Yuantao Feng
commited on
Commit
·
00c0329
1
Parent(s):
bf7b7bf
Improve benchmark configurations (#2)
Browse files* Improve benchmark configurations:
* Move data downloading from configs to download_data.py. Add an alternative download link.
* Add Data class to operate data loading and indexing.
* Add Metric class to operate benchmark runs.
* Benchmark results are now the median or geometric mean of benchmark
runs.
benchmark/README.md
CHANGED
|
@@ -10,6 +10,10 @@ Time is measured from data preprocess (resize is excluded), to a forward pass of
|
|
| 10 |
|
| 11 |
1. Install `python >= 3.6`.
|
| 12 |
2. Install dependencies: `pip install -r requirements.txt`.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
## Benchmarking
|
| 15 |
|
|
|
|
| 10 |
|
| 11 |
1. Install `python >= 3.6`.
|
| 12 |
2. Install dependencies: `pip install -r requirements.txt`.
|
| 13 |
+
3. Download data for benchmarking.
|
| 14 |
+
1. Download all data: `python download_data.py`
|
| 15 |
+
2. Download one or more specified data: `python download_data.py face text`. Available names can be found in `download_data.py`.
|
| 16 |
+
3. If download fails, you can download all data from https://pan.baidu.com/s/18sV8D4vXUb2xC9EG45k7bg (code: pvrw). Please place and extract data packages under [./data](./data).
|
| 17 |
|
| 18 |
## Benchmarking
|
| 19 |
|
benchmark/benchmark.py
CHANGED
|
@@ -7,7 +7,6 @@ import numpy as np
|
|
| 7 |
import cv2 as cv
|
| 8 |
|
| 9 |
from models import MODELS
|
| 10 |
-
from download import Downloader
|
| 11 |
|
| 12 |
parser = argparse.ArgumentParser("Benchmarks for OpenCV Zoo.")
|
| 13 |
parser.add_argument('--cfg', '-c', type=str,
|
|
@@ -15,11 +14,11 @@ parser.add_argument('--cfg', '-c', type=str,
|
|
| 15 |
args = parser.parse_args()
|
| 16 |
|
| 17 |
class Timer:
|
| 18 |
-
def __init__(self):
|
|
|
|
|
|
|
| 19 |
self._tm = cv.TickMeter()
|
| 20 |
-
|
| 21 |
self._time_record = []
|
| 22 |
-
self._average_time = 0
|
| 23 |
self._calls = 0
|
| 24 |
|
| 25 |
def start(self):
|
|
@@ -29,22 +28,121 @@ class Timer:
|
|
| 29 |
self._tm.stop()
|
| 30 |
self._calls += 1
|
| 31 |
self._time_record.append(self._tm.getTimeMilli())
|
| 32 |
-
self._average_time = sum(self._time_record) / self._calls
|
| 33 |
self._tm.reset()
|
| 34 |
|
| 35 |
def reset(self):
|
| 36 |
self._time_record = []
|
| 37 |
-
self._average_time = 0
|
| 38 |
self._calls = 0
|
| 39 |
|
| 40 |
-
def
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
class Benchmark:
|
| 45 |
def __init__(self, **kwargs):
|
| 46 |
-
self.
|
| 47 |
-
assert self.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
backend_id = kwargs.pop('backend', 'default')
|
| 50 |
available_backends = dict(
|
|
@@ -71,76 +169,22 @@ class Benchmark:
|
|
| 71 |
)
|
| 72 |
self._target = available_targets[target_id]
|
| 73 |
|
| 74 |
-
self.
|
| 75 |
-
self._repeat = kwargs.pop('repeat', 100)
|
| 76 |
-
self._parentPath = kwargs.pop('parentPath', 'benchmark/data')
|
| 77 |
-
self._useGroundTruth = kwargs.pop('useDetectionLabel', False) # If it is enable, 'sizes' will not work
|
| 78 |
-
assert (self._sizes and not self._useGroundTruth) or (not self._sizes and self._useGroundTruth), 'If \'useDetectionLabel\' is True, \'sizes\' should not exist.'
|
| 79 |
-
|
| 80 |
-
self._timer = Timer()
|
| 81 |
-
self._benchmark_results = dict.fromkeys(self._fileList, dict())
|
| 82 |
-
|
| 83 |
-
if self._useGroundTruth:
|
| 84 |
-
self.loadLabel()
|
| 85 |
-
|
| 86 |
-
def loadLabel(self):
|
| 87 |
-
self._labels = dict.fromkeys(self._fileList, None)
|
| 88 |
-
for imgName in self._fileList:
|
| 89 |
-
self._labels[imgName] = np.loadtxt(os.path.join(self._parentPath, '{}.txt'.format(imgName[:-4])))
|
| 90 |
|
| 91 |
def run(self, model):
|
| 92 |
model.setBackend(self._backend)
|
| 93 |
model.setTarget(self._target)
|
| 94 |
|
| 95 |
-
for
|
| 96 |
-
|
| 97 |
-
if self._useGroundTruth:
|
| 98 |
-
for idx, gt in enumerate(self._labels[imgName]):
|
| 99 |
-
self._benchmark_results[imgName]['gt{}'.format(idx)] = self._run(
|
| 100 |
-
model,
|
| 101 |
-
img,
|
| 102 |
-
gt,
|
| 103 |
-
pbar_msg=' {}, gt{}'.format(imgName, idx)
|
| 104 |
-
)
|
| 105 |
-
else:
|
| 106 |
-
if self._sizes is None:
|
| 107 |
-
h, w, _ = img.shape
|
| 108 |
-
model.setInputSize([w, h])
|
| 109 |
-
self._benchmark_results[imgName][str([w, h])] = self._run(
|
| 110 |
-
model,
|
| 111 |
-
img,
|
| 112 |
-
pbar_msg=' {}, original size {}'.format(imgName, str([w, h]))
|
| 113 |
-
)
|
| 114 |
-
else:
|
| 115 |
-
for size in self._sizes:
|
| 116 |
-
imgResized = cv.resize(img, size)
|
| 117 |
-
model.setInputSize(size)
|
| 118 |
-
self._benchmark_results[imgName][str(size)] = self._run(
|
| 119 |
-
model,
|
| 120 |
-
imgResized,
|
| 121 |
-
pbar_msg=' {}, size {}'.format(imgName, str(size))
|
| 122 |
-
)
|
| 123 |
|
| 124 |
def printResults(self):
|
| 125 |
-
print(' Results:')
|
| 126 |
for imgName, results in self._benchmark_results.items():
|
| 127 |
-
print('
|
| 128 |
total_latency = 0
|
| 129 |
for key, latency in results.items():
|
| 130 |
total_latency += latency
|
| 131 |
-
print('
|
| 132 |
-
print(' Average latency: {:.4f} ms'.format(total_latency / len(results)))
|
| 133 |
-
|
| 134 |
-
def _run(self, model, *args, **kwargs):
|
| 135 |
-
self._timer.reset()
|
| 136 |
-
pbar = tqdm.tqdm(range(self._repeat))
|
| 137 |
-
for _ in pbar:
|
| 138 |
-
pbar.set_description(kwargs.get('pbar_msg', None))
|
| 139 |
-
|
| 140 |
-
self._timer.start()
|
| 141 |
-
results = model.infer(*args)
|
| 142 |
-
self._timer.stop()
|
| 143 |
-
return self._timer.getAverageTime()
|
| 144 |
|
| 145 |
|
| 146 |
def build_from_cfg(cfg, registery):
|
|
@@ -160,16 +204,9 @@ if __name__ == '__main__':
|
|
| 160 |
cfg = yaml.safe_load(f)
|
| 161 |
|
| 162 |
# prepend PYTHONPATH to each path
|
| 163 |
-
prepend_pythonpath(cfg, key1='
|
| 164 |
-
prepend_pythonpath(cfg, key1='Benchmark', key2='parentPath')
|
| 165 |
prepend_pythonpath(cfg, key1='Model', key2='modelPath')
|
| 166 |
|
| 167 |
-
|
| 168 |
-
# Download data if not exist
|
| 169 |
-
print('Loading data:')
|
| 170 |
-
downloader = Downloader(**cfg['Data'])
|
| 171 |
-
downloader.get()
|
| 172 |
-
|
| 173 |
# Instantiate benchmarking
|
| 174 |
benchmark = Benchmark(**cfg['Benchmark'])
|
| 175 |
|
|
|
|
| 7 |
import cv2 as cv
|
| 8 |
|
| 9 |
from models import MODELS
|
|
|
|
| 10 |
|
| 11 |
parser = argparse.ArgumentParser("Benchmarks for OpenCV Zoo.")
|
| 12 |
parser.add_argument('--cfg', '-c', type=str,
|
|
|
|
| 14 |
args = parser.parse_args()
|
| 15 |
|
| 16 |
class Timer:
|
| 17 |
+
def __init__(self, warmup=0, reduction='median'):
|
| 18 |
+
self._warmup = warmup
|
| 19 |
+
self._reduction = reduction
|
| 20 |
self._tm = cv.TickMeter()
|
|
|
|
| 21 |
self._time_record = []
|
|
|
|
| 22 |
self._calls = 0
|
| 23 |
|
| 24 |
def start(self):
|
|
|
|
| 28 |
self._tm.stop()
|
| 29 |
self._calls += 1
|
| 30 |
self._time_record.append(self._tm.getTimeMilli())
|
|
|
|
| 31 |
self._tm.reset()
|
| 32 |
|
| 33 |
def reset(self):
|
| 34 |
self._time_record = []
|
|
|
|
| 35 |
self._calls = 0
|
| 36 |
|
| 37 |
+
def getResult(self):
|
| 38 |
+
if self._reduction == 'median':
|
| 39 |
+
return self._getMedian(self._time_record[self._warmup:])
|
| 40 |
+
elif self._reduction == 'gmean':
|
| 41 |
+
return self._getGMean(self._time_record[self._warmup:])
|
| 42 |
+
else:
|
| 43 |
+
raise NotImplementedError()
|
| 44 |
+
|
| 45 |
+
def _getMedian(self, records):
|
| 46 |
+
''' Return median time
|
| 47 |
+
'''
|
| 48 |
+
l = len(records)
|
| 49 |
+
mid = int(l / 2)
|
| 50 |
+
if l % 2 == 0:
|
| 51 |
+
return (records[mid] + records[mid - 1]) / 2
|
| 52 |
+
else:
|
| 53 |
+
return records[mid]
|
| 54 |
+
|
| 55 |
+
def _getGMean(self, records, drop_largest=3):
|
| 56 |
+
''' Return geometric mean of time
|
| 57 |
+
'''
|
| 58 |
+
time_record_sorted = sorted(records, reverse=True)
|
| 59 |
+
return sum(records[drop_largest:]) / (self._calls - drop_largest)
|
| 60 |
+
|
| 61 |
+
class Data:
|
| 62 |
+
def __init__(self, **kwargs):
|
| 63 |
+
self._path = kwargs.pop('path', None)
|
| 64 |
+
assert self._path, 'Benchmark[\'data\'][\'path\'] cannot be empty.'
|
| 65 |
+
|
| 66 |
+
self._files = kwargs.pop('files', None)
|
| 67 |
+
if not self._files:
|
| 68 |
+
print('Benchmark[\'data\'][\'files\'] is empty, loading all images by default.')
|
| 69 |
+
self._files = list()
|
| 70 |
+
for filename in os.listdir(self._path):
|
| 71 |
+
if filename.endswith('jpg') or filename.endswith('png'):
|
| 72 |
+
self._files.append(filename)
|
| 73 |
+
|
| 74 |
+
self._use_label = kwargs.pop('useLabel', False)
|
| 75 |
+
if self._use_label:
|
| 76 |
+
self._labels = self._load_label()
|
| 77 |
+
|
| 78 |
+
def _load_label(self):
|
| 79 |
+
labels = dict.fromkeys(self._files, None)
|
| 80 |
+
for filename in self._files:
|
| 81 |
+
labels[filename] = np.loadtxt(os.path.join(self._path, '{}.txt'.format(filename[:-4])))
|
| 82 |
+
return labels
|
| 83 |
+
|
| 84 |
+
def __getitem__(self, idx):
|
| 85 |
+
image = cv.imread(os.path.join(self._path, self._files[idx]))
|
| 86 |
+
if self._use_label:
|
| 87 |
+
return self._files[idx], image, self._labels[self._files[idx]]
|
| 88 |
+
else:
|
| 89 |
+
return self._files[idx], image
|
| 90 |
+
|
| 91 |
+
class Metric:
|
| 92 |
+
def __init__(self, **kwargs):
|
| 93 |
+
self._sizes = kwargs.pop('sizes', None)
|
| 94 |
+
self._warmup = kwargs.pop('warmup', 3)
|
| 95 |
+
self._repeat = kwargs.pop('repeat', 10)
|
| 96 |
+
assert self._warmup < self._repeat, 'The value of warmup must be smaller than the value of repeat.'
|
| 97 |
+
self._batch_size = kwargs.pop('batchSize', 1)
|
| 98 |
+
self._reduction = kwargs.pop('reduction', 'median')
|
| 99 |
+
|
| 100 |
+
self._timer = Timer(self._warmup, self._reduction)
|
| 101 |
|
| 102 |
+
def getReduction(self):
|
| 103 |
+
return self._reduction
|
| 104 |
+
|
| 105 |
+
def forward(self, model, *args, **kwargs):
|
| 106 |
+
img = args[0]
|
| 107 |
+
h, w, _ = img.shape
|
| 108 |
+
if not self._sizes:
|
| 109 |
+
self._sizes = [[w, h]]
|
| 110 |
+
|
| 111 |
+
results = dict()
|
| 112 |
+
self._timer.reset()
|
| 113 |
+
if len(args) == 1:
|
| 114 |
+
for size in self._sizes:
|
| 115 |
+
img_r = cv.resize(img, size)
|
| 116 |
+
model.setInputSize(size)
|
| 117 |
+
# TODO: batched inference
|
| 118 |
+
# input_data = [img] * self._batch_size
|
| 119 |
+
input_data = img_r
|
| 120 |
+
for _ in range(self._repeat+self._warmup):
|
| 121 |
+
self._timer.start()
|
| 122 |
+
model.infer(input_data)
|
| 123 |
+
self._timer.stop()
|
| 124 |
+
results[str(size)] = self._timer.getResult()
|
| 125 |
+
else:
|
| 126 |
+
# TODO: batched inference
|
| 127 |
+
# input_data = [args] * self._batch_size
|
| 128 |
+
bboxes = args[1]
|
| 129 |
+
for idx, bbox in enumerate(bboxes):
|
| 130 |
+
for _ in range(self._repeat+self._warmup):
|
| 131 |
+
self._timer.start()
|
| 132 |
+
model.infer(img, bbox)
|
| 133 |
+
self._timer.stop()
|
| 134 |
+
results['bbox{}'.format(idx)] = self._timer.getResult()
|
| 135 |
+
|
| 136 |
+
return results
|
| 137 |
|
| 138 |
class Benchmark:
|
| 139 |
def __init__(self, **kwargs):
|
| 140 |
+
self._data_dict = kwargs.pop('data', None)
|
| 141 |
+
assert self._data_dict, 'Benchmark[\'data\'] cannot be empty and must have path and files.'
|
| 142 |
+
self._data = Data(**self._data_dict)
|
| 143 |
+
|
| 144 |
+
self._metric_dict = kwargs.pop('metric', None)
|
| 145 |
+
self._metric = Metric(**self._metric_dict)
|
| 146 |
|
| 147 |
backend_id = kwargs.pop('backend', 'default')
|
| 148 |
available_backends = dict(
|
|
|
|
| 169 |
)
|
| 170 |
self._target = available_targets[target_id]
|
| 171 |
|
| 172 |
+
self._benchmark_results = dict()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
|
| 174 |
def run(self, model):
|
| 175 |
model.setBackend(self._backend)
|
| 176 |
model.setTarget(self._target)
|
| 177 |
|
| 178 |
+
for data in self._data:
|
| 179 |
+
self._benchmark_results[data[0]] = self._metric.forward(model, *data[1:])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
|
| 181 |
def printResults(self):
|
|
|
|
| 182 |
for imgName, results in self._benchmark_results.items():
|
| 183 |
+
print(' image: {}'.format(imgName))
|
| 184 |
total_latency = 0
|
| 185 |
for key, latency in results.items():
|
| 186 |
total_latency += latency
|
| 187 |
+
print(' {}, latency ({}): {:.4f} ms'.format(key, self._metric.getReduction(), latency))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 188 |
|
| 189 |
|
| 190 |
def build_from_cfg(cfg, registery):
|
|
|
|
| 204 |
cfg = yaml.safe_load(f)
|
| 205 |
|
| 206 |
# prepend PYTHONPATH to each path
|
| 207 |
+
prepend_pythonpath(cfg['Benchmark'], key1='data', key2='path')
|
|
|
|
| 208 |
prepend_pythonpath(cfg, key1='Model', key2='modelPath')
|
| 209 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
# Instantiate benchmarking
|
| 211 |
benchmark = Benchmark(**cfg['Benchmark'])
|
| 212 |
|
benchmark/config/face_detection_yunet.yaml
CHANGED
|
@@ -1,23 +1,18 @@
|
|
| 1 |
-
Data:
|
| 2 |
-
name: "Images for Face Detection"
|
| 3 |
-
url: "https://drive.google.com/u/0/uc?id=1lOAliAIeOv4olM65YDzE55kn6XjiX2l6&export=download"
|
| 4 |
-
sha: "0ba67a9cfd60f7fdb65cdb7c55a1ce76c1193df1"
|
| 5 |
-
filename: "face_detection.zip"
|
| 6 |
-
parentPath: "benchmark/data"
|
| 7 |
-
|
| 8 |
Benchmark:
|
| 9 |
name: "Face Detection Benchmark"
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
backend: "default"
|
| 16 |
target: "cpu"
|
| 17 |
-
sizes: # [w, h], Omit to run at original scale
|
| 18 |
-
- [160, 120]
|
| 19 |
-
- [640, 480]
|
| 20 |
-
repeat: 100 # default 100
|
| 21 |
|
| 22 |
Model:
|
| 23 |
name: "YuNet"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
Benchmark:
|
| 2 |
name: "Face Detection Benchmark"
|
| 3 |
+
data:
|
| 4 |
+
path: "benchmark/data/face"
|
| 5 |
+
files: ["group.jpg", "concerts.jpg", "dance.jpg"]
|
| 6 |
+
metric:
|
| 7 |
+
sizes: # [[w1, h1], ...], Omit to run at original scale
|
| 8 |
+
- [160, 120]
|
| 9 |
+
- [640, 480]
|
| 10 |
+
warmup: 3
|
| 11 |
+
repeat: 10
|
| 12 |
+
batchSize: 1
|
| 13 |
+
reduction: 'median'
|
| 14 |
backend: "default"
|
| 15 |
target: "cpu"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
Model:
|
| 18 |
name: "YuNet"
|
benchmark/config/text_detection_db.yaml
CHANGED
|
@@ -1,22 +1,17 @@
|
|
| 1 |
-
Data:
|
| 2 |
-
name: "Images for Text Detection"
|
| 3 |
-
url: "https://drive.google.com/u/0/uc?id=1lTQdZUau7ujHBqp0P6M1kccnnJgO-dRj&export=download"
|
| 4 |
-
sha: "a40cf095ceb77159ddd2a5902f3b4329696dd866"
|
| 5 |
-
filename: "text.zip"
|
| 6 |
-
parentPath: "benchmark/data"
|
| 7 |
-
|
| 8 |
Benchmark:
|
| 9 |
name: "Text Detection Benchmark"
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
backend: "default"
|
| 16 |
target: "cpu"
|
| 17 |
-
sizes: # [w, h], default original scale
|
| 18 |
-
- [640, 480]
|
| 19 |
-
repeat: 100
|
| 20 |
|
| 21 |
Model:
|
| 22 |
name: "DB"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
Benchmark:
|
| 2 |
name: "Text Detection Benchmark"
|
| 3 |
+
data:
|
| 4 |
+
path: "benchmark/data/text"
|
| 5 |
+
files: ["1.jpg", "2.jpg", "3.jpg"]
|
| 6 |
+
metric:
|
| 7 |
+
sizes: # [[w1, h1], ...], Omit to run at original scale
|
| 8 |
+
- [640, 480]
|
| 9 |
+
warmup: 3
|
| 10 |
+
repeat: 10
|
| 11 |
+
batchSize: 1
|
| 12 |
+
reduction: 'median'
|
| 13 |
backend: "default"
|
| 14 |
target: "cpu"
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
Model:
|
| 17 |
name: "DB"
|
benchmark/config/text_recognition_crnn.yaml
CHANGED
|
@@ -1,21 +1,16 @@
|
|
| 1 |
-
Data:
|
| 2 |
-
name: "Images for Text Detection"
|
| 3 |
-
url: "https://drive.google.com/u/0/uc?id=1lTQdZUau7ujHBqp0P6M1kccnnJgO-dRj&export=download"
|
| 4 |
-
sha: "a40cf095ceb77159ddd2a5902f3b4329696dd866"
|
| 5 |
-
filename: "text.zip"
|
| 6 |
-
parentPath: "benchmark/data"
|
| 7 |
-
|
| 8 |
Benchmark:
|
| 9 |
name: "Text Recognition Benchmark"
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
backend: "default"
|
| 16 |
target: "cpu"
|
| 17 |
-
useDetectionLabel: True
|
| 18 |
-
repeat: 100
|
| 19 |
|
| 20 |
Model:
|
| 21 |
name: "CRNN"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
Benchmark:
|
| 2 |
name: "Text Recognition Benchmark"
|
| 3 |
+
data:
|
| 4 |
+
path: "benchmark/data/text"
|
| 5 |
+
files: ["1.jpg", "2.jpg", "3.jpg"]
|
| 6 |
+
useLabel: True
|
| 7 |
+
metric: # 'sizes' is omitted since this model requires input of fixed size
|
| 8 |
+
warmup: 3
|
| 9 |
+
repeat: 10
|
| 10 |
+
batchSize: 1
|
| 11 |
+
reduction: 'median'
|
| 12 |
backend: "default"
|
| 13 |
target: "cpu"
|
|
|
|
|
|
|
| 14 |
|
| 15 |
Model:
|
| 16 |
name: "CRNN"
|
benchmark/{download.py → download_data.py}
RENAMED
|
@@ -32,7 +32,7 @@ class Downloader:
|
|
| 32 |
if c in d:
|
| 33 |
return int(d[c]) / self.MB
|
| 34 |
return '<unknown>'
|
| 35 |
-
print('
|
| 36 |
|
| 37 |
def verifyHash(self):
|
| 38 |
if not self._sha:
|
|
@@ -46,44 +46,45 @@ class Downloader:
|
|
| 46 |
break
|
| 47 |
sha.update(buf)
|
| 48 |
if self._sha != sha.hexdigest():
|
| 49 |
-
print('
|
| 50 |
-
print('
|
| 51 |
return self._sha == sha.hexdigest()
|
| 52 |
except Exception as e:
|
| 53 |
-
print('
|
| 54 |
|
| 55 |
def get(self):
|
|
|
|
| 56 |
if self.verifyHash():
|
| 57 |
-
print('
|
| 58 |
else:
|
| 59 |
basedir = os.path.dirname(self._saveTo)
|
| 60 |
if basedir and not os.path.exists(basedir):
|
| 61 |
-
print('
|
| 62 |
os.makedirs(basedir, exist_ok=True)
|
| 63 |
|
| 64 |
-
print('
|
| 65 |
if 'drive.google.com' in self._url:
|
| 66 |
urlquery = urlparse(self._url).query.split('&')
|
| 67 |
for q in urlquery:
|
| 68 |
if 'id=' in q:
|
| 69 |
gid = q[3:]
|
| 70 |
sz = GDrive(gid)(osp.join(self._saveTo, self._filename))
|
| 71 |
-
print('
|
| 72 |
else:
|
| 73 |
-
print('
|
| 74 |
self.download()
|
| 75 |
|
| 76 |
# Verify hash after download
|
| 77 |
-
print('
|
| 78 |
-
print('
|
| 79 |
if self.verifyHash():
|
| 80 |
-
print('
|
| 81 |
else:
|
| 82 |
-
print('
|
| 83 |
|
| 84 |
# Extract
|
| 85 |
if '.zip' in self._filename:
|
| 86 |
-
print('
|
| 87 |
self.extract()
|
| 88 |
print('done')
|
| 89 |
|
|
@@ -161,3 +162,32 @@ def GDrive(gid):
|
|
| 161 |
print('')
|
| 162 |
return sz
|
| 163 |
return download_gdrive
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
if c in d:
|
| 33 |
return int(d[c]) / self.MB
|
| 34 |
return '<unknown>'
|
| 35 |
+
print(' {} {} [{} Mb]'.format(r.getcode(), r.msg, getMB(r)))
|
| 36 |
|
| 37 |
def verifyHash(self):
|
| 38 |
if not self._sha:
|
|
|
|
| 46 |
break
|
| 47 |
sha.update(buf)
|
| 48 |
if self._sha != sha.hexdigest():
|
| 49 |
+
print(' actual {}'.format(sha.hexdigest()))
|
| 50 |
+
print(' expect {}'.format(self._sha))
|
| 51 |
return self._sha == sha.hexdigest()
|
| 52 |
except Exception as e:
|
| 53 |
+
print(' catch {}'.format(e))
|
| 54 |
|
| 55 |
def get(self):
|
| 56 |
+
print(' {}: {}'.format(self._name, self._filename))
|
| 57 |
if self.verifyHash():
|
| 58 |
+
print(' hash match - skipping download')
|
| 59 |
else:
|
| 60 |
basedir = os.path.dirname(self._saveTo)
|
| 61 |
if basedir and not os.path.exists(basedir):
|
| 62 |
+
print(' creating directory: ' + basedir)
|
| 63 |
os.makedirs(basedir, exist_ok=True)
|
| 64 |
|
| 65 |
+
print(' hash check failed - downloading')
|
| 66 |
if 'drive.google.com' in self._url:
|
| 67 |
urlquery = urlparse(self._url).query.split('&')
|
| 68 |
for q in urlquery:
|
| 69 |
if 'id=' in q:
|
| 70 |
gid = q[3:]
|
| 71 |
sz = GDrive(gid)(osp.join(self._saveTo, self._filename))
|
| 72 |
+
print(' size = %.2f Mb' % (sz / (1024.0 * 1024)))
|
| 73 |
else:
|
| 74 |
+
print(' get {}'.format(self._url))
|
| 75 |
self.download()
|
| 76 |
|
| 77 |
# Verify hash after download
|
| 78 |
+
print(' done')
|
| 79 |
+
print(' file {}'.format(self._filename))
|
| 80 |
if self.verifyHash():
|
| 81 |
+
print(' hash match - extracting')
|
| 82 |
else:
|
| 83 |
+
print(' hash check failed - exiting')
|
| 84 |
|
| 85 |
# Extract
|
| 86 |
if '.zip' in self._filename:
|
| 87 |
+
print(' extracting - ', end='')
|
| 88 |
self.extract()
|
| 89 |
print('done')
|
| 90 |
|
|
|
|
| 162 |
print('')
|
| 163 |
return sz
|
| 164 |
return download_gdrive
|
| 165 |
+
|
| 166 |
+
# Data will be downloaded and extracted to ./data by default
|
| 167 |
+
data_downloaders = dict(
|
| 168 |
+
face=Downloader(name='face',
|
| 169 |
+
url='https://drive.google.com/u/0/uc?id=1lOAliAIeOv4olM65YDzE55kn6XjiX2l6&export=download',
|
| 170 |
+
sha='8397f115c0d4447e55ea05488579e71a813e2691',
|
| 171 |
+
filename='face.zip'),
|
| 172 |
+
text=Downloader(name='text',
|
| 173 |
+
url='https://drive.google.com/u/0/uc?id=1lTQdZUau7ujHBqp0P6M1kccnnJgO-dRj&export=download',
|
| 174 |
+
sha='a40cf095ceb77159ddd2a5902f3b4329696dd866',
|
| 175 |
+
filename='text.zip'),
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
if __name__ == '__main__':
|
| 179 |
+
selected_data_names = []
|
| 180 |
+
for i in range(1, len(sys.argv)):
|
| 181 |
+
selected_data_names.append(sys.argv[i])
|
| 182 |
+
if not selected_data_names:
|
| 183 |
+
selected_data_names = list(data_downloaders.keys())
|
| 184 |
+
print('Data will be downloaded: {}'.format(str(selected_data_names)))
|
| 185 |
+
|
| 186 |
+
download_failed = []
|
| 187 |
+
for selected_data_name in selected_data_names:
|
| 188 |
+
downloader = data_downloaders[selected_data_name]
|
| 189 |
+
if not downloader.get():
|
| 190 |
+
download_failed.append(downloader._name)
|
| 191 |
+
|
| 192 |
+
if download_failed:
|
| 193 |
+
print('Data have not been downloaded: {}'.format(str(download_failed)))
|