Yiyao Wang
commited on
Commit
·
46b1f95
1
Parent(s):
0367d6a
Text Recognition: Add script to evaluate text recognition by ICDAR2003 (#71)
Browse files* update readme
* add another script
* revise details for this pr
- models/text_recognition_crnn/README.md +14 -0
- models/text_recognition_crnn/charset_94_CH.txt +94 -0
- models/text_recognition_crnn/crnn.py +3 -1
- tools/eval/README.md +53 -0
- tools/eval/datasets/__init__.py +5 -1
- tools/eval/datasets/icdar.py +53 -0
- tools/eval/datasets/iiit5k.py +55 -0
- tools/eval/eval.py +11 -0
models/text_recognition_crnn/README.md
CHANGED
|
@@ -2,11 +2,24 @@
|
|
| 2 |
|
| 3 |
An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition
|
| 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
Note:
|
| 6 |
- Model source:
|
| 7 |
- `text_recognition_CRNN_EN_2021sep.onnx`: https://docs.opencv.org/4.5.2/d9/d1e/tutorial_dnn_OCR.html (CRNN_VGG_BiLSTM_CTC.onnx)
|
|
|
|
| 8 |
- `text_recognition_CRNN_CN_2021nov.onnx`: https://docs.opencv.org/4.5.2/d4/d43/tutorial_dnn_text_spotting.html (crnn_cs_CN.onnx)
|
| 9 |
- `text_recognition_CRNN_EN_2021sep.onnx` can detect digits (0\~9) and letters (return lowercase letters a\~z) (view `charset_36_EN.txt` for details).
|
|
|
|
| 10 |
- `text_recognition_CRNN_CN_2021nov.onnx` can detect digits (0\~9), upper/lower-case letters (a\~z and A\~Z), some Chinese characters and some special characters (view `charset_3944_CN.txt` for details).
|
| 11 |
- For details on training this model series, please visit https://github.com/zihaomu/deep-text-recognition-benchmark.
|
| 12 |
|
|
@@ -16,6 +29,7 @@ Note:
|
|
| 16 |
- This demo uses [text_detection_db](../text_detection_db) as text detector.
|
| 17 |
- Selected model must match with the charset:
|
| 18 |
- Try `text_recognition_CRNN_EN_2021sep.onnx` with `charset_36_EN.txt`.
|
|
|
|
| 19 |
- Try `text_recognition_CRNN_CN_2021sep.onnx` with `charset_3944_CN.txt`.
|
| 20 |
|
| 21 |
Run the demo detecting English:
|
|
|
|
| 2 |
|
| 3 |
An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition
|
| 4 |
|
| 5 |
+
Results of accuracy evaluation with [tools/eval](../../tools/eval) at different text recognition datasets.
|
| 6 |
+
|
| 7 |
+
| Model name | ICDAR03(%) | IIIT5k(%) | CUTE80(%) |
|
| 8 |
+
|--------------|------------|-----------|-----------|
|
| 9 |
+
| CRNN_EN | 81.66 | 74.33 | 52.78 |
|
| 10 |
+
| CRNN_EN_FP16 | 82.01 | 74.93 | 52.34 |
|
| 11 |
+
| CRNN_CH | 71.28 | 80.90 | 67.36 |
|
| 12 |
+
| CRNN_CH_FP16 | 78.63 | 80.93 | 67.01 |
|
| 13 |
+
|
| 14 |
+
\*: 'FP16' stands for 'model quantized into FP16'.
|
| 15 |
+
|
| 16 |
Note:
|
| 17 |
- Model source:
|
| 18 |
- `text_recognition_CRNN_EN_2021sep.onnx`: https://docs.opencv.org/4.5.2/d9/d1e/tutorial_dnn_OCR.html (CRNN_VGG_BiLSTM_CTC.onnx)
|
| 19 |
+
- `text_recognition_CRNN_CH_2021sep.onnx`: https://docs.opencv.org/4.x/d4/d43/tutorial_dnn_text_spotting.html (crnn_cs.onnx)
|
| 20 |
- `text_recognition_CRNN_CN_2021nov.onnx`: https://docs.opencv.org/4.5.2/d4/d43/tutorial_dnn_text_spotting.html (crnn_cs_CN.onnx)
|
| 21 |
- `text_recognition_CRNN_EN_2021sep.onnx` can detect digits (0\~9) and letters (return lowercase letters a\~z) (view `charset_36_EN.txt` for details).
|
| 22 |
+
- `text_recognition_CRNN_CH_2021sep.onnx` can detect digits (0\~9), upper/lower-case letters (a\~z and A\~Z), and some special characters (view `charset_94_CH.txt` for details).
|
| 23 |
- `text_recognition_CRNN_CN_2021nov.onnx` can detect digits (0\~9), upper/lower-case letters (a\~z and A\~Z), some Chinese characters and some special characters (view `charset_3944_CN.txt` for details).
|
| 24 |
- For details on training this model series, please visit https://github.com/zihaomu/deep-text-recognition-benchmark.
|
| 25 |
|
|
|
|
| 29 |
- This demo uses [text_detection_db](../text_detection_db) as text detector.
|
| 30 |
- Selected model must match with the charset:
|
| 31 |
- Try `text_recognition_CRNN_EN_2021sep.onnx` with `charset_36_EN.txt`.
|
| 32 |
+
- Try `text_recognition_CRNN_CH_2021sep.onnx` with `charset_94_CH.txt`
|
| 33 |
- Try `text_recognition_CRNN_CN_2021sep.onnx` with `charset_3944_CN.txt`.
|
| 34 |
|
| 35 |
Run the demo detecting English:
|
models/text_recognition_crnn/charset_94_CH.txt
ADDED
|
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
0
|
| 2 |
+
1
|
| 3 |
+
2
|
| 4 |
+
3
|
| 5 |
+
4
|
| 6 |
+
5
|
| 7 |
+
6
|
| 8 |
+
7
|
| 9 |
+
8
|
| 10 |
+
9
|
| 11 |
+
a
|
| 12 |
+
b
|
| 13 |
+
c
|
| 14 |
+
d
|
| 15 |
+
e
|
| 16 |
+
f
|
| 17 |
+
g
|
| 18 |
+
h
|
| 19 |
+
i
|
| 20 |
+
j
|
| 21 |
+
k
|
| 22 |
+
l
|
| 23 |
+
m
|
| 24 |
+
n
|
| 25 |
+
o
|
| 26 |
+
p
|
| 27 |
+
q
|
| 28 |
+
r
|
| 29 |
+
s
|
| 30 |
+
t
|
| 31 |
+
u
|
| 32 |
+
v
|
| 33 |
+
w
|
| 34 |
+
x
|
| 35 |
+
y
|
| 36 |
+
z
|
| 37 |
+
A
|
| 38 |
+
B
|
| 39 |
+
C
|
| 40 |
+
D
|
| 41 |
+
E
|
| 42 |
+
F
|
| 43 |
+
G
|
| 44 |
+
H
|
| 45 |
+
I
|
| 46 |
+
J
|
| 47 |
+
K
|
| 48 |
+
L
|
| 49 |
+
M
|
| 50 |
+
N
|
| 51 |
+
O
|
| 52 |
+
P
|
| 53 |
+
Q
|
| 54 |
+
R
|
| 55 |
+
S
|
| 56 |
+
T
|
| 57 |
+
U
|
| 58 |
+
V
|
| 59 |
+
W
|
| 60 |
+
X
|
| 61 |
+
Y
|
| 62 |
+
Z
|
| 63 |
+
!
|
| 64 |
+
"
|
| 65 |
+
#
|
| 66 |
+
$
|
| 67 |
+
%
|
| 68 |
+
&
|
| 69 |
+
'
|
| 70 |
+
(
|
| 71 |
+
)
|
| 72 |
+
*
|
| 73 |
+
+
|
| 74 |
+
,
|
| 75 |
+
-
|
| 76 |
+
.
|
| 77 |
+
/
|
| 78 |
+
:
|
| 79 |
+
;
|
| 80 |
+
<
|
| 81 |
+
=
|
| 82 |
+
>
|
| 83 |
+
?
|
| 84 |
+
@
|
| 85 |
+
[
|
| 86 |
+
\
|
| 87 |
+
]
|
| 88 |
+
^
|
| 89 |
+
_
|
| 90 |
+
`
|
| 91 |
+
{
|
| 92 |
+
|
|
| 93 |
+
}
|
| 94 |
+
~
|
models/text_recognition_crnn/crnn.py
CHANGED
|
@@ -54,7 +54,9 @@ class CRNN:
|
|
| 54 |
rotationMatrix = cv.getPerspectiveTransform(vertices, self._targetVertices)
|
| 55 |
cropped = cv.warpPerspective(image, rotationMatrix, self._inputSize)
|
| 56 |
|
| 57 |
-
|
|
|
|
|
|
|
| 58 |
pass
|
| 59 |
else:
|
| 60 |
cropped = cv.cvtColor(cropped, cv.COLOR_BGR2GRAY)
|
|
|
|
| 54 |
rotationMatrix = cv.getPerspectiveTransform(vertices, self._targetVertices)
|
| 55 |
cropped = cv.warpPerspective(image, rotationMatrix, self._inputSize)
|
| 56 |
|
| 57 |
+
# 'CN' can detect digits (0\~9), upper/lower-case letters (a\~z and A\~Z), and some special characters
|
| 58 |
+
# 'CH' can detect digits (0\~9), upper/lower-case letters (a\~z and A\~Z), some Chinese characters and some special characters
|
| 59 |
+
if 'CN' in self._model_path or 'CH' in self._model_path:
|
| 60 |
pass
|
| 61 |
else:
|
| 62 |
cropped = cv.cvtColor(cropped, cv.COLOR_BGR2GRAY)
|
tools/eval/README.md
CHANGED
|
@@ -19,6 +19,8 @@ Supported datasets:
|
|
| 19 |
- [ImageNet](#imagenet)
|
| 20 |
- [WIDERFace](#widerface)
|
| 21 |
- [LFW](#lfw)
|
|
|
|
|
|
|
| 22 |
|
| 23 |
## ImageNet
|
| 24 |
|
|
@@ -137,4 +139,55 @@ Run evaluation with the following command:
|
|
| 137 |
|
| 138 |
```shell
|
| 139 |
python eval.py -m sface -d lfw -dr /path/to/lfw
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
```
|
|
|
|
| 19 |
- [ImageNet](#imagenet)
|
| 20 |
- [WIDERFace](#widerface)
|
| 21 |
- [LFW](#lfw)
|
| 22 |
+
- [ICDAR](#icdar)
|
| 23 |
+
- [IIIT5K](#iiit5k)
|
| 24 |
|
| 25 |
## ImageNet
|
| 26 |
|
|
|
|
| 139 |
|
| 140 |
```shell
|
| 141 |
python eval.py -m sface -d lfw -dr /path/to/lfw
|
| 142 |
+
```
|
| 143 |
+
|
| 144 |
+
## ICDAR2003
|
| 145 |
+
|
| 146 |
+
### Prepare data
|
| 147 |
+
|
| 148 |
+
Please visit http://iapr-tc11.org/mediawiki/index.php/ICDAR_2003_Robust_Reading_Competitions to download the ICDAR2003 dataset and the labels.
|
| 149 |
+
|
| 150 |
+
```shell
|
| 151 |
+
$ tree -L 2 /path/to/icdar
|
| 152 |
+
.
|
| 153 |
+
├── word
|
| 154 |
+
│ ├── 1
|
| 155 |
+
│ │ ├── self
|
| 156 |
+
│ │ ├── ...
|
| 157 |
+
│ │ └── willcooks
|
| 158 |
+
│ ├── ...
|
| 159 |
+
│ └── 12
|
| 160 |
+
└── word.xml
|
| 161 |
+
|
| 162 |
+
```
|
| 163 |
+
|
| 164 |
+
### Evaluation
|
| 165 |
+
|
| 166 |
+
Run evaluation with the following command:
|
| 167 |
+
|
| 168 |
+
```shell
|
| 169 |
+
python eval.py -m crnn -d icdar -dr /path/to/icdar
|
| 170 |
+
```
|
| 171 |
+
|
| 172 |
+
### Example
|
| 173 |
+
|
| 174 |
+
```shell
|
| 175 |
+
download zip file from http://www.iapr-tc11.org/dataset/ICDAR2003_RobustReading/TrialTrain/word.zip
|
| 176 |
+
upzip file to /path/to/icdar
|
| 177 |
+
python eval.py -m crnn -d icdar -dr /path/to/icdar
|
| 178 |
+
```
|
| 179 |
+
|
| 180 |
+
## IIIT5K
|
| 181 |
+
|
| 182 |
+
### Prepare data
|
| 183 |
+
|
| 184 |
+
Please visit https://github.com/cv-small-snails/Text-Recognition-Material to download the IIIT5K dataset and the labels.
|
| 185 |
+
|
| 186 |
+
### Evaluation
|
| 187 |
+
|
| 188 |
+
All the datasets in the format of lmdb can be evaluated by this script.<br>
|
| 189 |
+
Run evaluation with the following command:
|
| 190 |
+
|
| 191 |
+
```shell
|
| 192 |
+
python eval.py -m crnn -d iiit5k -dr /path/to/iiit5k
|
| 193 |
```
|
tools/eval/datasets/__init__.py
CHANGED
|
@@ -1,6 +1,8 @@
|
|
| 1 |
from .imagenet import ImageNet
|
| 2 |
from .widerface import WIDERFace
|
| 3 |
from .lfw import LFW
|
|
|
|
|
|
|
| 4 |
|
| 5 |
class Registery:
|
| 6 |
def __init__(self, name):
|
|
@@ -16,4 +18,6 @@ class Registery:
|
|
| 16 |
DATASETS = Registery("Datasets")
|
| 17 |
DATASETS.register(ImageNet)
|
| 18 |
DATASETS.register(WIDERFace)
|
| 19 |
-
DATASETS.register(LFW)
|
|
|
|
|
|
|
|
|
| 1 |
from .imagenet import ImageNet
|
| 2 |
from .widerface import WIDERFace
|
| 3 |
from .lfw import LFW
|
| 4 |
+
from .icdar import ICDAR
|
| 5 |
+
from .iiit5k import IIIT5K
|
| 6 |
|
| 7 |
class Registery:
|
| 8 |
def __init__(self, name):
|
|
|
|
| 18 |
DATASETS = Registery("Datasets")
|
| 19 |
DATASETS.register(ImageNet)
|
| 20 |
DATASETS.register(WIDERFace)
|
| 21 |
+
DATASETS.register(LFW)
|
| 22 |
+
DATASETS.register(ICDAR)
|
| 23 |
+
DATASETS.register(IIIT5K)
|
tools/eval/datasets/icdar.py
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import numpy as np
|
| 3 |
+
import cv2 as cv
|
| 4 |
+
import xml.dom.minidom as minidom
|
| 5 |
+
from tqdm import tqdm
|
| 6 |
+
|
| 7 |
+
class ICDAR:
|
| 8 |
+
def __init__(self, root):
|
| 9 |
+
self.root = root
|
| 10 |
+
self.acc = -1
|
| 11 |
+
self.inputSize = [100, 32]
|
| 12 |
+
self.val_label_file = os.path.join(root, "word.xml")
|
| 13 |
+
self.val_label = self.load_label(self.val_label_file)
|
| 14 |
+
|
| 15 |
+
@property
|
| 16 |
+
def name(self):
|
| 17 |
+
return self.__class__.__name__
|
| 18 |
+
|
| 19 |
+
def load_label(self, label_file):
|
| 20 |
+
label = list()
|
| 21 |
+
dom = minidom.getDOMImplementation().createDocument(None, 'Root', None)
|
| 22 |
+
root = dom.documentElement
|
| 23 |
+
dom = minidom.parse(self.val_label_file)
|
| 24 |
+
root = dom.documentElement
|
| 25 |
+
names = root.getElementsByTagName('image')
|
| 26 |
+
for name in names:
|
| 27 |
+
key = os.path.join(self.root, name.getAttribute('file'))
|
| 28 |
+
value = name.getAttribute('tag').lower()
|
| 29 |
+
label.append([key, value])
|
| 30 |
+
|
| 31 |
+
return label
|
| 32 |
+
|
| 33 |
+
def eval(self, model):
|
| 34 |
+
right_num = 0
|
| 35 |
+
pbar = tqdm(self.val_label)
|
| 36 |
+
for fn, label in pbar:
|
| 37 |
+
pbar.set_description("Evaluating {} with {} val set".format(model.name, self.name))
|
| 38 |
+
|
| 39 |
+
img = cv.imread(fn)
|
| 40 |
+
|
| 41 |
+
rbbox = np.array([0, img.shape[0], 0, 0, img.shape[1], 0, img.shape[1], img.shape[0]])
|
| 42 |
+
pred = model.infer(img, rbbox)
|
| 43 |
+
if label == pred:
|
| 44 |
+
right_num += 1
|
| 45 |
+
|
| 46 |
+
self.acc = right_num/(len(self.val_label) * 1.0)
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def get_result(self):
|
| 50 |
+
return self.acc
|
| 51 |
+
|
| 52 |
+
def print_result(self):
|
| 53 |
+
print("Accuracy: {:.2f}%".format(self.acc*100))
|
tools/eval/datasets/iiit5k.py
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import lmdb
|
| 2 |
+
import os
|
| 3 |
+
import numpy as np
|
| 4 |
+
import cv2 as cv
|
| 5 |
+
from tqdm import tqdm
|
| 6 |
+
|
| 7 |
+
class IIIT5K:
|
| 8 |
+
def __init__(self, root):
|
| 9 |
+
self.root = root
|
| 10 |
+
self.acc = -1
|
| 11 |
+
self.inputSize = [100, 32]
|
| 12 |
+
|
| 13 |
+
self.val_label = self.load_label(self.root)
|
| 14 |
+
|
| 15 |
+
@property
|
| 16 |
+
def name(self):
|
| 17 |
+
return self.__class__.__name__
|
| 18 |
+
|
| 19 |
+
def load_label(self, root):
|
| 20 |
+
lmdb_file = root
|
| 21 |
+
lmdb_env = lmdb.open(lmdb_file)
|
| 22 |
+
lmdb_txn = lmdb_env.begin()
|
| 23 |
+
lmdb_cursor = lmdb_txn.cursor()
|
| 24 |
+
label = list()
|
| 25 |
+
for key, value in lmdb_cursor:
|
| 26 |
+
image_index = key.decode()
|
| 27 |
+
if image_index.split('-')[0] == 'image':
|
| 28 |
+
img = cv.imdecode(np.fromstring(value, np.uint8), 3)
|
| 29 |
+
label_index = 'label-' + image_index.split('-')[1]
|
| 30 |
+
value = lmdb_txn.get(label_index.encode()).decode().lower()
|
| 31 |
+
label.append([img, value])
|
| 32 |
+
else:
|
| 33 |
+
break
|
| 34 |
+
return label
|
| 35 |
+
|
| 36 |
+
def eval(self, model):
|
| 37 |
+
right_num = 0
|
| 38 |
+
pbar = tqdm(self.val_label)
|
| 39 |
+
for img, value in pbar:
|
| 40 |
+
pbar.set_description("Evaluating {} with {} val set".format(model.name, self.name))
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
rbbox = np.array([0, img.shape[0], 0, 0, img.shape[1], 0, img.shape[1], img.shape[0]])
|
| 44 |
+
pred = model.infer(img, rbbox).lower()
|
| 45 |
+
if value == pred:
|
| 46 |
+
right_num += 1
|
| 47 |
+
|
| 48 |
+
self.acc = right_num/(len(self.val_label) * 1.0)
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def get_result(self):
|
| 52 |
+
return self.acc
|
| 53 |
+
|
| 54 |
+
def print_result(self):
|
| 55 |
+
print("Accuracy: {:.2f}%".format(self.acc*100))
|
tools/eval/eval.py
CHANGED
|
@@ -73,6 +73,11 @@ models = dict(
|
|
| 73 |
name="SFace",
|
| 74 |
topic="face_recognition",
|
| 75 |
modelPath=os.path.join(root_dir, "models/face_recognition_sface/face_recognition_sface_2021dec-act_int8-wt_int8-quantized.onnx")),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
)
|
| 77 |
|
| 78 |
datasets = dict(
|
|
@@ -87,6 +92,12 @@ datasets = dict(
|
|
| 87 |
name="LFW",
|
| 88 |
topic="face_recognition",
|
| 89 |
target_size=112),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
)
|
| 91 |
|
| 92 |
def main(args):
|
|
|
|
| 73 |
name="SFace",
|
| 74 |
topic="face_recognition",
|
| 75 |
modelPath=os.path.join(root_dir, "models/face_recognition_sface/face_recognition_sface_2021dec-act_int8-wt_int8-quantized.onnx")),
|
| 76 |
+
crnn=dict(
|
| 77 |
+
name="CRNN",
|
| 78 |
+
topic="text_recognition",
|
| 79 |
+
modelPath=os.path.join(root_dir, "models/text_recognition_crnn/text_recognition_CRNN_EN_2021sep.onnx"),
|
| 80 |
+
charsetPath=os.path.join(root_dir, "models/text_recognition_crnn/charset_36_EN.txt")),
|
| 81 |
)
|
| 82 |
|
| 83 |
datasets = dict(
|
|
|
|
| 92 |
name="LFW",
|
| 93 |
topic="face_recognition",
|
| 94 |
target_size=112),
|
| 95 |
+
icdar=dict(
|
| 96 |
+
name="ICDAR",
|
| 97 |
+
topic="text_recognition"),
|
| 98 |
+
iiit5k=dict(
|
| 99 |
+
name="IIIT5K",
|
| 100 |
+
topic="text_recognition"),
|
| 101 |
)
|
| 102 |
|
| 103 |
def main(args):
|