Laurent Berger
commited on
Commit
·
1e6be98
1
Parent(s):
07b19bb
yolox in c++ (#177)
Browse files* yolox in c++
* review 1
* review 202306
* disable counter
- CMakeLists.txt +29 -0
- README.md +19 -0
- demo.cpp +315 -0
CMakeLists.txt
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
cmake_minimum_required(VERSION 3.24)
|
| 2 |
+
set(project_name "opencv_zoo_object_detection_yolox")
|
| 3 |
+
|
| 4 |
+
PROJECT (${project_name})
|
| 5 |
+
|
| 6 |
+
set(OPENCV_VERSION "4.7.0")
|
| 7 |
+
set(OPENCV_INSTALLATION_PATH "" CACHE PATH "Where to look for OpenCV installation")
|
| 8 |
+
find_package(OpenCV ${OPENCV_VERSION} REQUIRED HINTS ${OPENCV_INSTALLATION_PATH})
|
| 9 |
+
# Find OpenCV, you may need to set OpenCV_DIR variable
|
| 10 |
+
# to the absolute path to the directory containing OpenCVConfig.cmake file
|
| 11 |
+
# via the command line or GUI
|
| 12 |
+
|
| 13 |
+
file(GLOB SourceFile
|
| 14 |
+
"demo.cpp")
|
| 15 |
+
# If the package has been found, several variables will
|
| 16 |
+
# be set, you can find the full list with descriptions
|
| 17 |
+
# in the OpenCVConfig.cmake file.
|
| 18 |
+
# Print some message showing some of them
|
| 19 |
+
message(STATUS "OpenCV library status:")
|
| 20 |
+
message(STATUS " config: ${OpenCV_DIR}")
|
| 21 |
+
message(STATUS " version: ${OpenCV_VERSION}")
|
| 22 |
+
message(STATUS " libraries: ${OpenCV_LIBS}")
|
| 23 |
+
message(STATUS " include path: ${OpenCV_INCLUDE_DIRS}")
|
| 24 |
+
|
| 25 |
+
# Declare the executable target built from your sources
|
| 26 |
+
add_executable(${project_name} ${SourceFile})
|
| 27 |
+
|
| 28 |
+
# Link your application with OpenCV libraries
|
| 29 |
+
target_link_libraries(${project_name} PRIVATE ${OpenCV_LIBS})
|
README.md
CHANGED
|
@@ -13,6 +13,8 @@ Note:
|
|
| 13 |
|
| 14 |
## Demo
|
| 15 |
|
|
|
|
|
|
|
| 16 |
Run the following command to try the demo:
|
| 17 |
```shell
|
| 18 |
# detect on camera input
|
|
@@ -24,6 +26,23 @@ Note:
|
|
| 24 |
- image result saved as "result.jpg"
|
| 25 |
- this model requires `opencv-python>=4.8.0`
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
## Results
|
| 29 |
|
|
|
|
| 13 |
|
| 14 |
## Demo
|
| 15 |
|
| 16 |
+
### Python
|
| 17 |
+
|
| 18 |
Run the following command to try the demo:
|
| 19 |
```shell
|
| 20 |
# detect on camera input
|
|
|
|
| 26 |
- image result saved as "result.jpg"
|
| 27 |
- this model requires `opencv-python>=4.8.0`
|
| 28 |
|
| 29 |
+
### C++
|
| 30 |
+
|
| 31 |
+
Install latest OpenCV and CMake >= 3.24.0 to get started with:
|
| 32 |
+
|
| 33 |
+
```shell
|
| 34 |
+
# A typical and default installation path of OpenCV is /usr/local
|
| 35 |
+
cmake -B build -D OPENCV_INSTALLATION_PATH=/path/to/opencv/installation .
|
| 36 |
+
cmake --build build
|
| 37 |
+
|
| 38 |
+
# detect on camera input
|
| 39 |
+
./build/opencv_zoo_object_detection_yolox
|
| 40 |
+
# detect on an image
|
| 41 |
+
./build/opencv_zoo_object_detection_yolox -m=/path/to/model -i=/path/to/image -v
|
| 42 |
+
# get help messages
|
| 43 |
+
./build/opencv_zoo_object_detection_yolox -h
|
| 44 |
+
```
|
| 45 |
+
|
| 46 |
|
| 47 |
## Results
|
| 48 |
|
demo.cpp
ADDED
|
@@ -0,0 +1,315 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#include <vector>
|
| 2 |
+
#include <string>
|
| 3 |
+
#include <utility>
|
| 4 |
+
|
| 5 |
+
#include <opencv2/opencv.hpp>
|
| 6 |
+
|
| 7 |
+
using namespace std;
|
| 8 |
+
using namespace cv;
|
| 9 |
+
using namespace dnn;
|
| 10 |
+
|
| 11 |
+
vector< pair<dnn::Backend, dnn::Target> > backendTargetPairs = {
|
| 12 |
+
std::make_pair<dnn::Backend, dnn::Target>(dnn::DNN_BACKEND_OPENCV, dnn::DNN_TARGET_CPU),
|
| 13 |
+
std::make_pair<dnn::Backend, dnn::Target>(dnn::DNN_BACKEND_CUDA, dnn::DNN_TARGET_CUDA),
|
| 14 |
+
std::make_pair<dnn::Backend, dnn::Target>(dnn::DNN_BACKEND_CUDA, dnn::DNN_TARGET_CUDA_FP16),
|
| 15 |
+
std::make_pair<dnn::Backend, dnn::Target>(dnn::DNN_BACKEND_TIMVX, dnn::DNN_TARGET_NPU),
|
| 16 |
+
std::make_pair<dnn::Backend, dnn::Target>(dnn::DNN_BACKEND_CANN, dnn::DNN_TARGET_NPU) };
|
| 17 |
+
|
| 18 |
+
vector<string> labelYolox = {
|
| 19 |
+
"person", "bicycle", "car", "motorcycle", "airplane", "bus",
|
| 20 |
+
"train", "truck", "boat", "traffic light", "fire hydrant",
|
| 21 |
+
"stop sign", "parking meter", "bench", "bird", "cat", "dog",
|
| 22 |
+
"horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe",
|
| 23 |
+
"backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee",
|
| 24 |
+
"skis", "snowboard", "sports ball", "kite", "baseball bat",
|
| 25 |
+
"baseball glove", "skateboard", "surfboard", "tennis racket",
|
| 26 |
+
"bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl",
|
| 27 |
+
"banana", "apple", "sandwich", "orange", "broccoli", "carrot",
|
| 28 |
+
"hot dog", "pizza", "donut", "cake", "chair", "couch",
|
| 29 |
+
"potted plant", "bed", "dining table", "toilet", "tv", "laptop",
|
| 30 |
+
"mouse", "remote", "keyboard", "cell phone", "microwave",
|
| 31 |
+
"oven", "toaster", "sink", "refrigerator", "book", "clock",
|
| 32 |
+
"vase", "scissors", "teddy bear", "hair drier", "toothbrush" };
|
| 33 |
+
|
| 34 |
+
class YoloX {
|
| 35 |
+
private:
|
| 36 |
+
Net net;
|
| 37 |
+
string modelPath;
|
| 38 |
+
Size inputSize;
|
| 39 |
+
float confThreshold;
|
| 40 |
+
float nmsThreshold;
|
| 41 |
+
float objThreshold;
|
| 42 |
+
dnn::Backend backendId;
|
| 43 |
+
dnn::Target targetId;
|
| 44 |
+
int num_classes;
|
| 45 |
+
vector<int> strides;
|
| 46 |
+
Mat expandedStrides;
|
| 47 |
+
Mat grids;
|
| 48 |
+
|
| 49 |
+
public:
|
| 50 |
+
YoloX(string modPath, float confThresh = 0.35, float nmsThresh = 0.5, float objThresh = 0.5, dnn::Backend bId = DNN_BACKEND_DEFAULT, dnn::Target tId = DNN_TARGET_CPU) :
|
| 51 |
+
modelPath(modPath), confThreshold(confThresh),
|
| 52 |
+
nmsThreshold(nmsThresh), objThreshold(objThresh),
|
| 53 |
+
backendId(bId), targetId(tId)
|
| 54 |
+
{
|
| 55 |
+
this->num_classes = int(labelYolox.size());
|
| 56 |
+
this->net = readNet(modelPath);
|
| 57 |
+
this->inputSize = Size(640, 640);
|
| 58 |
+
this->strides = vector<int>{ 8, 16, 32 };
|
| 59 |
+
this->net.setPreferableBackend(this->backendId);
|
| 60 |
+
this->net.setPreferableTarget(this->targetId);
|
| 61 |
+
this->generateAnchors();
|
| 62 |
+
}
|
| 63 |
+
|
| 64 |
+
void setBackendAndTarget(dnn::Backend bId, dnn::Target tId)
|
| 65 |
+
{
|
| 66 |
+
this->backendId = bId;
|
| 67 |
+
this->targetId = tId;
|
| 68 |
+
this->net.setPreferableBackend(this->backendId);
|
| 69 |
+
this->net.setPreferableTarget(this->targetId);
|
| 70 |
+
}
|
| 71 |
+
|
| 72 |
+
Mat preprocess(Mat img)
|
| 73 |
+
{
|
| 74 |
+
Mat blob;
|
| 75 |
+
Image2BlobParams paramYolox;
|
| 76 |
+
paramYolox.datalayout = DNN_LAYOUT_NCHW;
|
| 77 |
+
paramYolox.ddepth = CV_32F;
|
| 78 |
+
paramYolox.mean = Scalar::all(0);
|
| 79 |
+
paramYolox.scalefactor = Scalar::all(1);
|
| 80 |
+
paramYolox.size = Size(img.cols, img.rows);
|
| 81 |
+
paramYolox.swapRB = true;
|
| 82 |
+
|
| 83 |
+
blob = blobFromImageWithParams(img, paramYolox);
|
| 84 |
+
return blob;
|
| 85 |
+
}
|
| 86 |
+
|
| 87 |
+
Mat infer(Mat srcimg)
|
| 88 |
+
{
|
| 89 |
+
Mat inputBlob = this->preprocess(srcimg);
|
| 90 |
+
|
| 91 |
+
this->net.setInput(inputBlob);
|
| 92 |
+
vector<Mat> outs;
|
| 93 |
+
this->net.forward(outs, this->net.getUnconnectedOutLayersNames());
|
| 94 |
+
|
| 95 |
+
Mat predictions = this->postprocess(outs[0]);
|
| 96 |
+
return predictions;
|
| 97 |
+
}
|
| 98 |
+
|
| 99 |
+
Mat postprocess(Mat outputs)
|
| 100 |
+
{
|
| 101 |
+
Mat dets = outputs.reshape(0,outputs.size[1]);
|
| 102 |
+
Mat col01;
|
| 103 |
+
add(dets.colRange(0, 2), this->grids, col01);
|
| 104 |
+
Mat col23;
|
| 105 |
+
exp(dets.colRange(2, 4), col23);
|
| 106 |
+
vector<Mat> col = { col01, col23 };
|
| 107 |
+
Mat boxes;
|
| 108 |
+
hconcat(col, boxes);
|
| 109 |
+
float* ptr = this->expandedStrides.ptr<float>(0);
|
| 110 |
+
for (int r = 0; r < boxes.rows; r++, ptr++)
|
| 111 |
+
{
|
| 112 |
+
boxes.rowRange(r, r + 1) = *ptr * boxes.rowRange(r, r + 1);
|
| 113 |
+
}
|
| 114 |
+
// get boxes
|
| 115 |
+
Mat boxes_xyxy(boxes.rows, boxes.cols, CV_32FC1, Scalar(1));
|
| 116 |
+
Mat scores = dets.colRange(5, dets.cols).clone();
|
| 117 |
+
vector<float> maxScores(dets.rows);
|
| 118 |
+
vector<int> maxScoreIdx(dets.rows);
|
| 119 |
+
vector<Rect2d> boxesXYXY(dets.rows);
|
| 120 |
+
|
| 121 |
+
for (int r = 0; r < boxes_xyxy.rows; r++, ptr++)
|
| 122 |
+
{
|
| 123 |
+
boxes_xyxy.at<float>(r, 0) = boxes.at<float>(r, 0) - boxes.at<float>(r, 2) / 2.f;
|
| 124 |
+
boxes_xyxy.at<float>(r, 1) = boxes.at<float>(r, 1) - boxes.at<float>(r, 3) / 2.f;
|
| 125 |
+
boxes_xyxy.at<float>(r, 2) = boxes.at<float>(r, 0) + boxes.at<float>(r, 2) / 2.f;
|
| 126 |
+
boxes_xyxy.at<float>(r, 3) = boxes.at<float>(r, 1) + boxes.at<float>(r, 3) / 2.f;
|
| 127 |
+
// get scores and class indices
|
| 128 |
+
scores.rowRange(r, r + 1) = scores.rowRange(r, r + 1) * dets.at<float>(r, 4);
|
| 129 |
+
double minVal, maxVal;
|
| 130 |
+
Point maxIdx;
|
| 131 |
+
minMaxLoc(scores.rowRange(r, r+1), &minVal, &maxVal, nullptr, &maxIdx);
|
| 132 |
+
maxScoreIdx[r] = maxIdx.x;
|
| 133 |
+
maxScores[r] = float(maxVal);
|
| 134 |
+
boxesXYXY[r].x = boxes_xyxy.at<float>(r, 0);
|
| 135 |
+
boxesXYXY[r].y = boxes_xyxy.at<float>(r, 1);
|
| 136 |
+
boxesXYXY[r].width = boxes_xyxy.at<float>(r, 2);
|
| 137 |
+
boxesXYXY[r].height = boxes_xyxy.at<float>(r, 3);
|
| 138 |
+
}
|
| 139 |
+
|
| 140 |
+
vector< int > keep;
|
| 141 |
+
NMSBoxesBatched(boxesXYXY, maxScores, maxScoreIdx, this->confThreshold, this->nmsThreshold, keep);
|
| 142 |
+
Mat candidates(int(keep.size()), 6, CV_32FC1);
|
| 143 |
+
int row = 0;
|
| 144 |
+
for (auto idx : keep)
|
| 145 |
+
{
|
| 146 |
+
boxes_xyxy.rowRange(idx, idx + 1).copyTo(candidates(Rect(0, row, 4, 1)));
|
| 147 |
+
candidates.at<float>(row, 4) = maxScores[idx];
|
| 148 |
+
candidates.at<float>(row, 5) = float(maxScoreIdx[idx]);
|
| 149 |
+
row++;
|
| 150 |
+
}
|
| 151 |
+
if (keep.size() == 0)
|
| 152 |
+
return Mat();
|
| 153 |
+
return candidates;
|
| 154 |
+
|
| 155 |
+
}
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
void generateAnchors()
|
| 159 |
+
{
|
| 160 |
+
vector< tuple<int, int, int> > nb;
|
| 161 |
+
int total = 0;
|
| 162 |
+
|
| 163 |
+
for (auto v : this->strides)
|
| 164 |
+
{
|
| 165 |
+
int w = this->inputSize.width / v;
|
| 166 |
+
int h = this->inputSize.height / v;
|
| 167 |
+
nb.push_back(tuple<int, int, int>(w * h, w, v));
|
| 168 |
+
total += w * h;
|
| 169 |
+
}
|
| 170 |
+
this->grids = Mat(total, 2, CV_32FC1);
|
| 171 |
+
this->expandedStrides = Mat(total, 1, CV_32FC1);
|
| 172 |
+
float* ptrGrids = this->grids.ptr<float>(0);
|
| 173 |
+
float* ptrStrides = this->expandedStrides.ptr<float>(0);
|
| 174 |
+
int pos = 0;
|
| 175 |
+
for (auto le : nb)
|
| 176 |
+
{
|
| 177 |
+
int r = get<1>(le);
|
| 178 |
+
for (int i = 0; i < get<0>(le); i++, pos++)
|
| 179 |
+
{
|
| 180 |
+
*ptrGrids++ = float(i % r);
|
| 181 |
+
*ptrGrids++ = float(i / r);
|
| 182 |
+
*ptrStrides++ = float((get<2>(le)));
|
| 183 |
+
}
|
| 184 |
+
}
|
| 185 |
+
}
|
| 186 |
+
};
|
| 187 |
+
|
| 188 |
+
std::string keys =
|
| 189 |
+
"{ help h | | Print help message. }"
|
| 190 |
+
"{ model m | object_detection_yolox_2022nov.onnx | Usage: Path to the model, defaults to object_detection_yolox_2022nov.onnx }"
|
| 191 |
+
"{ input i | | Path to input image or video file. Skip this argument to capture frames from a camera.}"
|
| 192 |
+
"{ confidence | 0.5 | Class confidence }"
|
| 193 |
+
"{ obj | 0.5 | Enter object threshold }"
|
| 194 |
+
"{ nms | 0.5 | Enter nms IOU threshold }"
|
| 195 |
+
"{ save s | true | Specify to save results. This flag is invalid when using camera. }"
|
| 196 |
+
"{ vis v | 1 | Specify to open a window for result visualization. This flag is invalid when using camera. }"
|
| 197 |
+
"{ backend bt | 0 | Choose one of computation backends: "
|
| 198 |
+
"0: (default) OpenCV implementation + CPU, "
|
| 199 |
+
"1: CUDA + GPU (CUDA), "
|
| 200 |
+
"2: CUDA + GPU (CUDA FP16), "
|
| 201 |
+
"3: TIM-VX + NPU, "
|
| 202 |
+
"4: CANN + NPU}";
|
| 203 |
+
|
| 204 |
+
pair<Mat, double> letterBox(Mat srcimg, Size targetSize = Size(640, 640))
|
| 205 |
+
{
|
| 206 |
+
Mat paddedImg(targetSize.height, targetSize.width, CV_32FC3, Scalar::all(114.0));
|
| 207 |
+
Mat resizeImg;
|
| 208 |
+
|
| 209 |
+
double ratio = min(targetSize.height / double(srcimg.rows), targetSize.width / double(srcimg.cols));
|
| 210 |
+
resize(srcimg, resizeImg, Size(int(srcimg.cols * ratio), int(srcimg.rows * ratio)), INTER_LINEAR);
|
| 211 |
+
resizeImg.copyTo(paddedImg(Rect(0, 0, int(srcimg.cols * ratio), int(srcimg.rows * ratio))));
|
| 212 |
+
return pair<Mat, double>(paddedImg, ratio);
|
| 213 |
+
}
|
| 214 |
+
|
| 215 |
+
Mat unLetterBox(Mat bbox, double letterboxScale)
|
| 216 |
+
{
|
| 217 |
+
return bbox / letterboxScale;
|
| 218 |
+
}
|
| 219 |
+
|
| 220 |
+
Mat visualize(Mat dets, Mat srcimg, double letterbox_scale, double fps = -1)
|
| 221 |
+
{
|
| 222 |
+
Mat resImg = srcimg.clone();
|
| 223 |
+
|
| 224 |
+
if (fps > 0)
|
| 225 |
+
putText(resImg, format("FPS: %.2f", fps), Size(10, 25), FONT_HERSHEY_SIMPLEX, 1, Scalar(0, 0, 255), 2);
|
| 226 |
+
|
| 227 |
+
for (int row = 0; row < dets.rows; row++)
|
| 228 |
+
{
|
| 229 |
+
Mat boxF = unLetterBox(dets(Rect(0, row, 4, 1)), letterbox_scale);
|
| 230 |
+
Mat box;
|
| 231 |
+
boxF.convertTo(box, CV_32S);
|
| 232 |
+
float score = dets.at<float>(row, 4);
|
| 233 |
+
int clsId = int(dets.at<float>(row, 5));
|
| 234 |
+
|
| 235 |
+
int x0 = box.at<int>(0, 0);
|
| 236 |
+
int y0 = box.at<int>(0, 1);
|
| 237 |
+
int x1 = box.at<int>(0, 2);
|
| 238 |
+
int y1 = box.at<int>(0, 3);
|
| 239 |
+
|
| 240 |
+
string text = format("%s : %f", labelYolox[clsId].c_str(), score * 100);
|
| 241 |
+
int font = FONT_HERSHEY_SIMPLEX;
|
| 242 |
+
int baseLine = 0;
|
| 243 |
+
Size txtSize = getTextSize(text, font, 0.4, 1, &baseLine);
|
| 244 |
+
rectangle(resImg, Point(x0, y0), Point(x1, y1), Scalar(0, 255, 0), 2);
|
| 245 |
+
rectangle(resImg, Point(x0, y0 + 1), Point(x0 + txtSize.width + 1, y0 + int(1.5 * txtSize.height)), Scalar(255, 255, 255), -1);
|
| 246 |
+
putText(resImg, text, Point(x0, y0 + txtSize.height), font, 0.4, Scalar(0, 0, 0), 1);
|
| 247 |
+
}
|
| 248 |
+
|
| 249 |
+
return resImg;
|
| 250 |
+
}
|
| 251 |
+
|
| 252 |
+
int main(int argc, char** argv)
|
| 253 |
+
{
|
| 254 |
+
CommandLineParser parser(argc, argv, keys);
|
| 255 |
+
|
| 256 |
+
parser.about("Use this script to run Yolox deep learning networks in opencv_zoo using OpenCV.");
|
| 257 |
+
if (parser.has("help"))
|
| 258 |
+
{
|
| 259 |
+
parser.printMessage();
|
| 260 |
+
return 0;
|
| 261 |
+
}
|
| 262 |
+
|
| 263 |
+
string model = parser.get<String>("model");
|
| 264 |
+
float confThreshold = parser.get<float>("confidence");
|
| 265 |
+
float objThreshold = parser.get<float>("obj");
|
| 266 |
+
float nmsThreshold = parser.get<float>("nms");
|
| 267 |
+
bool vis = parser.get<bool>("vis");
|
| 268 |
+
bool save = parser.get<bool>("save");
|
| 269 |
+
int backendTargetid = parser.get<int>("backend");
|
| 270 |
+
|
| 271 |
+
if (model.empty())
|
| 272 |
+
{
|
| 273 |
+
CV_Error(Error::StsError, "Model file " + model + " not found");
|
| 274 |
+
}
|
| 275 |
+
|
| 276 |
+
YoloX modelNet(model, confThreshold, nmsThreshold, objThreshold,
|
| 277 |
+
backendTargetPairs[backendTargetid].first, backendTargetPairs[backendTargetid].second);
|
| 278 |
+
//! [Open a video file or an image file or a camera stream]
|
| 279 |
+
VideoCapture cap;
|
| 280 |
+
if (parser.has("input"))
|
| 281 |
+
cap.open(samples::findFile(parser.get<String>("input")));
|
| 282 |
+
else
|
| 283 |
+
cap.open(0);
|
| 284 |
+
if (!cap.isOpened())
|
| 285 |
+
CV_Error(Error::StsError, "Cannot opend video or file");
|
| 286 |
+
Mat frame, inputBlob;
|
| 287 |
+
double letterboxScale;
|
| 288 |
+
|
| 289 |
+
static const std::string kWinName = model;
|
| 290 |
+
int nbInference = 0;
|
| 291 |
+
while (waitKey(1) < 0)
|
| 292 |
+
{
|
| 293 |
+
cap >> frame;
|
| 294 |
+
if (frame.empty())
|
| 295 |
+
{
|
| 296 |
+
cout << "Frame is empty" << endl;
|
| 297 |
+
waitKey();
|
| 298 |
+
break;
|
| 299 |
+
}
|
| 300 |
+
pair<Mat, double> w = letterBox(frame);
|
| 301 |
+
inputBlob = get<0>(w);
|
| 302 |
+
letterboxScale = get<1>(w);
|
| 303 |
+
TickMeter tm;
|
| 304 |
+
tm.start();
|
| 305 |
+
Mat predictions = modelNet.infer(inputBlob);
|
| 306 |
+
tm.stop();
|
| 307 |
+
cout << "Inference time: " << tm.getTimeMilli() << " ms\n";
|
| 308 |
+
Mat img = visualize(predictions, frame, letterboxScale, tm.getFPS());
|
| 309 |
+
if (vis)
|
| 310 |
+
{
|
| 311 |
+
imshow(kWinName, img);
|
| 312 |
+
}
|
| 313 |
+
}
|
| 314 |
+
return 0;
|
| 315 |
+
}
|