Labib Asari
commited on
Commit
·
12c3d6b
1
Parent(s):
260eb6d
added evaluation script for PPHumanSeg model (#130)
Browse files* added evaluation script for PPHumanSeg
* added quantized model, renamed dataset
* minor spacing changes
* moved _all variables outside loop and updated accuracy
* removed printing for class accuracy and IoU
* added 2 transforms
* evaluation done on same size tensor as input size with mIoU 0.9085
* final changes
* added mIoU and reference
models/human_segmentation_pphumanseg/README.md
CHANGED
|
@@ -22,6 +22,18 @@ python demo.py --help
|
|
| 22 |
|
| 23 |

|
| 24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
## License
|
| 26 |
|
| 27 |
All files in this directory are licensed under [Apache 2.0 License](./LICENSE).
|
|
|
|
| 22 |
|
| 23 |

|
| 24 |
|
| 25 |
+
---
|
| 26 |
+
Results of accuracy evaluation with [tools/eval](../../tools/eval).
|
| 27 |
+
|
| 28 |
+
| Models | Accuracy | mIoU |
|
| 29 |
+
| ------------------ | -------------- | ------------- |
|
| 30 |
+
| PPHumanSeg | 0.9581 | 0.8996 |
|
| 31 |
+
| PPHumanSeg quant | 0.4365 | 0.2788 |
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
\*: 'quant' stands for 'quantized'.
|
| 35 |
+
|
| 36 |
+
---
|
| 37 |
## License
|
| 38 |
|
| 39 |
All files in this directory are licensed under [Apache 2.0 License](./LICENSE).
|
models/human_segmentation_pphumanseg/pphumanseg.py
CHANGED
|
@@ -19,6 +19,7 @@ class PPHumanSeg:
|
|
| 19 |
|
| 20 |
self._inputNames = ''
|
| 21 |
self._outputNames = ['save_infer_model/scale_0.tmp_1']
|
|
|
|
| 22 |
self._inputSize = [192, 192]
|
| 23 |
self._mean = np.array([0.5, 0.5, 0.5])[np.newaxis, np.newaxis, :]
|
| 24 |
self._std = np.array([0.5, 0.5, 0.5])[np.newaxis, np.newaxis, :]
|
|
@@ -36,21 +37,25 @@ class PPHumanSeg:
|
|
| 36 |
self._model.setPreferableTarget(self._targetId)
|
| 37 |
|
| 38 |
def _preprocess(self, image):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
image = image.astype(np.float32, copy=False) / 255.0
|
| 40 |
image -= self._mean
|
| 41 |
image /= self._std
|
| 42 |
return cv.dnn.blobFromImage(image)
|
| 43 |
|
| 44 |
def infer(self, image):
|
| 45 |
-
assert image.shape[0] == self._inputSize[1], '{} (height of input image) != {} (preset height)'.format(image.shape[0], self._inputSize[1])
|
| 46 |
-
assert image.shape[1] == self._inputSize[0], '{} (width of input image) != {} (preset width)'.format(image.shape[1], self._inputSize[0])
|
| 47 |
|
| 48 |
# Preprocess
|
| 49 |
inputBlob = self._preprocess(image)
|
| 50 |
|
| 51 |
# Forward
|
| 52 |
self._model.setInput(inputBlob, self._inputNames)
|
| 53 |
-
outputBlob = self._model.forward(
|
| 54 |
|
| 55 |
# Postprocess
|
| 56 |
results = self._postprocess(outputBlob)
|
|
@@ -58,6 +63,10 @@ class PPHumanSeg:
|
|
| 58 |
return results
|
| 59 |
|
| 60 |
def _postprocess(self, outputBlob):
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
return result
|
| 63 |
|
|
|
|
| 19 |
|
| 20 |
self._inputNames = ''
|
| 21 |
self._outputNames = ['save_infer_model/scale_0.tmp_1']
|
| 22 |
+
self._currentInputSize = None
|
| 23 |
self._inputSize = [192, 192]
|
| 24 |
self._mean = np.array([0.5, 0.5, 0.5])[np.newaxis, np.newaxis, :]
|
| 25 |
self._std = np.array([0.5, 0.5, 0.5])[np.newaxis, np.newaxis, :]
|
|
|
|
| 37 |
self._model.setPreferableTarget(self._targetId)
|
| 38 |
|
| 39 |
def _preprocess(self, image):
|
| 40 |
+
|
| 41 |
+
image = cv.cvtColor(image, cv.COLOR_BGR2RGB)
|
| 42 |
+
|
| 43 |
+
self._currentInputSize = image.shape
|
| 44 |
+
image = cv.resize(image, (192, 192))
|
| 45 |
+
|
| 46 |
image = image.astype(np.float32, copy=False) / 255.0
|
| 47 |
image -= self._mean
|
| 48 |
image /= self._std
|
| 49 |
return cv.dnn.blobFromImage(image)
|
| 50 |
|
| 51 |
def infer(self, image):
|
|
|
|
|
|
|
| 52 |
|
| 53 |
# Preprocess
|
| 54 |
inputBlob = self._preprocess(image)
|
| 55 |
|
| 56 |
# Forward
|
| 57 |
self._model.setInput(inputBlob, self._inputNames)
|
| 58 |
+
outputBlob = self._model.forward()
|
| 59 |
|
| 60 |
# Postprocess
|
| 61 |
results = self._postprocess(outputBlob)
|
|
|
|
| 63 |
return results
|
| 64 |
|
| 65 |
def _postprocess(self, outputBlob):
|
| 66 |
+
|
| 67 |
+
outputBlob = outputBlob[0]
|
| 68 |
+
outputBlob = cv.resize(outputBlob.transpose(1,2,0), (self._currentInputSize[1], self._currentInputSize[0]), interpolation=cv.INTER_LINEAR).transpose(2,0,1)[np.newaxis, ...]
|
| 69 |
+
|
| 70 |
+
result = np.argmax(outputBlob, axis=1).astype(np.uint8)
|
| 71 |
return result
|
| 72 |
|
tools/eval/README.md
CHANGED
|
@@ -21,6 +21,7 @@ Supported datasets:
|
|
| 21 |
- [LFW](#lfw)
|
| 22 |
- [ICDAR](#ICDAR2003)
|
| 23 |
- [IIIT5K](#iiit5k)
|
|
|
|
| 24 |
|
| 25 |
## ImageNet
|
| 26 |
|
|
@@ -190,4 +191,24 @@ Run evaluation with the following command:
|
|
| 190 |
|
| 191 |
```shell
|
| 192 |
python eval.py -m crnn -d iiit5k -dr /path/to/iiit5k
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 193 |
```
|
|
|
|
| 21 |
- [LFW](#lfw)
|
| 22 |
- [ICDAR](#ICDAR2003)
|
| 23 |
- [IIIT5K](#iiit5k)
|
| 24 |
+
- [Mini Supervisely](#mini_supervisely)
|
| 25 |
|
| 26 |
## ImageNet
|
| 27 |
|
|
|
|
| 191 |
|
| 192 |
```shell
|
| 193 |
python eval.py -m crnn -d iiit5k -dr /path/to/iiit5k
|
| 194 |
+
```
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
## Mini Supervisely
|
| 198 |
+
|
| 199 |
+
### Prepare data
|
| 200 |
+
Please download the mini_supervisely data from [here](https://paddleseg.bj.bcebos.com/humanseg/data/mini_supervisely.zip) which includes the validation dataset and unzip it.
|
| 201 |
+
|
| 202 |
+
### Evaluation
|
| 203 |
+
|
| 204 |
+
Run evaluation with the following command :
|
| 205 |
+
|
| 206 |
+
```shell
|
| 207 |
+
python eval.py -m pphumanseg -d mini_supervisely -dr /path/to/pphumanseg
|
| 208 |
+
```
|
| 209 |
+
|
| 210 |
+
Run evaluation on quantized model with the following command :
|
| 211 |
+
|
| 212 |
+
```shell
|
| 213 |
+
python eval.py -m pphumanseg_q -d mini_supervisely -dr /path/to/pphumanseg
|
| 214 |
```
|
tools/eval/datasets/__init__.py
CHANGED
|
@@ -3,6 +3,7 @@ from .widerface import WIDERFace
|
|
| 3 |
from .lfw import LFW
|
| 4 |
from .icdar import ICDAR
|
| 5 |
from .iiit5k import IIIT5K
|
|
|
|
| 6 |
|
| 7 |
class Registery:
|
| 8 |
def __init__(self, name):
|
|
@@ -20,4 +21,5 @@ DATASETS.register(ImageNet)
|
|
| 20 |
DATASETS.register(WIDERFace)
|
| 21 |
DATASETS.register(LFW)
|
| 22 |
DATASETS.register(ICDAR)
|
| 23 |
-
DATASETS.register(IIIT5K)
|
|
|
|
|
|
| 3 |
from .lfw import LFW
|
| 4 |
from .icdar import ICDAR
|
| 5 |
from .iiit5k import IIIT5K
|
| 6 |
+
from .minisupervisely import MiniSupervisely
|
| 7 |
|
| 8 |
class Registery:
|
| 9 |
def __init__(self, name):
|
|
|
|
| 21 |
DATASETS.register(WIDERFace)
|
| 22 |
DATASETS.register(LFW)
|
| 23 |
DATASETS.register(ICDAR)
|
| 24 |
+
DATASETS.register(IIIT5K)
|
| 25 |
+
DATASETS.register(MiniSupervisely)
|
tools/eval/datasets/minisupervisely.py
ADDED
|
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import cv2 as cv
|
| 3 |
+
import numpy as np
|
| 4 |
+
from tqdm import tqdm
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class MiniSupervisely :
|
| 8 |
+
|
| 9 |
+
'''
|
| 10 |
+
Refer to https://github.com/PaddlePaddle/PaddleSeg/blob/release/2.7/paddleseg/core/val.py
|
| 11 |
+
for official evaluation implementation.
|
| 12 |
+
'''
|
| 13 |
+
|
| 14 |
+
def __init__(self, root) :
|
| 15 |
+
self.root = root
|
| 16 |
+
self.val_path = os.path.join(root, 'val.txt')
|
| 17 |
+
self.image_set = self.load_data(self.val_path)
|
| 18 |
+
self.num_classes = 2
|
| 19 |
+
self.miou = -1
|
| 20 |
+
self.class_miou = -1
|
| 21 |
+
self.acc = -1
|
| 22 |
+
self.class_acc = -1
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
@property
|
| 26 |
+
def name(self):
|
| 27 |
+
return self.__class__.__name__
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def load_data(self, val_path) :
|
| 31 |
+
"""
|
| 32 |
+
Load validation image set from val.txt file
|
| 33 |
+
Args :
|
| 34 |
+
val_path (str) : path to val.txt file
|
| 35 |
+
Returns :
|
| 36 |
+
image_set (list) : list of image path of input and expected image
|
| 37 |
+
"""
|
| 38 |
+
|
| 39 |
+
image_set = []
|
| 40 |
+
with open(val_path, 'r') as f :
|
| 41 |
+
for line in f.readlines() :
|
| 42 |
+
image_set.append(line.strip().split())
|
| 43 |
+
|
| 44 |
+
return image_set
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def eval(self, model) :
|
| 48 |
+
"""
|
| 49 |
+
Evaluate model on validation set
|
| 50 |
+
Args :
|
| 51 |
+
model (object) : PP_HumanSeg model object
|
| 52 |
+
"""
|
| 53 |
+
|
| 54 |
+
intersect_area_all = np.zeros([1], dtype=np.int64)
|
| 55 |
+
pred_area_all = np.zeros([1], dtype=np.int64)
|
| 56 |
+
label_area_all = np.zeros([1], dtype=np.int64)
|
| 57 |
+
|
| 58 |
+
pbar = tqdm(self.image_set)
|
| 59 |
+
|
| 60 |
+
pbar.set_description(
|
| 61 |
+
"Evaluating {} with {} val set".format(model.name, self.name))
|
| 62 |
+
|
| 63 |
+
for input_image, expected_image in pbar :
|
| 64 |
+
|
| 65 |
+
input_image = cv.imread(os.path.join(self.root, input_image)).astype('float32')
|
| 66 |
+
|
| 67 |
+
expected_image = cv.imread(os.path.join(self.root, expected_image), cv.IMREAD_GRAYSCALE)[np.newaxis, :, :]
|
| 68 |
+
|
| 69 |
+
output_image = model.infer(input_image)
|
| 70 |
+
|
| 71 |
+
intersect_area, pred_area, label_area = self.calculate_area(
|
| 72 |
+
output_image.astype('uint32'),
|
| 73 |
+
expected_image.astype('uint32'),
|
| 74 |
+
self.num_classes)
|
| 75 |
+
|
| 76 |
+
intersect_area_all = intersect_area_all + intersect_area
|
| 77 |
+
pred_area_all = pred_area_all + pred_area
|
| 78 |
+
label_area_all = label_area_all + label_area
|
| 79 |
+
|
| 80 |
+
self.class_iou, self.miou = self.mean_iou(intersect_area_all, pred_area_all,
|
| 81 |
+
label_area_all)
|
| 82 |
+
self.class_acc, self.acc = self.accuracy(intersect_area_all, pred_area_all)
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def get_results(self) :
|
| 86 |
+
"""
|
| 87 |
+
Get evaluation results
|
| 88 |
+
Returns :
|
| 89 |
+
miou (float) : mean iou
|
| 90 |
+
class_miou (list) : iou on all classes
|
| 91 |
+
acc (float) : mean accuracy
|
| 92 |
+
class_acc (list) : accuracy on all classes
|
| 93 |
+
"""
|
| 94 |
+
return self.miou, self.class_miou, self.acc, self.class_acc
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
def print_result(self) :
|
| 98 |
+
"""
|
| 99 |
+
Print evaluation results
|
| 100 |
+
"""
|
| 101 |
+
print("Mean IoU : ", self.miou)
|
| 102 |
+
print("Mean Accuracy : ", self.acc)
|
| 103 |
+
print("Class IoU : ", self.class_iou)
|
| 104 |
+
print("Class Accuracy : ", self.class_acc)
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
def calculate_area(self,pred, label, num_classes, ignore_index=255):
|
| 108 |
+
"""
|
| 109 |
+
Calculate intersect, prediction and label area
|
| 110 |
+
Args:
|
| 111 |
+
pred (Tensor): The prediction by model.
|
| 112 |
+
label (Tensor): The ground truth of image.
|
| 113 |
+
num_classes (int): The unique number of target classes.
|
| 114 |
+
ignore_index (int): Specifies a target value that is ignored. Default: 255.
|
| 115 |
+
Returns:
|
| 116 |
+
Tensor: The intersection area of prediction and the ground on all class.
|
| 117 |
+
Tensor: The prediction area on all class.
|
| 118 |
+
Tensor: The ground truth area on all class
|
| 119 |
+
"""
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
if len(pred.shape) == 4:
|
| 123 |
+
pred = np.squeeze(pred, axis=1)
|
| 124 |
+
if len(label.shape) == 4:
|
| 125 |
+
label = np.squeeze(label, axis=1)
|
| 126 |
+
if not pred.shape == label.shape:
|
| 127 |
+
raise ValueError('Shape of `pred` and `label should be equal, '
|
| 128 |
+
'but there are {} and {}.'.format(pred.shape,
|
| 129 |
+
label.shape))
|
| 130 |
+
|
| 131 |
+
mask = label != ignore_index
|
| 132 |
+
pred_area = []
|
| 133 |
+
label_area = []
|
| 134 |
+
intersect_area = []
|
| 135 |
+
|
| 136 |
+
#iterate over all classes and calculate their respective areas
|
| 137 |
+
for i in range(num_classes):
|
| 138 |
+
pred_i = np.logical_and(pred == i, mask)
|
| 139 |
+
label_i = label == i
|
| 140 |
+
intersect_i = np.logical_and(pred_i, label_i)
|
| 141 |
+
pred_area.append(np.sum(pred_i.astype('int32')))
|
| 142 |
+
label_area.append(np.sum(label_i.astype('int32')))
|
| 143 |
+
intersect_area.append(np.sum(intersect_i.astype('int32')))
|
| 144 |
+
|
| 145 |
+
return intersect_area, pred_area, label_area
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
def mean_iou(self,intersect_area, pred_area, label_area):
|
| 149 |
+
"""
|
| 150 |
+
Calculate iou.
|
| 151 |
+
Args:
|
| 152 |
+
intersect_area (Tensor): The intersection area of prediction and ground truth on all classes.
|
| 153 |
+
pred_area (Tensor): The prediction area on all classes.
|
| 154 |
+
label_area (Tensor): The ground truth area on all classes.
|
| 155 |
+
Returns:
|
| 156 |
+
np.ndarray: iou on all classes.
|
| 157 |
+
float: mean iou of all classes.
|
| 158 |
+
"""
|
| 159 |
+
intersect_area = np.array(intersect_area)
|
| 160 |
+
pred_area = np.array(pred_area)
|
| 161 |
+
label_area = np.array(label_area)
|
| 162 |
+
|
| 163 |
+
union = pred_area + label_area - intersect_area
|
| 164 |
+
|
| 165 |
+
class_iou = []
|
| 166 |
+
for i in range(len(intersect_area)):
|
| 167 |
+
if union[i] == 0:
|
| 168 |
+
iou = 0
|
| 169 |
+
else:
|
| 170 |
+
iou = intersect_area[i] / union[i]
|
| 171 |
+
class_iou.append(iou)
|
| 172 |
+
|
| 173 |
+
miou = np.mean(class_iou)
|
| 174 |
+
|
| 175 |
+
return np.array(class_iou), miou
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
def accuracy(self,intersect_area, pred_area):
|
| 179 |
+
"""
|
| 180 |
+
Calculate accuracy
|
| 181 |
+
Args:
|
| 182 |
+
intersect_area (Tensor): The intersection area of prediction and ground truth on all classes..
|
| 183 |
+
pred_area (Tensor): The prediction area on all classes.
|
| 184 |
+
Returns:
|
| 185 |
+
np.ndarray: accuracy on all classes.
|
| 186 |
+
float: mean accuracy.
|
| 187 |
+
"""
|
| 188 |
+
|
| 189 |
+
intersect_area = np.array(intersect_area)
|
| 190 |
+
pred_area = np.array(pred_area)
|
| 191 |
+
|
| 192 |
+
class_acc = []
|
| 193 |
+
for i in range(len(intersect_area)):
|
| 194 |
+
if pred_area[i] == 0:
|
| 195 |
+
acc = 0
|
| 196 |
+
else:
|
| 197 |
+
acc = intersect_area[i] / pred_area[i]
|
| 198 |
+
class_acc.append(acc)
|
| 199 |
+
|
| 200 |
+
macc = np.sum(intersect_area) / np.sum(pred_area)
|
| 201 |
+
|
| 202 |
+
return np.array(class_acc), macc
|
tools/eval/eval.py
CHANGED
|
@@ -77,6 +77,14 @@ models = dict(
|
|
| 77 |
name="CRNN",
|
| 78 |
topic="text_recognition",
|
| 79 |
modelPath=os.path.join(root_dir, "models/text_recognition_crnn/text_recognition_CRNN_EN_2021sep.onnx")),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
)
|
| 81 |
|
| 82 |
datasets = dict(
|
|
@@ -97,6 +105,9 @@ datasets = dict(
|
|
| 97 |
iiit5k=dict(
|
| 98 |
name="IIIT5K",
|
| 99 |
topic="text_recognition"),
|
|
|
|
|
|
|
|
|
|
| 100 |
)
|
| 101 |
|
| 102 |
def main(args):
|
|
|
|
| 77 |
name="CRNN",
|
| 78 |
topic="text_recognition",
|
| 79 |
modelPath=os.path.join(root_dir, "models/text_recognition_crnn/text_recognition_CRNN_EN_2021sep.onnx")),
|
| 80 |
+
pphumanseg=dict(
|
| 81 |
+
name="PPHumanSeg",
|
| 82 |
+
topic="human_segmentation",
|
| 83 |
+
modelPath=os.path.join(root_dir, "models/human_segmentation_pphumanseg/human_segmentation_pphumanseg_2021oct.onnx")),
|
| 84 |
+
pphumanseg_q=dict(
|
| 85 |
+
name="PPHumanSeg",
|
| 86 |
+
topic="human_segmentation",
|
| 87 |
+
modelPath=os.path.join(root_dir, "models/human_segmentation_pphumanseg/human_segmentation_pphumanseg_2021oct-act_int8-wt_int8-quantized.onnx")),
|
| 88 |
)
|
| 89 |
|
| 90 |
datasets = dict(
|
|
|
|
| 105 |
iiit5k=dict(
|
| 106 |
name="IIIT5K",
|
| 107 |
topic="text_recognition"),
|
| 108 |
+
mini_supervisely=dict(
|
| 109 |
+
name="MiniSupervisely",
|
| 110 |
+
topic="human_segmentation"),
|
| 111 |
)
|
| 112 |
|
| 113 |
def main(args):
|