C++ Demo - Human Segmentation (#243)
Browse files* add human segmentation c++ demo
* removed debug print and update README
* inverted colors for consistency
* adjusted blending weight for visualization
CMakeLists.txt
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
cmake_minimum_required(VERSION 3.24)
|
| 2 |
+
set(CMAKE_CXX_STANDARD 11)
|
| 3 |
+
set(project_name "opencv_zoo_human_segmentation")
|
| 4 |
+
|
| 5 |
+
PROJECT (${project_name})
|
| 6 |
+
|
| 7 |
+
set(OPENCV_VERSION "4.9.0")
|
| 8 |
+
set(OPENCV_INSTALLATION_PATH "" CACHE PATH "Where to look for OpenCV installation")
|
| 9 |
+
find_package(OpenCV ${OPENCV_VERSION} REQUIRED HINTS ${OPENCV_INSTALLATION_PATH})
|
| 10 |
+
# Find OpenCV, you may need to set OpenCV_DIR variable
|
| 11 |
+
# to the absolute path to the directory containing OpenCVConfig.cmake file
|
| 12 |
+
# via the command line or GUI
|
| 13 |
+
|
| 14 |
+
file(GLOB SourceFile
|
| 15 |
+
"demo.cpp")
|
| 16 |
+
# If the package has been found, several variables will
|
| 17 |
+
# be set, you can find the full list with descriptions
|
| 18 |
+
# in the OpenCVConfig.cmake file.
|
| 19 |
+
# Print some message showing some of them
|
| 20 |
+
message(STATUS "OpenCV library status:")
|
| 21 |
+
message(STATUS " config: ${OpenCV_DIR}")
|
| 22 |
+
message(STATUS " version: ${OpenCV_VERSION}")
|
| 23 |
+
message(STATUS " libraries: ${OpenCV_LIBS}")
|
| 24 |
+
message(STATUS " include path: ${OpenCV_INCLUDE_DIRS}")
|
| 25 |
+
|
| 26 |
+
# Declare the executable target built from your sources
|
| 27 |
+
add_executable(${project_name} ${SourceFile})
|
| 28 |
+
|
| 29 |
+
# Link your application with OpenCV libraries
|
| 30 |
+
target_link_libraries(${project_name} PRIVATE ${OpenCV_LIBS})
|
| 31 |
+
|
README.md
CHANGED
|
@@ -4,6 +4,8 @@ This model is ported from [PaddleHub](https://github.com/PaddlePaddle/PaddleHub)
|
|
| 4 |
|
| 5 |
## Demo
|
| 6 |
|
|
|
|
|
|
|
| 7 |
Run the following command to try the demo:
|
| 8 |
|
| 9 |
```shell
|
|
@@ -16,6 +18,23 @@ python demo.py --input /path/to/image -v
|
|
| 16 |
python demo.py --help
|
| 17 |
```
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
### Example outputs
|
| 20 |
|
| 21 |

|
|
|
|
| 4 |
|
| 5 |
## Demo
|
| 6 |
|
| 7 |
+
### Python
|
| 8 |
+
|
| 9 |
Run the following command to try the demo:
|
| 10 |
|
| 11 |
```shell
|
|
|
|
| 18 |
python demo.py --help
|
| 19 |
```
|
| 20 |
|
| 21 |
+
### C++
|
| 22 |
+
|
| 23 |
+
Install latest OpenCV and CMake >= 3.24.0 to get started with:
|
| 24 |
+
|
| 25 |
+
```shell
|
| 26 |
+
# A typical and default installation path of OpenCV is /usr/local
|
| 27 |
+
cmake -B build -D OPENCV_INSTALLATION_PATH=/path/to/opencv/installation .
|
| 28 |
+
cmake --build build
|
| 29 |
+
|
| 30 |
+
# detect on camera input
|
| 31 |
+
./build/opencv_zoo_human_segmentation
|
| 32 |
+
# detect on an image
|
| 33 |
+
./build/opencv_zoo_human_segmentation -i=/path/to/image
|
| 34 |
+
# get help messages
|
| 35 |
+
./build/opencv_zoo_human_segmentation -h
|
| 36 |
+
```
|
| 37 |
+
|
| 38 |
### Example outputs
|
| 39 |
|
| 40 |

|
demo.cpp
ADDED
|
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#include "opencv2/opencv.hpp"
|
| 2 |
+
|
| 3 |
+
#include <map>
|
| 4 |
+
#include <vector>
|
| 5 |
+
#include <string>
|
| 6 |
+
#include <iostream>
|
| 7 |
+
|
| 8 |
+
using namespace std;
|
| 9 |
+
using namespace cv;
|
| 10 |
+
using namespace dnn;
|
| 11 |
+
|
| 12 |
+
std::vector<std::pair<int, int>> backend_target_pairs = {
|
| 13 |
+
{DNN_BACKEND_OPENCV, DNN_TARGET_CPU},
|
| 14 |
+
{DNN_BACKEND_CUDA, DNN_TARGET_CUDA},
|
| 15 |
+
{DNN_BACKEND_CUDA, DNN_TARGET_CUDA_FP16},
|
| 16 |
+
{DNN_BACKEND_TIMVX, DNN_TARGET_NPU},
|
| 17 |
+
{DNN_BACKEND_CANN, DNN_TARGET_NPU}
|
| 18 |
+
};
|
| 19 |
+
|
| 20 |
+
class PPHS
|
| 21 |
+
{
|
| 22 |
+
private:
|
| 23 |
+
Net model;
|
| 24 |
+
string modelPath;
|
| 25 |
+
|
| 26 |
+
Scalar imageMean = Scalar(0.5,0.5,0.5);
|
| 27 |
+
Scalar imageStd = Scalar(0.5,0.5,0.5);
|
| 28 |
+
Size modelInputSize = Size(192, 192);
|
| 29 |
+
Size currentSize;
|
| 30 |
+
|
| 31 |
+
const String inputNames = "x";
|
| 32 |
+
const String outputNames = "save_infer_model/scale_0.tmp_1";
|
| 33 |
+
|
| 34 |
+
int backend_id;
|
| 35 |
+
int target_id;
|
| 36 |
+
|
| 37 |
+
public:
|
| 38 |
+
PPHS(const string& modelPath,
|
| 39 |
+
int backend_id = 0,
|
| 40 |
+
int target_id = 0)
|
| 41 |
+
: modelPath(modelPath), backend_id(backend_id), target_id(target_id)
|
| 42 |
+
{
|
| 43 |
+
this->model = readNet(modelPath);
|
| 44 |
+
this->model.setPreferableBackend(backend_id);
|
| 45 |
+
this->model.setPreferableTarget(target_id);
|
| 46 |
+
}
|
| 47 |
+
|
| 48 |
+
Mat preprocess(const Mat image)
|
| 49 |
+
{
|
| 50 |
+
this->currentSize = image.size();
|
| 51 |
+
Mat preprocessed = Mat::zeros(this->modelInputSize, image.type());
|
| 52 |
+
resize(image, preprocessed, this->modelInputSize);
|
| 53 |
+
|
| 54 |
+
// image normalization
|
| 55 |
+
preprocessed.convertTo(preprocessed, CV_32F, 1.0 / 255.0);
|
| 56 |
+
preprocessed -= imageMean;
|
| 57 |
+
preprocessed /= imageStd;
|
| 58 |
+
|
| 59 |
+
return blobFromImage(preprocessed);;
|
| 60 |
+
}
|
| 61 |
+
|
| 62 |
+
Mat infer(const Mat image)
|
| 63 |
+
{
|
| 64 |
+
Mat inputBlob = preprocess(image);
|
| 65 |
+
|
| 66 |
+
this->model.setInput(inputBlob, this->inputNames);
|
| 67 |
+
Mat outputBlob = this->model.forward(this->outputNames);
|
| 68 |
+
|
| 69 |
+
return postprocess(outputBlob);
|
| 70 |
+
}
|
| 71 |
+
|
| 72 |
+
Mat postprocess(Mat image)
|
| 73 |
+
{
|
| 74 |
+
reduceArgMax(image,image,1);
|
| 75 |
+
image = image.reshape(1,image.size[2]);
|
| 76 |
+
image.convertTo(image, CV_32F);
|
| 77 |
+
resize(image, image, this->currentSize, 0, 0, INTER_LINEAR);
|
| 78 |
+
image.convertTo(image, CV_8U);
|
| 79 |
+
|
| 80 |
+
return image;
|
| 81 |
+
}
|
| 82 |
+
|
| 83 |
+
};
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
vector<uint8_t> getColorMapList(int num_classes) {
|
| 87 |
+
num_classes += 1;
|
| 88 |
+
|
| 89 |
+
vector<uint8_t> cm(num_classes*3, 0);
|
| 90 |
+
|
| 91 |
+
int lab, j;
|
| 92 |
+
|
| 93 |
+
for (int i = 0; i < num_classes; ++i) {
|
| 94 |
+
lab = i;
|
| 95 |
+
j = 0;
|
| 96 |
+
|
| 97 |
+
while(lab){
|
| 98 |
+
cm[i] |= (((lab >> 0) & 1) << (7 - j));
|
| 99 |
+
cm[i+num_classes] |= (((lab >> 1) & 1) << (7 - j));
|
| 100 |
+
cm[i+2*num_classes] |= (((lab >> 2) & 1) << (7 - j));
|
| 101 |
+
++j;
|
| 102 |
+
lab >>= 3;
|
| 103 |
+
}
|
| 104 |
+
|
| 105 |
+
}
|
| 106 |
+
|
| 107 |
+
cm.erase(cm.begin(), cm.begin()+3);
|
| 108 |
+
|
| 109 |
+
return cm;
|
| 110 |
+
};
|
| 111 |
+
|
| 112 |
+
Mat visualize(const Mat& image, const Mat& result, float fps = -1.f, float weight = 0.4)
|
| 113 |
+
{
|
| 114 |
+
const Scalar& text_color = Scalar(0, 255, 0);
|
| 115 |
+
Mat output_image = image.clone();
|
| 116 |
+
|
| 117 |
+
vector<uint8_t> color_map = getColorMapList(256);
|
| 118 |
+
|
| 119 |
+
Mat cmm(color_map);
|
| 120 |
+
|
| 121 |
+
cmm = cmm.reshape(1,{3,256});
|
| 122 |
+
|
| 123 |
+
if (fps >= 0)
|
| 124 |
+
{
|
| 125 |
+
putText(output_image, format("FPS: %.2f", fps), Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, text_color, 2);
|
| 126 |
+
}
|
| 127 |
+
|
| 128 |
+
Mat c1, c2, c3;
|
| 129 |
+
|
| 130 |
+
LUT(result, cmm.row(0), c1);
|
| 131 |
+
LUT(result, cmm.row(1), c2);
|
| 132 |
+
LUT(result, cmm.row(2), c3);
|
| 133 |
+
|
| 134 |
+
Mat pseudo_img;
|
| 135 |
+
merge(std::vector<Mat>{c1,c2,c3}, pseudo_img);
|
| 136 |
+
|
| 137 |
+
addWeighted(output_image, weight, pseudo_img, 1 - weight, 0, output_image);
|
| 138 |
+
|
| 139 |
+
return output_image;
|
| 140 |
+
};
|
| 141 |
+
|
| 142 |
+
string keys =
|
| 143 |
+
"{ help h | | Print help message. }"
|
| 144 |
+
"{ model m | human_segmentation_pphumanseg_2023mar.onnx | Usage: Path to the model, defaults to human_segmentation_pphumanseg_2023mar.onnx }"
|
| 145 |
+
"{ input i | | Path to input image or video file. Skip this argument to capture frames from a camera.}"
|
| 146 |
+
"{ backend_target t | 0 | Choose one of the backend-target pair to run this demo:\n"
|
| 147 |
+
"0: (default) OpenCV implementation + CPU,\n"
|
| 148 |
+
"1: CUDA + GPU (CUDA),\n"
|
| 149 |
+
"2: CUDA + GPU (CUDA FP16),\n"
|
| 150 |
+
"3: TIM-VX + NPU,\n"
|
| 151 |
+
"4: CANN + NPU}"
|
| 152 |
+
"{ save s | false | Specify to save results.}"
|
| 153 |
+
"{ vis v | true | Specify to open a window for result visualization.}"
|
| 154 |
+
;
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
int main(int argc, char** argv)
|
| 158 |
+
{
|
| 159 |
+
CommandLineParser parser(argc, argv, keys);
|
| 160 |
+
|
| 161 |
+
parser.about("Human Segmentation");
|
| 162 |
+
if (parser.has("help"))
|
| 163 |
+
{
|
| 164 |
+
parser.printMessage();
|
| 165 |
+
return 0;
|
| 166 |
+
}
|
| 167 |
+
|
| 168 |
+
string modelPath = parser.get<string>("model");
|
| 169 |
+
string inputPath = parser.get<string>("input");
|
| 170 |
+
uint8_t backendTarget = parser.get<uint8_t>("backend_target");
|
| 171 |
+
bool saveFlag = parser.get<bool>("save");
|
| 172 |
+
bool visFlag = parser.get<bool>("vis");
|
| 173 |
+
|
| 174 |
+
if (modelPath.empty())
|
| 175 |
+
CV_Error(Error::StsError, "Model file " + modelPath + " not found");
|
| 176 |
+
|
| 177 |
+
PPHS humanSegmentationModel(modelPath, backend_target_pairs[backendTarget].first, backend_target_pairs[backendTarget].second);
|
| 178 |
+
|
| 179 |
+
VideoCapture cap;
|
| 180 |
+
if (!inputPath.empty())
|
| 181 |
+
cap.open(samples::findFile(inputPath));
|
| 182 |
+
else
|
| 183 |
+
cap.open(0);
|
| 184 |
+
|
| 185 |
+
if (!cap.isOpened())
|
| 186 |
+
CV_Error(Error::StsError, "Cannot opend video or file");
|
| 187 |
+
|
| 188 |
+
Mat frame;
|
| 189 |
+
Mat result;
|
| 190 |
+
static const std::string kWinName = "Human Segmentation Demo";
|
| 191 |
+
TickMeter tm;
|
| 192 |
+
|
| 193 |
+
while (waitKey(1) < 0)
|
| 194 |
+
{
|
| 195 |
+
cap >> frame;
|
| 196 |
+
|
| 197 |
+
if (frame.empty())
|
| 198 |
+
{
|
| 199 |
+
if(inputPath.empty())
|
| 200 |
+
cout << "Frame is empty" << endl;
|
| 201 |
+
break;
|
| 202 |
+
}
|
| 203 |
+
|
| 204 |
+
tm.start();
|
| 205 |
+
result = humanSegmentationModel.infer(frame);
|
| 206 |
+
tm.stop();
|
| 207 |
+
|
| 208 |
+
Mat res_frame = visualize(frame, result, tm.getFPS());
|
| 209 |
+
|
| 210 |
+
if(visFlag || inputPath.empty())
|
| 211 |
+
{
|
| 212 |
+
imshow(kWinName, res_frame);
|
| 213 |
+
if(!inputPath.empty())
|
| 214 |
+
waitKey(0);
|
| 215 |
+
}
|
| 216 |
+
if(saveFlag)
|
| 217 |
+
{
|
| 218 |
+
cout << "Results are saved to result.jpg" << endl;
|
| 219 |
+
|
| 220 |
+
imwrite("result.jpg", res_frame);
|
| 221 |
+
}
|
| 222 |
+
}
|
| 223 |
+
|
| 224 |
+
return 0;
|
| 225 |
+
}
|
| 226 |
+
|
demo.py
CHANGED
|
@@ -83,8 +83,8 @@ def visualize(image, result, weight=0.6, fps=None):
|
|
| 83 |
vis_result (np.ndarray): The visualized result.
|
| 84 |
"""
|
| 85 |
color_map = get_color_map_list(256)
|
| 86 |
-
color_map =
|
| 87 |
-
|
| 88 |
# Use OpenCV LUT for color mapping
|
| 89 |
c1 = cv.LUT(result, color_map[:, 0])
|
| 90 |
c2 = cv.LUT(result, color_map[:, 1])
|
|
@@ -158,3 +158,4 @@ if __name__ == '__main__':
|
|
| 158 |
cv.imshow('PPHumanSeg Demo', frame)
|
| 159 |
|
| 160 |
tm.reset()
|
|
|
|
|
|
| 83 |
vis_result (np.ndarray): The visualized result.
|
| 84 |
"""
|
| 85 |
color_map = get_color_map_list(256)
|
| 86 |
+
color_map = np.array(color_map).reshape(256, 3).astype(np.uint8)
|
| 87 |
+
|
| 88 |
# Use OpenCV LUT for color mapping
|
| 89 |
c1 = cv.LUT(result, color_map[:, 0])
|
| 90 |
c2 = cv.LUT(result, color_map[:, 1])
|
|
|
|
| 158 |
cv.imshow('PPHumanSeg Demo', frame)
|
| 159 |
|
| 160 |
tm.reset()
|
| 161 |
+
|