]:
         | 
| 121 | 
            +
                        raise ValueError(f'Sequence length ({S}) does not match length of sequences in sequence_id ({sequence_id.shape[-1]}).')
         | 
| 122 | 
            +
                    if attention_mask is not None:
         | 
| 123 | 
            +
                        sequence_id = sequence_id.masked_fill(~attention_mask, 0)
         | 
| 124 | 
            +
                    attention_mask_in_length = torch.nn.functional.one_hot(sequence_id)
         | 
| 125 | 
            +
                    if attention_mask is not None:
         | 
| 126 | 
            +
                        attention_mask_in_length = attention_mask_in_length.masked_fill(~attention_mask.unsqueeze(-1), 0)
         | 
| 127 | 
            +
                    attention_mask_in_length = attention_mask_in_length.sum(dim=1)
         | 
| 128 | 
            +
                    attention_mask_in_length = torch.nn.functional.pad(attention_mask_in_length, (0, S - attention_mask_in_length.shape[-1]), mode='constant', value=0)
         | 
| 129 | 
            +
                return attention_mask_in_length
         | 
| 130 | 
            +
             | 
| 131 | 
            +
            def gen_flash_attn_padding_info(bsz: int, S: int, past_key_len: int, device: torch.device, attention_mask_in_length: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None):
         | 
| 132 | 
            +
                flash_attn_padding_info = {}
         | 
| 133 | 
            +
                if attention_mask_in_length is None:
         | 
| 134 | 
            +
                    key_padding_mask = attention_mask
         | 
| 135 | 
            +
                    if key_padding_mask is None:
         | 
| 136 | 
            +
                        key_padding_mask = torch.ones((bsz, past_key_len + S), dtype=torch.bool, device=device)
         | 
| 137 | 
            +
                    query_padding_mask = key_padding_mask[:, -S:]
         | 
| 138 | 
            +
                    unpadding_function = bert_padding.unpad_input
         | 
| 139 | 
            +
                else:
         | 
| 140 | 
            +
                    key_padding_mask = attention_mask_in_length
         | 
| 141 | 
            +
                    query_padding_mask = attention_mask_in_length
         | 
| 142 | 
            +
                    unpadding_function = bert_padding.unpad_input_for_concatenated_sequences
         | 
| 143 | 
            +
                (_, indices_q, cu_seqlens_q, max_seqlen_q) = unpadding_function(torch.empty(bsz, S, 1, device=device), query_padding_mask)
         | 
| 144 | 
            +
                (_, indices_k, cu_seqlens_k, max_seqlen_k) = unpadding_function(torch.empty(bsz, past_key_len + S, 1, device=device), key_padding_mask)
         | 
| 145 | 
            +
                (_, indices_v, _, _) = unpadding_function(torch.empty(bsz, past_key_len + S, 1, device=device), key_padding_mask)
         | 
| 146 | 
            +
                flash_attn_padding_info['indices_q'] = indices_q
         | 
| 147 | 
            +
                flash_attn_padding_info['indices_k'] = indices_k
         | 
| 148 | 
            +
                flash_attn_padding_info['indices_v'] = indices_v
         | 
| 149 | 
            +
                flash_attn_padding_info['cu_seqlens_q'] = cu_seqlens_q
         | 
| 150 | 
            +
                flash_attn_padding_info['cu_seqlens_k'] = cu_seqlens_k
         | 
| 151 | 
            +
                flash_attn_padding_info['max_seqlen_q'] = max_seqlen_q
         | 
| 152 | 
            +
                flash_attn_padding_info['max_seqlen_k'] = max_seqlen_k
         | 
| 153 | 
            +
                return flash_attn_padding_info
         | 
| 154 | 
            +
             | 
| 155 | 
            +
            def apply_sequence_id(attn_bias: torch.Tensor, sequence_id: torch.LongTensor, max_seq_len: int) -> torch.Tensor:
         | 
| 156 | 
            +
                seq_len = sequence_id.shape[-1]
         | 
| 157 | 
            +
                if seq_len > max_seq_len:
         | 
| 158 | 
            +
                    raise ValueError(f'sequence_id sequence length cannot exceed max_seq_len={max_seq_len}')
         | 
| 159 | 
            +
                attn_bias = attn_bias[..., :seq_len, :seq_len]
         | 
| 160 | 
            +
                cannot_attend = torch.logical_not(torch.eq(sequence_id.view(-1, seq_len, 1), sequence_id.view(-1, 1, seq_len))).unsqueeze(1)
         | 
| 161 | 
            +
                min_val = torch.finfo(attn_bias.dtype).min
         | 
| 162 | 
            +
                attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
         | 
| 163 | 
            +
                return attn_bias
         | 
| 164 | 
            +
             | 
| 165 | 
             
            class MPTPreTrainedModel(PreTrainedModel):
         | 
| 166 | 
             
                config_class = MPTConfig
         | 
| 167 | 
             
                base_model_prefix = 'model'
         | 
| 168 | 
             
                _no_split_modules = ['MPTBlock']
         | 
| 169 |  | 
| 170 | 
            +
            def _fsdp_wrap_fn(self: Union[MPTModel, MPTForCausalLM], module: nn.Module) -> bool:
         | 
| 171 | 
            +
                return isinstance(module, MPTBlock)
         | 
| 172 | 
            +
             | 
| 173 | 
             
            class MPTModel(MPTPreTrainedModel):
         | 
| 174 |  | 
| 175 | 
             
                def __init__(self, config: MPTConfig):
         | 
|  | |
| 197 | 
             
                    self.emb_drop = nn.Dropout(config.emb_pdrop)
         | 
| 198 | 
             
                    self.blocks = nn.ModuleList([MPTBlock(device=config.init_device, **config.to_dict()) for _ in range(config.n_layers)])
         | 
| 199 | 
             
                    self.norm_f = norm_class(config.d_model, device=config.init_device)
         | 
| 200 | 
            +
                    self.rope = config.attn_config['rope']
         | 
| 201 | 
            +
                    self.rope_impl = None
         | 
| 202 | 
            +
                    if self.rope:
         | 
| 203 | 
            +
                        self.rope_impl = config.attn_config['rope_impl']
         | 
| 204 | 
            +
                        self.rotary_embedding = gen_rotary_embedding(rope_head_dim=config.d_model // config.n_heads, rope_impl=self.rope_impl, rope_theta=config.attn_config['rope_theta'], rope_dail_config=config.attn_config['rope_dail_config'], rope_hf_config=config.attn_config['rope_hf_config'], max_seq_len=self.config.max_seq_len)
         | 
| 205 | 
             
                    if config.init_device != 'meta':
         | 
| 206 | 
             
                        log.info(f'We recommend using config.init_device="meta" with Composer + FSDP for faster initialization.')
         | 
| 207 | 
             
                        self.apply(self.param_init_fn)
         | 
|  | |
| 212 | 
             
                    if config.no_bias:
         | 
| 213 | 
             
                        for module in self.modules():
         | 
| 214 | 
             
                            if hasattr(module, 'bias') and isinstance(module.bias, nn.Parameter):
         | 
| 215 | 
            +
                                log.info(f'Removing bias from module={module!r}.')
         | 
| 216 | 
             
                                module.register_parameter('bias', None)
         | 
| 217 | 
             
                            if hasattr(module, 'use_bias'):
         | 
| 218 | 
            +
                                log.info(f'Setting use_bias=False for module={module!r}.')
         | 
| 219 | 
             
                                module.use_bias = False
         | 
| 220 | 
             
                    log.debug(self)
         | 
| 221 | 
             
                    log.debug(f"Using {self.config.init_config['name']} initialization.")
         | 
| 222 |  | 
| 223 | 
            +
                def get_input_embeddings(self) -> Union[SharedEmbedding, nn.Embedding]:
         | 
| 224 | 
             
                    return self.wte
         | 
| 225 |  | 
| 226 | 
            +
                def set_input_embeddings(self, value: Union[SharedEmbedding, nn.Embedding]) -> None:
         | 
| 227 | 
             
                    self.wte = value
         | 
| 228 |  | 
| 229 | 
             
                @torch.no_grad()
         | 
|  | |
| 244 | 
             
                        attn_bias = self._apply_prefix_mask(attn_bias, prefix_mask)
         | 
| 245 | 
             
                    if self.attn_uses_sequence_id and sequence_id is not None:
         | 
| 246 | 
             
                        assert isinstance(attn_bias, torch.Tensor)
         | 
| 247 | 
            +
                        attn_bias = apply_sequence_id(attn_bias, sequence_id, self.config.max_seq_len)
         | 
| 248 | 
             
                    if attention_mask is not None:
         | 
| 249 | 
             
                        s_k = attention_mask.shape[-1]
         | 
| 250 | 
             
                        if attn_bias is None:
         | 
|  | |
| 256 | 
             
                            raise ValueError(f'attention_mask shape={attention_mask.shape} ' + f'and prefix_mask shape={prefix_mask.shape} are not equal.')
         | 
| 257 | 
             
                        min_val = torch.finfo(attn_bias.dtype).min
         | 
| 258 | 
             
                        attn_bias = attn_bias.masked_fill(~attention_mask.view(-1, 1, 1, s_k), min_val)
         | 
| 259 | 
            +
                    return (attn_bias, attention_mask)
         | 
| 260 |  | 
| 261 | 
             
                def _apply_prefix_mask(self, attn_bias: torch.Tensor, prefix_mask: torch.Tensor) -> torch.Tensor:
         | 
| 262 | 
             
                    (s_k, s_q) = attn_bias.shape[-2:]
         | 
|  | |
| 273 | 
             
                    attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
         | 
| 274 | 
             
                    return attn_bias
         | 
| 275 |  | 
| 276 | 
            +
                def forward(self, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.Tensor]=None) -> BaseModelOutputWithPast:
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 277 | 
             
                    return_dict = return_dict if return_dict is not None else self.config.return_dict
         | 
| 278 | 
             
                    use_cache = use_cache if use_cache is not None else self.config.use_cache
         | 
| 279 | 
             
                    if attention_mask is not None:
         | 
|  | |
| 289 | 
             
                        raise NotImplementedError('MPT does not support training with left padding.')
         | 
| 290 | 
             
                    if self.prefix_lm and prefix_mask is None:
         | 
| 291 | 
             
                        raise ValueError('prefix_mask is a required argument when MPT is configured with prefix_lm=True.')
         | 
|  | |
|  | |
| 292 | 
             
                    if self.training:
         | 
| 293 | 
             
                        if self.attn_uses_sequence_id and sequence_id is None:
         | 
| 294 | 
             
                            raise ValueError('sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True ' + 'and the model is in train mode.')
         | 
| 295 | 
             
                        elif self.attn_uses_sequence_id is False and sequence_id is not None:
         | 
| 296 | 
             
                            warnings.warn('MPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. ' + 'This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True.')
         | 
| 297 | 
            +
                    if input_ids is not None and inputs_embeds is not None:
         | 
| 298 | 
            +
                        raise ValueError('You cannot specify both input_ids and inputs_embeds.')
         | 
| 299 | 
            +
                    elif input_ids is not None:
         | 
| 300 | 
            +
                        bsz = input_ids.size(0)
         | 
| 301 | 
            +
                        S = input_ids.size(1)
         | 
| 302 | 
            +
                        x = self.wte(input_ids)
         | 
| 303 | 
            +
                        input_device = input_ids.device
         | 
| 304 | 
            +
                    elif inputs_embeds is not None:
         | 
| 305 | 
            +
                        bsz = inputs_embeds.size(0)
         | 
| 306 | 
            +
                        S = inputs_embeds.size(1)
         | 
| 307 | 
            +
                        x = inputs_embeds
         | 
| 308 | 
            +
                        input_device = inputs_embeds.device
         | 
| 309 | 
            +
                    else:
         | 
| 310 | 
            +
                        raise ValueError('You must specify input_ids or inputs_embeds')
         | 
| 311 | 
             
                    assert S <= self.config.max_seq_len, f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}'
         | 
| 312 | 
            +
                    rotary_emb_w_meta_info = None
         | 
| 313 | 
            +
                    past_position = 0
         | 
| 314 | 
            +
                    if past_key_values is not None:
         | 
| 315 | 
            +
                        if len(past_key_values) != self.config.n_layers:
         | 
| 316 | 
            +
                            raise ValueError(f'past_key_values must provide a past_key_value for each attention ' + f'layer in the network (len(past_key_values)={len(past_key_values)!r}; self.config.n_layers={self.config.n_layers!r}).')
         | 
| 317 | 
            +
                        past_position = past_key_values[0][0].size(1)
         | 
| 318 | 
            +
                        if self.attn_impl == 'torch':
         | 
| 319 | 
            +
                            past_position = past_key_values[0][0].size(3)
         | 
| 320 | 
            +
                    if self.learned_pos_emb or self.rope:
         | 
| 321 | 
            +
                        if self.learned_pos_emb and S + past_position > self.config.max_seq_len:
         | 
| 322 | 
             
                            raise ValueError(f'Cannot forward input with past sequence length {past_position} and current sequence length ' + f'{S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}.')
         | 
| 323 | 
            +
                        if self.learned_pos_emb or (self.rope and self.rope_impl == 'hf'):
         | 
| 324 | 
            +
                            pos = torch.arange(past_position, S + past_position, dtype=torch.long, device=input_device).unsqueeze(0)
         | 
| 325 | 
            +
                            if attention_mask is not None:
         | 
| 326 | 
            +
                                pos = torch.clamp(pos - torch.cumsum((~attention_mask).to(torch.int32), dim=1)[:, past_position:], min=0)
         | 
| 327 | 
            +
                            if self.learned_pos_emb:
         | 
| 328 | 
            +
                                x = x + self.wpe(pos)
         | 
| 329 | 
            +
                            elif self.rope and self.rope_impl == 'hf':
         | 
| 330 | 
            +
                                rotary_emb_w_meta_info = {'impl': self.rope_impl, 'rotary_emb': self.rotary_embedding, 'offset_info': pos, 'seq_len': S + past_position}
         | 
| 331 | 
            +
                        elif self.rope and self.rope_impl == 'dail':
         | 
| 332 | 
            +
                            rotary_emb_w_meta_info = {'impl': self.rope_impl, 'rotary_emb': self.rotary_embedding, 'offset_info': past_position, 'seq_len': S + past_position}
         | 
| 333 | 
             
                    if self.embedding_fraction == 1:
         | 
| 334 | 
             
                        x = self.emb_drop(x)
         | 
| 335 | 
             
                    else:
         | 
|  | |
| 337 | 
             
                        assert isinstance(self.emb_drop, nn.Module)
         | 
| 338 | 
             
                        x = self.emb_drop(x_shrunk)
         | 
| 339 | 
             
                    (attn_bias, attention_mask) = self._attn_bias(device=x.device, dtype=torch.float32, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id)
         | 
| 340 | 
            +
                    attention_mask_in_length = gen_attention_mask_in_length(sequence_id=sequence_id, S=S, attn_uses_sequence_id=self.attn_uses_sequence_id, attn_impl=self.attn_impl, attention_mask=attention_mask)
         | 
| 341 | 
            +
                    alibi_slopes = None
         | 
| 342 | 
            +
                    if self.alibi and self.attn_impl == 'flash':
         | 
| 343 | 
            +
                        alibi_slopes = gen_slopes(n_heads=self.config.n_heads, alibi_bias_max=self.alibi_bias_max, device=x.device, return_1d=True)
         | 
| 344 | 
             
                    presents = () if use_cache else None
         | 
| 345 | 
             
                    if use_cache and past_key_values is None:
         | 
| 346 | 
             
                        past_key_values = [() for _ in range(self.config.n_layers)]
         | 
| 347 | 
             
                    all_hidden_states = () if output_hidden_states else None
         | 
| 348 | 
             
                    all_self_attns = () if output_attentions else None
         | 
| 349 | 
            +
                    flash_attn_padding_info = {}
         | 
| 350 | 
            +
                    if self.attn_impl == 'flash':
         | 
| 351 | 
            +
                        flash_attn_padding_info = gen_flash_attn_padding_info(bsz, S, past_position, x.device, attention_mask_in_length, attention_mask)
         | 
| 352 | 
             
                    for (b_idx, block) in enumerate(self.blocks):
         | 
| 353 | 
             
                        if output_hidden_states:
         | 
| 354 | 
             
                            assert all_hidden_states is not None
         | 
| 355 | 
             
                            all_hidden_states = all_hidden_states + (x,)
         | 
| 356 | 
             
                        past_key_value = past_key_values[b_idx] if past_key_values is not None else None
         | 
| 357 | 
            +
                        (x, attn_weights, present) = block(x, past_key_value=past_key_value, attn_bias=attn_bias, rotary_emb_w_meta_info=rotary_emb_w_meta_info, attention_mask=attention_mask, is_causal=self.is_causal, output_attentions=bool(output_attentions), alibi_slopes=alibi_slopes, flash_attn_padding_info=flash_attn_padding_info)
         | 
| 358 | 
             
                        if presents is not None:
         | 
| 359 | 
             
                            presents += (present,)
         | 
| 360 | 
             
                        if output_attentions:
         | 
|  | |
| 371 | 
             
                    MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config)
         | 
| 372 |  | 
| 373 | 
             
                def fsdp_wrap_fn(self, module: nn.Module) -> bool:
         | 
| 374 | 
            +
                    return _fsdp_wrap_fn(self, module)
         | 
| 375 |  | 
| 376 | 
             
                def activation_checkpointing_fn(self, module: nn.Module) -> bool:
         | 
| 377 | 
             
                    return isinstance(module, MPTBlock)
         | 
|  | |
| 380 |  | 
| 381 | 
             
                def __init__(self, config: MPTConfig):
         | 
| 382 | 
             
                    super().__init__(config)
         | 
|  | |
|  | |
| 383 | 
             
                    log.info(f'Instantiating an MPTForCausalLM model from {__file__}')
         | 
| 384 | 
             
                    self.transformer: MPTModel = MPTModel(config)
         | 
| 385 | 
            +
                    self.lm_head = None
         | 
| 386 | 
            +
                    if not config.tie_word_embeddings:
         | 
| 387 | 
            +
                        self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False, device=config.init_device)
         | 
| 388 | 
            +
                        self.lm_head._fsdp_wrap = True
         | 
| 389 | 
             
                    for child in self.transformer.children():
         | 
| 390 | 
             
                        if isinstance(child, torch.nn.ModuleList):
         | 
| 391 | 
             
                            continue
         | 
|  | |
| 401 | 
             
                                raise ValueError(f"logit_scale={logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.")
         | 
| 402 | 
             
                        self.logit_scale = logit_scale
         | 
| 403 |  | 
| 404 | 
            +
                def get_input_embeddings(self) -> Union[SharedEmbedding, nn.Embedding]:
         | 
| 405 | 
            +
                    return self.transformer.get_input_embeddings()
         | 
| 406 |  | 
| 407 | 
             
                def set_input_embeddings(self, value: Union[SharedEmbedding, nn.Embedding]) -> None:
         | 
| 408 | 
            +
                    self.transformer.set_input_embeddings(value)
         | 
| 409 | 
            +
             | 
| 410 | 
            +
                def get_output_embeddings(self) -> Union[SharedEmbedding, nn.Embedding, nn.Linear]:
         | 
| 411 | 
            +
                    if self.lm_head is not None:
         | 
| 412 | 
            +
                        return self.lm_head
         | 
| 413 | 
            +
                    return self.transformer.get_input_embeddings()
         | 
| 414 |  | 
| 415 | 
            +
                def set_output_embeddings(self, new_embeddings: Union[SharedEmbedding, nn.Embedding, nn.Linear]) -> None:
         | 
| 416 | 
            +
                    if self.lm_head is not None:
         | 
| 417 | 
            +
                        self.lm_head = new_embeddings
         | 
| 418 | 
            +
                    else:
         | 
| 419 | 
            +
                        if not isinstance(new_embeddings, (SharedEmbedding, nn.Embedding)):
         | 
| 420 | 
            +
                            raise ValueError('new_embeddings must be an instance of SharedEmbedding ' + f'or nn.Embedding, but got {type(new_embeddings)}.')
         | 
| 421 | 
            +
                        warnings.warn('Using `set_output_embeddings` to set the embedding layer of ' + 'MPTForCausalLM with tied weights. Given weights are tied, ' + 'using `set_input_embeddings` is recommended over using ' + '`set_output_embeddings`.')
         | 
| 422 | 
            +
                        self.transformer.set_input_embeddings(new_embeddings)
         | 
| 423 |  | 
| 424 | 
            +
                def tie_weights(self) -> None:
         | 
| 425 | 
            +
                    self.lm_head = None
         | 
| 426 |  | 
| 427 | 
             
                def set_decoder(self, decoder: MPTModel) -> None:
         | 
| 428 | 
             
                    self.transformer = decoder
         | 
|  | |
| 430 | 
             
                def get_decoder(self) -> MPTModel:
         | 
| 431 | 
             
                    return self.transformer
         | 
| 432 |  | 
| 433 | 
            +
                def forward(self, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.FloatTensor]=None) -> CausalLMOutputWithPast:
         | 
| 434 | 
             
                    return_dict = return_dict if return_dict is not None else self.config.return_dict
         | 
| 435 | 
             
                    use_cache = use_cache if use_cache is not None else self.config.use_cache
         | 
| 436 | 
            +
                    outputs = self.transformer(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache, inputs_embeds=inputs_embeds)
         | 
| 437 | 
            +
                    if self.lm_head is not None:
         | 
| 438 | 
            +
                        logits = self.lm_head(outputs.last_hidden_state)
         | 
| 439 | 
            +
                    else:
         | 
| 440 | 
            +
                        out = outputs.last_hidden_state
         | 
| 441 | 
            +
                        out = out.to(self.transformer.wte.weight.device)
         | 
| 442 | 
            +
                        logits = self.transformer.wte(out, True)
         | 
| 443 | 
             
                    if self.logit_scale is not None:
         | 
| 444 | 
             
                        if self.logit_scale == 0:
         | 
| 445 | 
             
                            warnings.warn(f'Multiplying logits by self.logit_scale={self.logit_scale!r}. This will produce uniform (uninformative) outputs.')
         | 
|  | |
| 456 | 
             
                    MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config)
         | 
| 457 |  | 
| 458 | 
             
                def fsdp_wrap_fn(self, module: nn.Module) -> bool:
         | 
| 459 | 
            +
                    return _fsdp_wrap_fn(self, module)
         | 
| 460 |  | 
| 461 | 
             
                def activation_checkpointing_fn(self, module: nn.Module) -> bool:
         | 
| 462 | 
            +
                    act_ckpt_list = getattr(self.config, 'activation_checkpointing_target', None) or ['MPTBlock']
         | 
| 463 | 
            +
                    if isinstance(act_ckpt_list, str):
         | 
| 464 | 
            +
                        act_ckpt_list = [act_ckpt_list]
         | 
| 465 | 
            +
                    elif not isinstance(act_ckpt_list, list):
         | 
| 466 | 
            +
                        raise ValueError(f'activation_checkpointing_target must be either a single string or a list, but got {type(act_ckpt_list)}')
         | 
| 467 | 
            +
                    if 'MPTBlock' in act_ckpt_list or 'mptblock' in act_ckpt_list:
         | 
| 468 | 
            +
                        if len(act_ckpt_list) > 1:
         | 
| 469 | 
            +
                            log.info('Activation checkpointing MPTBlock only (ignoring other sub-block modules specified in activation_checkpointing_target).')
         | 
| 470 | 
            +
                        return isinstance(module, MPTBlock)
         | 
| 471 | 
            +
                    mod_types = ()
         | 
| 472 | 
            +
                    for mod_name in act_ckpt_list:
         | 
| 473 | 
            +
                        if mod_name.lower() == 'mptblock':
         | 
| 474 | 
            +
                            mod_types += (MPTBlock,)
         | 
| 475 | 
            +
                        elif mod_name in ATTN_CLASS_REGISTRY:
         | 
| 476 | 
            +
                            mod_types += (ATTN_CLASS_REGISTRY[mod_name],)
         | 
| 477 | 
            +
                        elif mod_name in FFN_CLASS_REGISTRY:
         | 
| 478 | 
            +
                            mod_types += (FFN_CLASS_REGISTRY[mod_name],)
         | 
| 479 | 
            +
                        elif mod_name in NORM_CLASS_REGISTRY:
         | 
| 480 | 
            +
                            mod_types += (NORM_CLASS_REGISTRY[mod_name],)
         | 
| 481 | 
            +
                        else:
         | 
| 482 | 
            +
                            msg = ', '.join(list(ATTN_CLASS_REGISTRY.keys()) + list(FFN_CLASS_REGISTRY.keys()) + list(NORM_CLASS_REGISTRY.keys()) + ['MPTBlock'])
         | 
| 483 | 
            +
                            raise ValueError(f'{mod_name} (specified in activation_checkpointing_target) is not a recognized option out of available options {msg}.')
         | 
| 484 | 
            +
                    return isinstance(module, mod_types)
         | 
| 485 |  | 
| 486 | 
             
                def prepare_inputs_for_generation(self, input_ids: torch.Tensor, past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]]=None, inputs_embeds: Optional[torch.Tensor]=None, **kwargs: Any) -> Dict[str, Any]:
         | 
|  | |
|  | |
| 487 | 
             
                    attention_mask = kwargs['attention_mask'].bool()
         | 
| 488 | 
             
                    if attention_mask[:, -1].sum() != attention_mask.shape[0]:
         | 
| 489 | 
             
                        raise NotImplementedError('MPT does not support generation with right padding.')
         | 
|  | |
| 499 | 
             
                            raise NotImplementedError('MPT with prefix_lm=True does not support use_cache=False.')
         | 
| 500 | 
             
                    else:
         | 
| 501 | 
             
                        prefix_mask = None
         | 
| 502 | 
            +
                    if inputs_embeds is not None and past_key_values is None:
         | 
| 503 | 
            +
                        model_inputs = {'inputs_embeds': inputs_embeds}
         | 
| 504 | 
            +
                    else:
         | 
| 505 | 
            +
                        model_inputs = {'input_ids': input_ids}
         | 
| 506 | 
            +
                    model_inputs.update({'attention_mask': attention_mask, 'prefix_mask': prefix_mask, 'sequence_id': sequence_id, 'past_key_values': past_key_values, 'use_cache': kwargs.get('use_cache', True)})
         | 
| 507 | 
            +
                    return model_inputs
         | 
| 508 |  | 
| 509 | 
             
                @staticmethod
         | 
| 510 | 
             
                def _reorder_cache(past_key_values: List[Tuple[torch.Tensor, torch.Tensor]], beam_idx: torch.LongTensor) -> List[Tuple[torch.Tensor, ...]]:
         | 
    	
        warnings.py
    ADDED
    
    | @@ -0,0 +1,22 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            class VersionedDeprecationWarning(DeprecationWarning):
         | 
| 2 | 
            +
                """A custom deprecation warning class that includes version information.
         | 
| 3 | 
            +
             | 
| 4 | 
            +
                Attributes:
         | 
| 5 | 
            +
                    message (str): The deprecation message describing why the feature is deprecated.
         | 
| 6 | 
            +
                    remove_version (str): The version in which the feature will be removed.
         | 
| 7 | 
            +
             | 
| 8 | 
            +
                Example:
         | 
| 9 | 
            +
                    >>> def deprecated_function():
         | 
| 10 | 
            +
                    ...     warnings.warn(
         | 
| 11 | 
            +
                    ...         VersionedDeprecationWarning(
         | 
| 12 | 
            +
                    ...             "Function XYZ is deprecated.",
         | 
| 13 | 
            +
                    ...             after_version="2.0.0"
         | 
| 14 | 
            +
                    ...         )
         | 
| 15 | 
            +
                    ...     )
         | 
| 16 | 
            +
                    ...
         | 
| 17 | 
            +
                    >>> deprecated_function()
         | 
| 18 | 
            +
                    DeprecationWarning: Function XYZ is deprecated. It will be removed in version 2.0.0.
         | 
| 19 | 
            +
                """
         | 
| 20 | 
            +
             | 
| 21 | 
            +
                def __init__(self, message: str, remove_version: str) -> None:
         | 
| 22 | 
            +
                    super().__init__(message + f' It will be removed in version {remove_version}.')
         | 

