Limit combinations of backends and targets in demos and benchmark (#145)
Browse files* limit backend and target combination in demos and benchmark
* simpler version checking
- demo.py +56 -49
- nanodet.py +3 -5
demo.py
CHANGED
|
@@ -1,29 +1,21 @@
|
|
| 1 |
import numpy as np
|
| 2 |
-
import cv2
|
| 3 |
import argparse
|
| 4 |
|
| 5 |
from nanodet import NanoDet
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
elif v.lower() in ['off', 'no', 'false', 'n', 'f']:
|
| 11 |
-
return False
|
| 12 |
-
else:
|
| 13 |
-
raise NotImplementedError
|
| 14 |
-
|
| 15 |
-
backends = [cv2.dnn.DNN_BACKEND_OPENCV, cv2.dnn.DNN_BACKEND_CUDA]
|
| 16 |
-
targets = [cv2.dnn.DNN_TARGET_CPU, cv2.dnn.DNN_TARGET_CUDA, cv2.dnn.DNN_TARGET_CUDA_FP16]
|
| 17 |
-
help_msg_backends = "Choose one of the computation backends: {:d}: OpenCV implementation (default); {:d}: CUDA"
|
| 18 |
-
help_msg_targets = "Chose one of the target computation devices: {:d}: CPU (default); {:d}: CUDA; {:d}: CUDA fp16"
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
|
|
|
| 27 |
|
| 28 |
classes = ('person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
|
| 29 |
'train', 'truck', 'boat', 'traffic light', 'fire hydrant',
|
|
@@ -48,16 +40,16 @@ def letterbox(srcimg, target_size=(416, 416)):
|
|
| 48 |
hw_scale = img.shape[0] / img.shape[1]
|
| 49 |
if hw_scale > 1:
|
| 50 |
newh, neww = target_size[0], int(target_size[1] / hw_scale)
|
| 51 |
-
img =
|
| 52 |
left = int((target_size[1] - neww) * 0.5)
|
| 53 |
-
img =
|
| 54 |
else:
|
| 55 |
newh, neww = int(target_size[0] * hw_scale), target_size[1]
|
| 56 |
-
img =
|
| 57 |
top = int((target_size[0] - newh) * 0.5)
|
| 58 |
-
img =
|
| 59 |
else:
|
| 60 |
-
img =
|
| 61 |
|
| 62 |
letterbox_scale = [top, left, newh, neww]
|
| 63 |
return img, letterbox_scale
|
|
@@ -87,7 +79,7 @@ def vis(preds, res_img, letterbox_scale, fps=None):
|
|
| 87 |
# draw FPS
|
| 88 |
if fps is not None:
|
| 89 |
fps_label = "FPS: %.2f" % fps
|
| 90 |
-
|
| 91 |
|
| 92 |
# draw bboxes and labels
|
| 93 |
for pred in preds:
|
|
@@ -97,37 +89,52 @@ def vis(preds, res_img, letterbox_scale, fps=None):
|
|
| 97 |
|
| 98 |
# bbox
|
| 99 |
xmin, ymin, xmax, ymax = unletterbox(bbox, ret.shape[:2], letterbox_scale)
|
| 100 |
-
|
| 101 |
|
| 102 |
# label
|
| 103 |
label = "{:s}: {:.2f}".format(classes[classid], conf)
|
| 104 |
-
|
| 105 |
|
| 106 |
return ret
|
| 107 |
|
| 108 |
if __name__=='__main__':
|
| 109 |
parser = argparse.ArgumentParser(description='Nanodet inference using OpenCV an contribution by Sri Siddarth Chakaravarthy part of GSOC_2022')
|
| 110 |
-
parser.add_argument('--input', '-i', type=str,
|
| 111 |
-
|
| 112 |
-
parser.add_argument('--
|
| 113 |
-
|
| 114 |
-
parser.add_argument('--
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
args = parser.parse_args()
|
| 119 |
|
|
|
|
|
|
|
|
|
|
| 120 |
model = NanoDet(modelPath= args.model,
|
| 121 |
prob_threshold=args.confidence,
|
| 122 |
iou_threshold=args.nms,
|
| 123 |
-
backend_id=
|
| 124 |
-
target_id=
|
| 125 |
|
| 126 |
-
tm =
|
| 127 |
tm.reset()
|
| 128 |
if args.input is not None:
|
| 129 |
-
image =
|
| 130 |
-
input_blob =
|
| 131 |
|
| 132 |
# Letterbox transformation
|
| 133 |
input_blob, letterbox_scale = letterbox(input_blob)
|
|
@@ -142,25 +149,25 @@ if __name__=='__main__':
|
|
| 142 |
|
| 143 |
if args.save:
|
| 144 |
print('Resutls saved to result.jpg\n')
|
| 145 |
-
|
| 146 |
|
| 147 |
if args.vis:
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
|
| 152 |
else:
|
| 153 |
print("Press any key to stop video capture")
|
| 154 |
deviceId = 0
|
| 155 |
-
cap =
|
| 156 |
|
| 157 |
-
while
|
| 158 |
hasFrame, frame = cap.read()
|
| 159 |
if not hasFrame:
|
| 160 |
print('No frames grabbed!')
|
| 161 |
break
|
| 162 |
|
| 163 |
-
input_blob =
|
| 164 |
input_blob, letterbox_scale = letterbox(input_blob)
|
| 165 |
# Inference
|
| 166 |
tm.start()
|
|
@@ -169,6 +176,6 @@ if __name__=='__main__':
|
|
| 169 |
|
| 170 |
img = vis(preds, frame, letterbox_scale, fps=tm.getFPS())
|
| 171 |
|
| 172 |
-
|
| 173 |
|
| 174 |
tm.reset()
|
|
|
|
| 1 |
import numpy as np
|
| 2 |
+
import cv2 as cv
|
| 3 |
import argparse
|
| 4 |
|
| 5 |
from nanodet import NanoDet
|
| 6 |
|
| 7 |
+
# Check OpenCV version
|
| 8 |
+
assert cv.__version__ >= "4.7.0", \
|
| 9 |
+
"Please install latest opencv-python to try this demo: python3 -m pip install --upgrade opencv-python"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
+
# Valid combinations of backends and targets
|
| 12 |
+
backend_target_pairs = [
|
| 13 |
+
[cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU],
|
| 14 |
+
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA],
|
| 15 |
+
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16],
|
| 16 |
+
[cv.dnn.DNN_BACKEND_TIMVX, cv.dnn.DNN_TARGET_NPU],
|
| 17 |
+
[cv.dnn.DNN_BACKEND_CANN, cv.dnn.DNN_TARGET_NPU]
|
| 18 |
+
]
|
| 19 |
|
| 20 |
classes = ('person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
|
| 21 |
'train', 'truck', 'boat', 'traffic light', 'fire hydrant',
|
|
|
|
| 40 |
hw_scale = img.shape[0] / img.shape[1]
|
| 41 |
if hw_scale > 1:
|
| 42 |
newh, neww = target_size[0], int(target_size[1] / hw_scale)
|
| 43 |
+
img = cv.resize(img, (neww, newh), interpolation=cv.INTER_AREA)
|
| 44 |
left = int((target_size[1] - neww) * 0.5)
|
| 45 |
+
img = cv.copyMakeBorder(img, 0, 0, left, target_size[1] - neww - left, cv.BORDER_CONSTANT, value=0) # add border
|
| 46 |
else:
|
| 47 |
newh, neww = int(target_size[0] * hw_scale), target_size[1]
|
| 48 |
+
img = cv.resize(img, (neww, newh), interpolation=cv.INTER_AREA)
|
| 49 |
top = int((target_size[0] - newh) * 0.5)
|
| 50 |
+
img = cv.copyMakeBorder(img, top, target_size[0] - newh - top, 0, 0, cv.BORDER_CONSTANT, value=0)
|
| 51 |
else:
|
| 52 |
+
img = cv.resize(img, target_size, interpolation=cv.INTER_AREA)
|
| 53 |
|
| 54 |
letterbox_scale = [top, left, newh, neww]
|
| 55 |
return img, letterbox_scale
|
|
|
|
| 79 |
# draw FPS
|
| 80 |
if fps is not None:
|
| 81 |
fps_label = "FPS: %.2f" % fps
|
| 82 |
+
cv.putText(ret, fps_label, (10, 25), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
|
| 83 |
|
| 84 |
# draw bboxes and labels
|
| 85 |
for pred in preds:
|
|
|
|
| 89 |
|
| 90 |
# bbox
|
| 91 |
xmin, ymin, xmax, ymax = unletterbox(bbox, ret.shape[:2], letterbox_scale)
|
| 92 |
+
cv.rectangle(ret, (xmin, ymin), (xmax, ymax), (0, 255, 0), thickness=2)
|
| 93 |
|
| 94 |
# label
|
| 95 |
label = "{:s}: {:.2f}".format(classes[classid], conf)
|
| 96 |
+
cv.putText(ret, label, (xmin, ymin - 10), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), thickness=2)
|
| 97 |
|
| 98 |
return ret
|
| 99 |
|
| 100 |
if __name__=='__main__':
|
| 101 |
parser = argparse.ArgumentParser(description='Nanodet inference using OpenCV an contribution by Sri Siddarth Chakaravarthy part of GSOC_2022')
|
| 102 |
+
parser.add_argument('--input', '-i', type=str,
|
| 103 |
+
help='Path to the input image. Omit for using default camera.')
|
| 104 |
+
parser.add_argument('--model', '-m', type=str,
|
| 105 |
+
default='object_detection_nanodet_2022nov.onnx', help="Path to the model")
|
| 106 |
+
parser.add_argument('--backend_target', '-bt', type=int, default=0,
|
| 107 |
+
help='''Choose one of the backend-target pair to run this demo:
|
| 108 |
+
{:d}: (default) OpenCV implementation + CPU,
|
| 109 |
+
{:d}: CUDA + GPU (CUDA),
|
| 110 |
+
{:d}: CUDA + GPU (CUDA FP16),
|
| 111 |
+
{:d}: TIM-VX + NPU,
|
| 112 |
+
{:d}: CANN + NPU
|
| 113 |
+
'''.format(*[x for x in range(len(backend_target_pairs))]))
|
| 114 |
+
parser.add_argument('--confidence', default=0.35, type=float,
|
| 115 |
+
help='Class confidence')
|
| 116 |
+
parser.add_argument('--nms', default=0.6, type=float,
|
| 117 |
+
help='Enter nms IOU threshold')
|
| 118 |
+
parser.add_argument('--save', '-s', action='store_true',
|
| 119 |
+
help='Specify to save results. This flag is invalid when using camera.')
|
| 120 |
+
parser.add_argument('--vis', '-v', action='store_true',
|
| 121 |
+
help='Specify to open a window for result visualization. This flag is invalid when using camera.')
|
| 122 |
args = parser.parse_args()
|
| 123 |
|
| 124 |
+
backend_id = backend_target_pairs[args.backend_target][0]
|
| 125 |
+
target_id = backend_target_pairs[args.backend_target][1]
|
| 126 |
+
|
| 127 |
model = NanoDet(modelPath= args.model,
|
| 128 |
prob_threshold=args.confidence,
|
| 129 |
iou_threshold=args.nms,
|
| 130 |
+
backend_id=backend_id,
|
| 131 |
+
target_id=target_id)
|
| 132 |
|
| 133 |
+
tm = cv.TickMeter()
|
| 134 |
tm.reset()
|
| 135 |
if args.input is not None:
|
| 136 |
+
image = cv.imread(args.input)
|
| 137 |
+
input_blob = cv.cvtColor(image, cv.COLOR_BGR2RGB)
|
| 138 |
|
| 139 |
# Letterbox transformation
|
| 140 |
input_blob, letterbox_scale = letterbox(input_blob)
|
|
|
|
| 149 |
|
| 150 |
if args.save:
|
| 151 |
print('Resutls saved to result.jpg\n')
|
| 152 |
+
cv.imwrite('result.jpg', img)
|
| 153 |
|
| 154 |
if args.vis:
|
| 155 |
+
cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE)
|
| 156 |
+
cv.imshow(args.input, img)
|
| 157 |
+
cv.waitKey(0)
|
| 158 |
|
| 159 |
else:
|
| 160 |
print("Press any key to stop video capture")
|
| 161 |
deviceId = 0
|
| 162 |
+
cap = cv.VideoCapture(deviceId)
|
| 163 |
|
| 164 |
+
while cv.waitKey(1) < 0:
|
| 165 |
hasFrame, frame = cap.read()
|
| 166 |
if not hasFrame:
|
| 167 |
print('No frames grabbed!')
|
| 168 |
break
|
| 169 |
|
| 170 |
+
input_blob = cv.cvtColor(frame, cv.COLOR_BGR2RGB)
|
| 171 |
input_blob, letterbox_scale = letterbox(input_blob)
|
| 172 |
# Inference
|
| 173 |
tm.start()
|
|
|
|
| 176 |
|
| 177 |
img = vis(preds, frame, letterbox_scale, fps=tm.getFPS())
|
| 178 |
|
| 179 |
+
cv.imshow("NanoDet Demo", img)
|
| 180 |
|
| 181 |
tm.reset()
|
nanodet.py
CHANGED
|
@@ -37,12 +37,10 @@ class NanoDet:
|
|
| 37 |
def name(self):
|
| 38 |
return self.__class__.__name__
|
| 39 |
|
| 40 |
-
def
|
| 41 |
-
self.
|
|
|
|
| 42 |
self.net.setPreferableBackend(self.backend_id)
|
| 43 |
-
|
| 44 |
-
def setTarget(self, targetId):
|
| 45 |
-
self.target_id = targetId
|
| 46 |
self.net.setPreferableTarget(self.target_id)
|
| 47 |
|
| 48 |
def pre_process(self, img):
|
|
|
|
| 37 |
def name(self):
|
| 38 |
return self.__class__.__name__
|
| 39 |
|
| 40 |
+
def setBackendAndTarget(self, backendId, targetId):
|
| 41 |
+
self._backendId = backendId
|
| 42 |
+
self._targetId = targetId
|
| 43 |
self.net.setPreferableBackend(self.backend_id)
|
|
|
|
|
|
|
|
|
|
| 44 |
self.net.setPreferableTarget(self.target_id)
|
| 45 |
|
| 46 |
def pre_process(self, img):
|