zhiyucheng's picture
add files
9ed36d5 unverified
# --------------------------------------------------------
# Adapted from https://huggingface.co/OpenGVLab/InternVL2-Llama3-76B under MIT License
# LICENSE is in incl_licenses directory.
# --------------------------------------------------------
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
from .configuration_nemotron_h import NemotronHConfig
from .configuration_radio import RADIOConfig
logger = logging.get_logger(__name__)
class NemotronH_Nano_VL_V2_Config(PretrainedConfig):
model_type = 'NemotronH_Nano_VL_V2'
is_composition = True
def __init__(
self,
vision_config=None,
llm_config=None,
force_image_size=None,
downsample_ratio=0.5,
template=None,
ps_version='v1',
image_tag_type="internvl",
projector_hidden_size=4096,
vit_hidden_size=1280,
attn_implementation="flash_attention_2",
video_pruning_rate: float = 0.0,
**kwargs
):
super().__init__(**kwargs)
if vision_config is not None:
self.vision_config = RADIOConfig(**vision_config)
else:
self.vision_config = RADIOConfig()
# Handle both cases: when loading from JSON (llm_config is dict) and when called internally by transformers (llm_config is None)
if llm_config is not None:
self.llm_config = NemotronHConfig(**llm_config)
else:
self.llm_config = NemotronHConfig()
# Assign configuration values
self.force_image_size = force_image_size
self.downsample_ratio = downsample_ratio
self.template = template # TODO move out of here and into the tokenizer
self.ps_version = ps_version # Pixel shuffle version
self.image_tag_type = image_tag_type # TODO: into the tokenizer too?
self.projector_hidden_size = projector_hidden_size
self.vit_hidden_size = vit_hidden_size
self.video_pruning_rate = video_pruning_rate
self._attn_implementation = attn_implementation
self.vision_config.use_flash_attn = self._attn_implementation is not None and "flash_attention" in self._attn_implementation
self.llm_config._attn_implementation = self._attn_implementation