[GSoC] Blockwise Quantization Tool (#265)
Browse files* Blockwise quantization tool
* add missing type hints
* add min python version check
* refactoring
- tools/quantize/README.md +11 -1
- tools/quantize/block_quantize.py +419 -0
- tools/quantize/requirements.txt +1 -0
tools/quantize/README.md
CHANGED
|
@@ -7,7 +7,7 @@ Install dependencies before trying quantization:
|
|
| 7 |
pip install -r requirements.txt
|
| 8 |
```
|
| 9 |
|
| 10 |
-
## Usage
|
| 11 |
|
| 12 |
Quantize all models in the Zoo:
|
| 13 |
```shell
|
|
@@ -52,6 +52,16 @@ models = dict(
|
|
| 52 |
python quantize-inc.py model1
|
| 53 |
```
|
| 54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
## Dataset
|
| 56 |
Some models are quantized with extra datasets.
|
| 57 |
- [MP-PalmDet](../../models/palm_detection_mediapipe) and [MP-HandPose](../../models/handpose_estimation_mediapipe) are quantized with evaluation set of [FreiHAND](https://lmb.informatik.uni-freiburg.de/resources/datasets/FreihandDataset.en.html). Download the dataset from [this link](https://lmb.informatik.uni-freiburg.de/data/freihand/FreiHAND_pub_v2_eval.zip). Unpack it and replace `path/to/dataset` with the path to `FreiHAND_pub_v2_eval/evaluation/rgb`.
|
|
|
|
| 7 |
pip install -r requirements.txt
|
| 8 |
```
|
| 9 |
|
| 10 |
+
## Quantization Usage
|
| 11 |
|
| 12 |
Quantize all models in the Zoo:
|
| 13 |
```shell
|
|
|
|
| 52 |
python quantize-inc.py model1
|
| 53 |
```
|
| 54 |
|
| 55 |
+
## Blockwise quantization usage
|
| 56 |
+
|
| 57 |
+
`block_quantize.py` requires Python>=3.7
|
| 58 |
+
|
| 59 |
+
To perform weight-only blockwise quantization:
|
| 60 |
+
|
| 61 |
+
```shell
|
| 62 |
+
python block_quantize.py --input_model INPUT_MODEL.onnx --output_model OUTPUT_MODEL.onnx --block_size {block size} --bits {8,16}
|
| 63 |
+
```
|
| 64 |
+
|
| 65 |
## Dataset
|
| 66 |
Some models are quantized with extra datasets.
|
| 67 |
- [MP-PalmDet](../../models/palm_detection_mediapipe) and [MP-HandPose](../../models/handpose_estimation_mediapipe) are quantized with evaluation set of [FreiHAND](https://lmb.informatik.uni-freiburg.de/resources/datasets/FreihandDataset.en.html). Download the dataset from [this link](https://lmb.informatik.uni-freiburg.de/data/freihand/FreiHAND_pub_v2_eval.zip). Unpack it and replace `path/to/dataset` with the path to `FreiHAND_pub_v2_eval/evaluation/rgb`.
|
tools/quantize/block_quantize.py
ADDED
|
@@ -0,0 +1,419 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys
|
| 2 |
+
|
| 3 |
+
MIN_PYTHON_VERSION = (3, 7)
|
| 4 |
+
|
| 5 |
+
if sys.version_info < MIN_PYTHON_VERSION:
|
| 6 |
+
raise ImportError("This script requires Python 3.7 or higher!")
|
| 7 |
+
|
| 8 |
+
import argparse
|
| 9 |
+
import os
|
| 10 |
+
from dataclasses import dataclass, field
|
| 11 |
+
from typing import List, Optional, Tuple
|
| 12 |
+
|
| 13 |
+
import numpy as np
|
| 14 |
+
import onnx
|
| 15 |
+
from onnx import helper
|
| 16 |
+
|
| 17 |
+
BITS_TO_NUMPY_TYPE = {8: np.uint8, 16: np.uint16}
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
SUPPORTED_OPS = {
|
| 21 |
+
"Conv"
|
| 22 |
+
}
|
| 23 |
+
|
| 24 |
+
ONNX_OPSET = 21
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
@dataclass
|
| 28 |
+
class BlockQuantizeConfig:
|
| 29 |
+
input_model_path: str
|
| 30 |
+
output_model_path: str
|
| 31 |
+
block_size: int
|
| 32 |
+
bits: int
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
@dataclass
|
| 36 |
+
class BlockQuantizeResult:
|
| 37 |
+
quantized_weights: np.ndarray = field(default_factory=lambda: np.array([]))
|
| 38 |
+
scales: np.ndarray = field(default_factory=lambda: np.array([]))
|
| 39 |
+
zero_point: np.ndarray = field(default_factory=lambda: np.array([]))
|
| 40 |
+
block_size: int = 1
|
| 41 |
+
axis: int = 1
|
| 42 |
+
original_shape: Tuple = field(default_factory=tuple)
|
| 43 |
+
quantization_error: np.ndarray = field(default_factory=lambda: np.array([]))
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
@dataclass
|
| 47 |
+
class LayerParams:
|
| 48 |
+
weights: np.ndarray = field(default_factory=lambda: np.array([]))
|
| 49 |
+
bias: Optional[np.ndarray] = None
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def closest_divisor(number: int, divisor: int) -> int:
|
| 53 |
+
for d in range(divisor, 0, -1):
|
| 54 |
+
if number % d == 0:
|
| 55 |
+
return d
|
| 56 |
+
return 1
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def block_dequantize_tensor(
|
| 60 |
+
x: np.ndarray, block_axis: int, scale: np.ndarray, zero_point: np.ndarray
|
| 61 |
+
) -> np.ndarray:
|
| 62 |
+
repeats = x.shape[block_axis] // scale.shape[block_axis]
|
| 63 |
+
|
| 64 |
+
x_scale_elementwise = np.repeat(scale, repeats=repeats, axis=block_axis)
|
| 65 |
+
x_zero_point_elementwise = np.repeat(zero_point, repeats=repeats, axis=block_axis)
|
| 66 |
+
|
| 67 |
+
y = (
|
| 68 |
+
x.astype(np.float32) - x_zero_point_elementwise.astype(np.float32)
|
| 69 |
+
) * x_scale_elementwise
|
| 70 |
+
|
| 71 |
+
return y
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
def block_quantize_tensor(
|
| 75 |
+
x: np.ndarray,
|
| 76 |
+
block_axis: int,
|
| 77 |
+
scale: np.ndarray,
|
| 78 |
+
zero_point: np.ndarray,
|
| 79 |
+
n_bits: int,
|
| 80 |
+
) -> np.ndarray:
|
| 81 |
+
repeats = x.shape[block_axis] // scale.shape[block_axis]
|
| 82 |
+
|
| 83 |
+
y_scale_elementwise = np.repeat(scale, repeats=repeats, axis=block_axis)
|
| 84 |
+
y_zero_point_elementwise = np.repeat(zero_point, repeats=repeats, axis=block_axis)
|
| 85 |
+
|
| 86 |
+
y = np.rint(x / y_scale_elementwise + y_zero_point_elementwise).astype(
|
| 87 |
+
BITS_TO_NUMPY_TYPE[n_bits]
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
return y
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
def create_dequantize_node(
|
| 94 |
+
node_name,
|
| 95 |
+
quantized_weights,
|
| 96 |
+
scales,
|
| 97 |
+
zero_point,
|
| 98 |
+
dequantized_weights,
|
| 99 |
+
block_size,
|
| 100 |
+
axis,
|
| 101 |
+
) -> onnx.NodeProto:
|
| 102 |
+
block_size_attr = helper.make_attribute("block_size", block_size)
|
| 103 |
+
axis_attr = helper.make_attribute("axis", axis)
|
| 104 |
+
|
| 105 |
+
n = helper.make_node(
|
| 106 |
+
"DequantizeLinear",
|
| 107 |
+
inputs=[quantized_weights, scales, zero_point],
|
| 108 |
+
outputs=[dequantized_weights],
|
| 109 |
+
name=node_name,
|
| 110 |
+
)
|
| 111 |
+
n.attribute.extend([block_size_attr, axis_attr])
|
| 112 |
+
return n
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
def create_reshape_node(
|
| 116 |
+
node_name, dequantized_weights, shape_tensor, reshaped_weights_name
|
| 117 |
+
) -> onnx.NodeProto:
|
| 118 |
+
return helper.make_node(
|
| 119 |
+
"Reshape",
|
| 120 |
+
inputs=[dequantized_weights, shape_tensor],
|
| 121 |
+
outputs=[reshaped_weights_name],
|
| 122 |
+
name=node_name,
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
class BlockQuantizer:
|
| 127 |
+
def __init__(self, conf: BlockQuantizeConfig) -> None:
|
| 128 |
+
self.conf = conf
|
| 129 |
+
self.validate_conf()
|
| 130 |
+
|
| 131 |
+
self.model = onnx.load(conf.input_model_path)
|
| 132 |
+
|
| 133 |
+
if self.model.opset_import[0].version != ONNX_OPSET:
|
| 134 |
+
self.model = onnx.version_converter.convert_version(self.model, ONNX_OPSET)
|
| 135 |
+
|
| 136 |
+
self.graph = self.model.graph
|
| 137 |
+
self.initializers_map = {
|
| 138 |
+
init.name: init for init in self.model.graph.initializer
|
| 139 |
+
}
|
| 140 |
+
|
| 141 |
+
def validate_conf(self):
|
| 142 |
+
if not os.path.isfile(self.conf.input_model_path):
|
| 143 |
+
raise ValueError(
|
| 144 |
+
f"Input model path '{self.conf.input_model_path}' does not exist or is not a file."
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
if not self.conf.input_model_path.lower().endswith(".onnx"):
|
| 148 |
+
raise ValueError(
|
| 149 |
+
f"Input model path '{self.conf.input_model_path}' must have a .onnx extension."
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
+
if not self.conf.output_model_path.lower().endswith(".onnx"):
|
| 153 |
+
raise ValueError(
|
| 154 |
+
f"Output model path '{self.conf.output_model_path}' must have a .onnx extension."
|
| 155 |
+
)
|
| 156 |
+
|
| 157 |
+
if self.conf.block_size <= 0:
|
| 158 |
+
raise ValueError("Block size must be a positive integer.")
|
| 159 |
+
|
| 160 |
+
if self.conf.bits not in BITS_TO_NUMPY_TYPE:
|
| 161 |
+
allowed_values = ", ".join([str(k) for k in BITS_TO_NUMPY_TYPE.keys()])
|
| 162 |
+
raise ValueError(
|
| 163 |
+
f"Bits must be one of the following values: [{allowed_values}]."
|
| 164 |
+
)
|
| 165 |
+
|
| 166 |
+
def get_initializer_tensor(self, name: str) -> Optional[np.ndarray]:
|
| 167 |
+
if name in self.initializers_map:
|
| 168 |
+
return onnx.numpy_helper.to_array(self.initializers_map[name])
|
| 169 |
+
|
| 170 |
+
return None
|
| 171 |
+
|
| 172 |
+
def get_layer_params(self, node: onnx.NodeProto) -> LayerParams:
|
| 173 |
+
params = LayerParams()
|
| 174 |
+
|
| 175 |
+
weights_name = node.input[1]
|
| 176 |
+
params.weights = self.get_initializer_tensor(weights_name)
|
| 177 |
+
|
| 178 |
+
if len(node.input) > 2:
|
| 179 |
+
bias_name = node.input[2]
|
| 180 |
+
params.bias = self.get_initializer_tensor(bias_name)
|
| 181 |
+
|
| 182 |
+
return params
|
| 183 |
+
|
| 184 |
+
def compute_scale_zeropoint(
|
| 185 |
+
self, b_min: np.ndarray, b_max: np.ndarray
|
| 186 |
+
) -> Tuple[np.ndarray, np.ndarray]:
|
| 187 |
+
assert (
|
| 188 |
+
b_min < b_max
|
| 189 |
+
).all(), (
|
| 190 |
+
"minimum must be lower than maximum when computing scale and zero point"
|
| 191 |
+
)
|
| 192 |
+
|
| 193 |
+
# zero must be present in the range, this enforces qmin <= zero_point <= qmax
|
| 194 |
+
b_min = np.minimum(b_min, np.zeros_like(b_min, dtype=b_min.dtype))
|
| 195 |
+
b_max = np.maximum(b_max, np.zeros_like(b_max, dtype=b_max.dtype))
|
| 196 |
+
|
| 197 |
+
qmin = np.iinfo(BITS_TO_NUMPY_TYPE[self.conf.bits]).min
|
| 198 |
+
qmax = np.iinfo(BITS_TO_NUMPY_TYPE[self.conf.bits]).max
|
| 199 |
+
|
| 200 |
+
dq = qmax - qmin
|
| 201 |
+
|
| 202 |
+
scales = (b_max - b_min) / dq
|
| 203 |
+
zeropoints = np.rint(qmin - b_min / scales).astype(
|
| 204 |
+
BITS_TO_NUMPY_TYPE[self.conf.bits]
|
| 205 |
+
)
|
| 206 |
+
|
| 207 |
+
return (scales, zeropoints)
|
| 208 |
+
|
| 209 |
+
def block_quantize(self, weight: np.ndarray) -> BlockQuantizeResult:
|
| 210 |
+
original_shape = weight.shape
|
| 211 |
+
weight = weight.reshape((weight.shape[0], -1))
|
| 212 |
+
|
| 213 |
+
quantization_axis = 1
|
| 214 |
+
|
| 215 |
+
block_size = closest_divisor(weight.shape[1], self.conf.block_size)
|
| 216 |
+
|
| 217 |
+
assert (
|
| 218 |
+
weight.shape[1] % block_size == 0
|
| 219 |
+
), f"weight shape ({weight.shape[1]}) must be divisible by block size ({block_size})"
|
| 220 |
+
|
| 221 |
+
# Warning, axis = 1 specific instruction!
|
| 222 |
+
blocked_weight = weight.reshape(
|
| 223 |
+
(weight.shape[0], weight.shape[1] // block_size, -1)
|
| 224 |
+
)
|
| 225 |
+
|
| 226 |
+
# Warning, axis = 1 specific instruction!
|
| 227 |
+
blocked_max = np.max(blocked_weight, -1)
|
| 228 |
+
# Warning, axis = 1 specific instruction!
|
| 229 |
+
blocked_min = np.min(blocked_weight, -1)
|
| 230 |
+
|
| 231 |
+
scales, zeropoints = self.compute_scale_zeropoint(blocked_min, blocked_max)
|
| 232 |
+
|
| 233 |
+
quantized_weight = block_quantize_tensor(
|
| 234 |
+
weight, quantization_axis, scales, zeropoints, self.conf.bits
|
| 235 |
+
)
|
| 236 |
+
reconstructed_mat = block_dequantize_tensor(
|
| 237 |
+
quantized_weight, quantization_axis, scales, zeropoints
|
| 238 |
+
)
|
| 239 |
+
|
| 240 |
+
qerror = np.linalg.norm(reconstructed_mat - weight)
|
| 241 |
+
|
| 242 |
+
res = BlockQuantizeResult(
|
| 243 |
+
quantized_weight,
|
| 244 |
+
scales,
|
| 245 |
+
zeropoints,
|
| 246 |
+
block_size,
|
| 247 |
+
quantization_axis,
|
| 248 |
+
original_shape,
|
| 249 |
+
qerror,
|
| 250 |
+
)
|
| 251 |
+
|
| 252 |
+
return res
|
| 253 |
+
|
| 254 |
+
def get_model_size(self, model_path: str) -> float:
|
| 255 |
+
size_bytes = os.path.getsize(model_path)
|
| 256 |
+
size_mb = size_bytes / 1024
|
| 257 |
+
|
| 258 |
+
return size_mb
|
| 259 |
+
|
| 260 |
+
def display_summary(self, sqe: List):
|
| 261 |
+
mse = sum(sqe) / len(sqe)
|
| 262 |
+
original_model_size = self.get_model_size(self.conf.input_model_path)
|
| 263 |
+
quantized_model_size = self.get_model_size(self.conf.output_model_path)
|
| 264 |
+
|
| 265 |
+
print("Done! Results saved in", self.conf.output_model_path)
|
| 266 |
+
print("\nSummary of Results:\n")
|
| 267 |
+
print(f"{'Metric':<30} {'Value':<10}")
|
| 268 |
+
print(f"{'-'*40}")
|
| 269 |
+
print(f"{'Mean Squared Quantization Error':<30} {mse:.6f}")
|
| 270 |
+
print(f"{'Original Model Size (KB)':<31} {original_model_size:,.2f}")
|
| 271 |
+
print(f"{'Block-Quantized Model Size (KB)':<30} {quantized_model_size:,.2f}")
|
| 272 |
+
|
| 273 |
+
def run(self):
|
| 274 |
+
print("Quantizing the model...")
|
| 275 |
+
|
| 276 |
+
visited_nodes = []
|
| 277 |
+
sqe = []
|
| 278 |
+
|
| 279 |
+
for node in self.model.graph.node:
|
| 280 |
+
if node.name in visited_nodes:
|
| 281 |
+
continue
|
| 282 |
+
if node.op_type in SUPPORTED_OPS:
|
| 283 |
+
conv_params = self.get_layer_params(node)
|
| 284 |
+
block_quantize_res = self.block_quantize(conv_params.weights)
|
| 285 |
+
|
| 286 |
+
quantized_weights_name = f"{node.name}_quantized_weights"
|
| 287 |
+
quantized_node_name = f"{node.name}_quantized_node"
|
| 288 |
+
dequantized_weights_name = f"{node.name}_dequantized_weights"
|
| 289 |
+
scales_name = f"{node.name}_scales"
|
| 290 |
+
zero_point_name = f"{node.name}_zero_point"
|
| 291 |
+
|
| 292 |
+
shape_node_name = f"{node.name}_shape_node"
|
| 293 |
+
shape_name = f"{node.name}_shape"
|
| 294 |
+
reshaped_weights_name = f"{node.name}_reshaped_weights"
|
| 295 |
+
|
| 296 |
+
dequantize_node = create_dequantize_node(
|
| 297 |
+
quantized_node_name,
|
| 298 |
+
quantized_weights_name,
|
| 299 |
+
scales_name,
|
| 300 |
+
zero_point_name,
|
| 301 |
+
dequantized_weights_name,
|
| 302 |
+
block_quantize_res.block_size,
|
| 303 |
+
block_quantize_res.axis,
|
| 304 |
+
)
|
| 305 |
+
reshape_node = create_reshape_node(
|
| 306 |
+
shape_node_name,
|
| 307 |
+
dequantized_weights_name,
|
| 308 |
+
shape_name,
|
| 309 |
+
reshaped_weights_name,
|
| 310 |
+
)
|
| 311 |
+
|
| 312 |
+
shape_tensor = onnx.numpy_helper.from_array(
|
| 313 |
+
np.array(block_quantize_res.original_shape), name=shape_name
|
| 314 |
+
)
|
| 315 |
+
scale_initializer = onnx.numpy_helper.from_array(
|
| 316 |
+
block_quantize_res.scales, name=scales_name
|
| 317 |
+
)
|
| 318 |
+
zero_point_initializer = onnx.numpy_helper.from_array(
|
| 319 |
+
block_quantize_res.zero_point, name=zero_point_name
|
| 320 |
+
)
|
| 321 |
+
quantized_weights_initializer = onnx.numpy_helper.from_array(
|
| 322 |
+
block_quantize_res.quantized_weights, name=quantized_weights_name
|
| 323 |
+
)
|
| 324 |
+
|
| 325 |
+
dequantized_weights_info = helper.make_tensor_value_info(
|
| 326 |
+
dequantized_weights_name,
|
| 327 |
+
onnx.TensorProto.FLOAT,
|
| 328 |
+
block_quantize_res.quantized_weights.shape,
|
| 329 |
+
)
|
| 330 |
+
shape_info = helper.make_tensor_value_info(
|
| 331 |
+
reshaped_weights_name,
|
| 332 |
+
onnx.TensorProto.FLOAT,
|
| 333 |
+
block_quantize_res.original_shape,
|
| 334 |
+
)
|
| 335 |
+
|
| 336 |
+
self.graph.initializer.extend(
|
| 337 |
+
[
|
| 338 |
+
scale_initializer,
|
| 339 |
+
zero_point_initializer,
|
| 340 |
+
shape_tensor,
|
| 341 |
+
quantized_weights_initializer,
|
| 342 |
+
]
|
| 343 |
+
)
|
| 344 |
+
|
| 345 |
+
# Removing fp32 weights
|
| 346 |
+
self.graph.initializer.remove(
|
| 347 |
+
next(
|
| 348 |
+
init
|
| 349 |
+
for init in self.graph.initializer
|
| 350 |
+
if init.name == node.input[1]
|
| 351 |
+
)
|
| 352 |
+
)
|
| 353 |
+
node.input[1] = reshaped_weights_name
|
| 354 |
+
|
| 355 |
+
# Preserving the topological order of graph nodes
|
| 356 |
+
self.graph.node.insert(0, reshape_node)
|
| 357 |
+
self.graph.node.insert(0, dequantize_node)
|
| 358 |
+
self.graph.value_info.insert(0, shape_info)
|
| 359 |
+
self.graph.value_info.insert(0, dequantized_weights_info)
|
| 360 |
+
|
| 361 |
+
sqe.append(block_quantize_res.quantization_error**2)
|
| 362 |
+
visited_nodes.append(node.name)
|
| 363 |
+
|
| 364 |
+
onnx.checker.check_model(self.model, full_check=True)
|
| 365 |
+
onnx.save(self.model, self.conf.output_model_path)
|
| 366 |
+
|
| 367 |
+
self.display_summary(sqe)
|
| 368 |
+
|
| 369 |
+
|
| 370 |
+
def setup_args() -> argparse.Namespace:
|
| 371 |
+
parser = argparse.ArgumentParser(description="Blockwise quantization tool")
|
| 372 |
+
|
| 373 |
+
parser.add_argument(
|
| 374 |
+
"-i",
|
| 375 |
+
"--input_model",
|
| 376 |
+
type=str,
|
| 377 |
+
help="The path of onnx model to quantize",
|
| 378 |
+
required=True,
|
| 379 |
+
)
|
| 380 |
+
parser.add_argument(
|
| 381 |
+
"-bs",
|
| 382 |
+
"--block_size",
|
| 383 |
+
type=int,
|
| 384 |
+
help="The maximum size of quantization block",
|
| 385 |
+
required=True,
|
| 386 |
+
)
|
| 387 |
+
parser.add_argument(
|
| 388 |
+
"-b",
|
| 389 |
+
"--bits",
|
| 390 |
+
type=int,
|
| 391 |
+
help="Quantization bits",
|
| 392 |
+
choices=[8, 16],
|
| 393 |
+
default=8,
|
| 394 |
+
required=False,
|
| 395 |
+
)
|
| 396 |
+
parser.add_argument(
|
| 397 |
+
"-o",
|
| 398 |
+
"--output_model",
|
| 399 |
+
type=str,
|
| 400 |
+
help="The output model path",
|
| 401 |
+
default="block_quantized_model.onnx",
|
| 402 |
+
required=False,
|
| 403 |
+
)
|
| 404 |
+
|
| 405 |
+
return parser.parse_args()
|
| 406 |
+
|
| 407 |
+
|
| 408 |
+
if __name__ == "__main__":
|
| 409 |
+
args = setup_args()
|
| 410 |
+
|
| 411 |
+
quantization_config = BlockQuantizeConfig(
|
| 412 |
+
input_model_path=args.input_model,
|
| 413 |
+
output_model_path=args.output_model,
|
| 414 |
+
block_size=args.block_size,
|
| 415 |
+
bits=args.bits,
|
| 416 |
+
)
|
| 417 |
+
|
| 418 |
+
quantizer = BlockQuantizer(quantization_config)
|
| 419 |
+
quantizer.run()
|
tools/quantize/requirements.txt
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
opencv-python>=4.10.0
|
|
|
|
| 2 |
onnx
|
| 3 |
onnxruntime
|
| 4 |
onnxruntime-extensions
|
|
|
|
| 1 |
opencv-python>=4.10.0
|
| 2 |
+
numpy
|
| 3 |
onnx
|
| 4 |
onnxruntime
|
| 5 |
onnxruntime-extensions
|